谈抛物线与x轴的两个交点和顶点连线构成的三角形

合集下载

抛物线的基本知识点

抛物线的基本知识点

抛物线的基本知识点抛物线的基本知识点有哪些抛物线是初中数学的重要知识点,主要涉及以下几方面内容:1.定义:指有一个公共的焦点、一条对称轴的两个顶点的二次函数图像,叫抛物线。

2.顶点:在对称轴上,到图象两交点距离相等的点。

3.开口方向:抛物线与X轴的交点叫抛物线的顶点。

4.对称轴:对于二次函数y=ax^2+bx+c(a≠0)对称轴是直线x=-b/2a。

5.抛物线y=ax^2+bx+c(a≠0)的对称轴是直线x=-b/2a,顶点坐标是(-b/2a,(4ac-b^2)/4a),当a>0时,开口向上,当a<0时,开口向下。

6.与坐标轴的交点:把二次函数y=ax^2+bx+c(a≠0)化为顶点式y=a(x-h)^2+k,则y轴与图像的交点为(0,k),x轴与图像的交点为h,h,-b/2a。

7.抛物线与坐标轴的交点:把二次函数y=ax^2+bx+c(a≠0)化为顶点式y=a(x-h)^2+k,当h=0时,抛物线与x轴的交点为(0,k),当k=0时,抛物线与y轴的交点为(0,h),即抛物线的交点为(0,h),(h,0),(0,k),(k,0)。

以上是抛物线的基本知识点,如果在学习过程中遇到问题,可以咨询数学老师。

抛物线的基本知识点汇总抛物线是初中数学的重要知识点,主要涉及以下内容:1.定义:抛物线是轴对称图形,对称轴为直线x=—b/2a,顶点坐标为(—b/2a,(4ac—b2)/4a)。

2.与坐标轴的交点:令y=0,求得方程(),再令x=0,求得方程()。

()与()的交点为抛物线与y轴的交点,即抛物线在y轴上的截距。

3.开口方向:开口向上,a>0;开口向下,a<0。

4.对称轴:对称轴为直线x=-b/2a。

5.顶点坐标:顶点坐标为(-b/2a,(4ac-b2)/4a)。

6.增减性:在直线x=-b/2a左边,y单调递减;在右边,y单调递增。

7.焦半径:抛物线上的点到焦点的距离等于到准线的距离。

抛物线与坐标轴交点构成的三角形问题

抛物线与坐标轴交点构成的三角形问题

抛物线与坐标轴交点构成的三角形问题--------思考与探索面积篇例1:已知抛物线3+2x +x -=y 2与x 轴交于A,B 两点,其中A 点位于B 点的左侧,与y 轴交于C 点,顶点为P , _________=S A O C △ _________=S BO C △ _________=S CO P △ _________=S PAB △_________=S PCB △ _________=S A CP △例:在平面直角坐标系中,有两点A (-1,0),B (3,0),如图,小敏发现所有过A ,B 两点的抛物线如果与y 轴负半轴交于点C ,M 为抛物线的顶点,那么△ACM 与△ACB 的面积比不变,请你求出这个比值。

对称篇例2、如图,一元二次方程2230x x +-=的二根12x x ,( 12x x < )是抛物线2y ax bx c =++与x 轴的两个交点B,C 的横坐标,且此抛物线过A(3,6)点.(1)求此二次函数的解析式.(2)设此抛物线的顶点为p ,对称轴与线段AC 相交于点Q ,求点P 和点Q 的坐标.(3)在X 轴上有一动点M ,当MQ+MA 取得最小值时,求点M 的坐标(4)设AC 与Y 轴交与D 点,E 点坐标为(0,1),在X 轴上找一点F ,抛物线对称轴上找一点G ,使四边形AFGE 的周长最短,并求出当四边形周长最短时的点F 、G 点坐标,并求出四边形AFGE 的周长。

形状篇1、已知抛物线c +bx +ax =y 2与x 轴正、负半轴分别交于A 、B 两点,与y 轴负半轴交于点C 。

若OA=4,OB=1,∠ACB=90°,求抛物线解析式。

2、已知:抛物线与x 轴的交点坐标为A(-1,0)和B (3,0),顶点为C,若∠ACB=90度.问1:C 点的坐标是多少?问2:在抛物线的解析式中,=-ac b 423. 若题设中的A 、B 两点的坐标未知,而已知∠ACB=90度,你能求出 =-ac b 42吗?4. 从上面的探索中我们看到解析式中的△与∠ACB 有关,那么如果△ACB 是等边三角形,则△是多少?最后, ①思因果 ; ②思规律 ; ③思多解 ; ④思变通; ⑤思归类; ⑥思错误.。

二次函数直角三角形问题

二次函数直角三角形问题

1、已知抛物线与x轴交于A、 B两点,与y轴交于点C.是否存在实数a,使得△ABC为直角三角形.若存在,请求出a的值;若不存在,请说明理由.由,解得,.∴点A、B的坐标分别为(-3,0),(,0).∴,,.∴,,.〈ⅰ〉当时,∠ACB=90°.由,得.解得.∴当时,点B的坐标为(,0),,,.于是.∴当时,△A BC为直角三角形.〈ⅱ〉当时,∠ABC=90°.2:如图,抛物线与x轴交与A(1,0),B(-3,0)两点,顶点为D。

交Y轴于C,在抛物线第二象限图象上是否存在一点M,使△MBC是以∠BCM为直角的直角三角形,若存在,求出点P的坐标。

若没有,请说明理由抛物线y=-x^2+bx+c与x轴交予A(1,0),B(-3,0)两点,得-1+b+c=0-9-3b+c=0得b=-2,c=3该抛物线的解析式y=-x^2-2x+3点C为(0.3)△ABC的面积为1/2AB*OC=6设在抛物线第二象限图象上存在点M(x0,y0)使△MBC是以∠BCM为直角的直角三角形则x0<0,y0>0y0=-x0^2-2x0+3(1)再由MB^2=MC^2+BC^2得(x0+3)^2+(y0-0)^2=(x0-0)^2+(y0-3)^2+(0+3)^2+(3-0)^2(2)(3)由(1)和(2)可解得y0=3,x0=0或者y0=4,x0=-1又x0<0,y0>0所以y0=4,x0=-1在抛物线第二象限图象上存在点M(-1,4)使△MBC是以∠BCM为直角的直角三角形.3:(2012云南)如图,在平面直角坐标系中,直线交x轴于点P,交y轴于点A.抛物线的图象过点E(-1,0),并与直线相交于A、B两点(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.解答:解:(1)直线解析式为y=x+2,令x=0,则y=2,∴A(0,2),∵抛物线y=x2+bx+c的图象过点A(0,2),E(﹣1,0),∴,解得.∴抛物线的解析式为:y=x2+x+2.(2)∵直线y=x+2分别交x轴、y轴于点P、点A,∴P(6,0),A(0,2),∴OP=6,OA=2.∵AC⊥AB,OA⊥OP,∴Rt△OCA∽Rt△OPA,∴,∴OC=,又C点在x轴负半轴上,∴点C的坐标为C(,0).(3)抛物线y=x2+x+2与直线y=x+2交于A、B两点,令x2+x+2=x+2,解得x1=0,x2=,∴B(,).如答图①所示,过点B作BD⊥x轴于点D,则D(,0),BD=,DP=6﹣=.点M在坐标轴上,且△MAB是直角三角形,有以下几种情况:①当点M在x轴上,且BM⊥AB,如答图①所示.设M(m,0),则MD=﹣m.∵BM⊥AB,BD⊥x轴,∴,即,解得m=,∴此时M点坐标为(,0);②当点M在x轴上,且BM⊥AM,如答图①所示.设M(m,0),则MD=﹣m.∵BM⊥AM,易知Rt△AOM∽Rt△MDB,∴,即,化简得:m2﹣m+=0,解得:x1=,x2=,∴此时M点坐标为(,0),(,0);(说明:此时的M点相当于以AB为直径的圆与x轴的两个交点)③当点M在y轴上,且BM⊥AM,如答图②所示.此时M点坐标为(0,);④当点M在y轴上,且BM′⊥AB,如答图②所示.设M′(0,m),则AM=2﹣=,BM=,MM′=﹣m.易知Rt△ABM∽Rt△MBM′,∴,即,解得m=,∴此时M点坐标为(0,).综上所述,除点C外,在坐标轴上存在点M,使得△MAB是直角三角形.符合条件的点M有5个,其坐标分别为:(,0)、(,0)、(,0)、(0,)或(0,).4:(2012?河池)如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线经过A、B两点.(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.解:(1)抛物线y=﹣x2+x+4中:令x=0,y=4,则 B(0,4);令y=0,0=﹣x2+x+4,解得 x1=﹣1、x2=8,则 A(8,0);∴A(8,0)、B(0,4).△ABC中,AB=AC,AO⊥BC,则OB=OC=4,∴C(0,﹣4).由A(8,0)、B(0,4),得:直线AC:y=﹣x+4;依题意,知:OE=2t,即 E(2t,0);∴P(2t,﹣2t2+7t+4)、Q(2t,﹣t+4),PQ=(﹣2t2+7t+4)﹣(﹣t+4)=﹣2t2+8t;S=S△ABC+S△PAB=×8×8+×(﹣2t2+8t)×8=﹣8t2+32t+32=﹣8(t﹣2)2+64;∴当t=2时,S有最大值,且最大值为64.(3)∵PM∥y轴,∴∠AMP=∠ACO<90°;而∠APM是锐角,所以△PAM若是直角三角形,只能是∠PAM=90°;由A(8,0)、C(0,﹣4),得:直线AC:y=x﹣4;所以,直线AP可设为:y=﹣2x+h,代入A(8,0),得:﹣16+h=0,h=16∴直线AP:y=﹣2x+16,联立抛物线的解析式,得:,解得、∴存在符合条件的点P,且坐标为(3,10).5:(2012?海南)如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,(1)求该二次函数的关系式;(2)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:①证明:∠ANM=∠ONM;②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.1)∵二次函数图象的顶点为P(4,-4),∴设二次函数的关系式为。

抛物线与直线的交点问题

抛物线与直线的交点问题

For personal use only in study and research; not for commercial use抛物线与直线的交点问题1、 抛物线y=ax +bx+c 与直线y=m (坐标系中的水平直线)的交点问题:①把y=m 代入y=ax 2+bx+c 得ax 2+bx+c=m ,即ax 2+bx+(c-m )=0此时方程的判别式△=b 2-4a(c-m)。

△>0,则抛物线y=ax 2+bx+c 与直线y=m 有两个交点;△=0时有一个交点;△<0时无交点。

②特殊情形:抛物线y=ax 2+bx+c 与直线y=0(x 轴)的交点问题:令y=0,则ax 2+bx+c=0此时方程的判别式△=b 2-4ac△>0,则抛物线y=ax 2+bx+c 与x 轴有两个交点;△=0时有一个交点;△<0时无交点。

2、抛物线y=ax 2+bx+c 与直线y=kx+b 的交点问题:令ax 2+bx+c=kx+b ,整理方程得:ax 2+(b-k)x+(c-b )=0此时方程的判别式△=(b-k)2-4a (c-b )△>0,则抛物线y=ax 2+bx+c 与直线y=kx+b 有两个交点;△=0时有一个交点;△<0时无交点。

总结:判别式△的值决定抛物线与直线的交点个数。

3、 抛物线y=ax 2+bx+c 与直线y=0(x 轴)的交点位置问题:若ax 2+bx+c=0的两根为x 1、x 2,则抛物线y=ax 2+bx+c 与x 轴的交点为(x 1,0)、(x 2,0)① 若x 1x 2>0、x 1+x 2>0,则抛物线y=ax 2+bx+c 与x 轴的两个交点在原点右侧② 若x 1x 2>0、x 1+x 2<0,则抛物线y=ax 2+bx+c 与x 轴的两个交点在原点左侧③ 若x 1x 2<0,则抛物线y=ax 2+bx+c 与x 轴的两个交点分居于原点两侧4、 抛物线y=ax 2+bx+c 与直线y=0(x 轴)的两个交点距离公式若ax 2+bx+c=0的两根为x 1、x 2,则抛物线y=ax 2+bx+c 与x 轴的两个交点(x 1,0)、(x 2,0)的距离为︱x 1-x 2︱=aac b 42 练习1.一元二次方程ax 2+bx +c =0的两根是-3和1,那么二次函数y =ax 2+bx +c 与x 轴的交点是____________.2.已知二次函数y =kx 2-7x -7的图象与x 轴有两个交点,则k 的取值范围为( )A .k >-47B .k <-47且k ≠0C .k ≥-47D .k ≥-47且k ≠03.若抛物线y =x 2-8x +c 顶点在x 轴上,则c 的值等于( ).A .4B .8C .-4D .164.二次函数y=ax2+bx+c的值恒为负值的条件是( ).A.a>0, b2-4ac<0B.a<0, b2-4ac>0C.a>0, b2-4ac>0D.a<0, b2-4ac<05.直线y=3x-3与抛物线y=x2-x+1的交点的个数是______6.若抛物线y=(m-1)x2+2mx+m+2恒在x轴上方,则m_______.7.抛物线顶点C(2,),且与x轴交于A、B两点,它们的横坐标是方程2x2-7x+1=0的两根,则S△ABC=.8.直线y=2x1与抛物线y=x2的公共点坐标是______________.9、不等式x2-9>0的解集为_________________;x2>2x+1的解集为_____________.10.利用二次函数的图象求一元二次方程x2+2x-10=3的根.11.在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.12.已知抛物线y=x2+ax+a-2.(1)证明:此抛物线与x轴总有两个不同的交点;(2)求这两个交点间的距离;(用关于a的表达式来表达)(3)a取何值时,两点间的距离最小?13.已知抛物线y=-x2+(m-2)x+3(m+1)交x轴于A(x1,0),B(x2,0)两点,交y•轴正半轴于C点,且x1<x2,│x1│>│x2│,OA2+OB2=2OC+1.(1)求抛物线的解析式;(2)是否存在与抛物线只有一个公共点C的直线?如果存在,求符合条件的直线的表达式;如果不存在,请说明理由.仅供个人参考仅供个人用于学习、研究;不得用于商业用途。

二次函数顶点与x轴两交点为等腰直角三角形

二次函数顶点与x轴两交点为等腰直角三角形

二次函数顶点与x轴两交点为等腰直角三角形数学中的二次函数是一种常见的函数形式,它的一般形式可以表示为y = ax^2 + bx + c,其中a、b、c都是实数且a不为0。

而顶点形式则可以写成y = a(x - h)^2 + k,其中(h, k)为顶点的坐标。

令二次函数的顶点坐标为(h,k)。

根据等腰直角三角形的性质,顶点与x轴两交点的距离应该相等,即,x₁-h,=,x₂-h。

令其中一个交点为(x₁,0),另一个交点为(x₂,0)。

接下来,我们来推导顶点与x轴两交点为等腰直角三角形的条件下,a、h、k和x₁、x₂之间的关系。

根据等腰直角三角形的性质,顶点与x轴两交点的距离应该相等,即,x₁-h,=,x₂-h。

我们可以有以下两种情况进行讨论:情况一:x₁>h(即x₁在顶点右侧)那么,x₁-h,=x₁-h。

同样地,我们有,x₂-h,=h-x₂。

由于顶点与x轴两交点的距离相等,我们有:x₁-h=h-x₂化简得:2h=x₁+x₂又因为顶点的x坐标为h,代入二次函数的顶点形式,我们有:h=-b/(2a)所以,当顶点与x轴两交点为等腰直角三角形时,h=-b/(2a)。

情况二:x₂>h(即x₂在顶点右侧)那么,x₁-h,=h-x₁。

同样地,我们有,x₂-h,=x₂-h。

由于顶点与x轴两交点的距离相等,我们有:h-x₁=x₂-h化简得:2h=x₁+x₂同理可得h=-b/(2a)。

所以,不论x₁>h还是x₂>h,当顶点与x轴两交点为等腰直角三角形时,h=-b/(2a)。

接下来,我们考虑顶点的纵坐标k。

由于顶点是二次函数的最值点,因此顶点的纵坐标k等于二次函数的值在该点的取值。

代入二次函数的顶点形式,我们有:k=a(h-h)^2+k化简得:k=k所以,顶点的纵坐标k可以是任意实数。

最后,我们来具体说明一个例子。

假设我们有一个二次函数y=-2(x-3)^2+5、根据前面的推导,我们可以得出顶点的坐标为(h,k)=(3,5)。

与抛物线有关的两个重要三角形

与抛物线有关的两个重要三角形

与抛物线有关的两个重要三角形二次函数是初等函数中最为重要的一个函数,其图象抛物线,进一步加强了代数与几何的联系,其中蕴含的数学思想和方法,对学生观察问题、研究问题、解决问题是十分有益的。

二次函数的图象抛物线与坐标轴交点构成的有关线段、三角形面积等代数与几何综合问题,是历年中考数学压轴题的重点和热点。

抛物线c bx ax y ++=2,当△=b 2-4ac >0时,抛物线与x 轴必有两个交点为)0,(1x A 、)0,(2x B ;当0=x 时,抛物线与y 轴相交于点C (0,c )。

设抛物线的顶点为P ,此时我们得到与抛物线有关的两个重要三角形:△ABC 与△ABP 。

那么这两个三角形的面积、形状与抛物线的系数a,b,c, 有怎样的内在联系呢?下面就此问题作如下探讨:一、关于△ABC∵抛物线与x 轴的两个交点为)0,(1x A 、)0,(2x B ,则02=++c bx ax 。

根据一元二次方程根与系数的关系有:ac x x a b x x =-=+2121, 所以A 、B 两点间的距离.4444)()(22222121221212a a ac b a ac b a c a b x x x x x x x x AB ∆=-=-=⨯-⎪⎭⎫ ⎝⎛-=-+=-=-= 即 aAB ∆= …………………………………………(1) 这就是抛物线与x 轴的两个交点之间的距离公式。

而|OC|=|y c |=|c|, 所以S △ABC =.212121∆⋅=⋅∆⋅=⋅ac c a OC AB 即 S △ABC =.2∆⋅ac ……………………………………(2) 这就是抛物线与两坐标轴交点构成三角形的面积公式。

二、关于△ABP 由抛物线的对称性可知,它的形状、大小由P ,A ,B 三点坐标确定。

由(1)知:aAB ∆=. 设D 是抛物线对称轴与x 轴的交点,则|PD|=|y p |=.4442aa b ac ∆=- 设∠PAB=α,在Rt △PAD 中,..4:,21242ααtg a a AD PD tg =∆∆=∆⋅∆==平方整理得 于是我们得到:①当α=600时,△ABP 为等边三角形,此时α24tg =∆02604tg ==12;②当α=450时,△ABP 为等腰直角三角形,此时α24tg =∆02454tg ==4。

抛物线与直角三角形结合的解题方法

抛物线与直角三角形结合的解题方法在数学中,抛物线和直角三角形是两个常见且重要的概念。

它们在解决实际问题和理论推导中都扮演着重要的角色。

本文将探讨如何将抛物线与直角三角形结合起来,以更全面地解决一些数学问题。

一、基本概念1. 抛物线抛物线是一种特殊的曲线,其定义可以是平面内到定点和一条定直线的距离相等的点的轨迹。

抛物线在物理学、工程学和数学等领域都有着广泛的应用。

2. 直角三角形直角三角形是一种特殊的三角形,其中包含一个90度的直角。

直角三角形的性质和定理在几何学中具有重要意义,也是解决三角函数和特殊角度问题的基础。

二、抛物线与直角三角形的关系在实际问题中,抛物线与直角三角形常常会相互联系,特别是在物体的抛体运动和轨迹分析中。

当我们需要分析一个抛体运动的轨迹时,通常会涉及到抛物线的方程和直角三角形的性质。

当我们需要求解一个物体从抛出到落地的时间、速度和位置等问题时,我们可以通过解析几何的方法,将抛物线的轨迹和直角三角形的性质结合起来,从而得到更加全面和深入的解答。

三、抛物线与直角三角形结合的解题方法1. 利用抛物线方程构建直角三角形在解决与抛物线和直角三角形相关的问题时,可以先利用抛物线的方程构建出相关的直角三角形。

当我们需要分析抛体运动的轨迹时,可以通过抛物线的方程构建出相关的直角三角形,从而推导出物体的运动规律和轨迹特性。

2. 利用直角三角形的性质求解抛物线方程另一种常见的方法是利用直角三角形的性质来求解抛物线的方程。

在一些特殊的问题中,可以通过构建直角三角形、利用三角函数和三角恒等式等方法,从而简化抛物线方程的求解过程,使问题得到更加清晰和简化的解答。

四、个人观点和总结在数学问题的解决过程中,抛物线与直角三角形的结合是一种常见且有效的方法。

通过将抛物线的特性和方程与直角三角形的性质相结合,不仅可以更全面地理解和分析问题,也可以从不同角度和方法解决问题,使解题过程更灵活和丰富。

抛物线与直角三角形的结合在解决实际问题和理论推导中具有重要的意义。

抛物线与坐标轴交点构成的三角形问题PPT优选课件


1
(-1,0)
A O
B(3,0)
2
3
S△ COP=_1_.5_ S△ PAB=__8__
(1,4)
P
4
(0,3) C 3
2
1
(-1,0)
A O
(3,0)
B
2
2020/10/18
4
S△ PCB=___3____
(1,4) E4 P
(0,3) C 3
2
S△ ACP=___1____ 1
(-1,0)
A
3 Bx
C M
6
解:设抛物线解析式为y=a(x+1)(x-3), 即y=ax2-2ax-3a,即y=a(x-1)2-4a y
∴C点与M点坐标分别是(0,-3a),
(1,-4a)
S△ACB=
1 2
×4×3a=6a
-1 D
AO
3 Bx
∴S△ACM=S△AOC+S梯形OCMD-S△ADM
C M
1
1
1
= 2 ×1×3a+ 2 ×(3a+4a) ×1- 2 ×2×4a
抛物线与坐标轴交点 构成的三角形问题
2020/10/18
1
2020/10/18
2
1、已知抛物线y=-x2+2x+3与x轴交于
A,B两点,其中A点位于B点的左侧,与
y轴交于C点,顶点为P,请你求出
S△AOC=_1_._5_
(1,4)
P
4
(0,3) C 3
S△ BOC=_4_._5_
2
2020/10/18
2020/10/18
9
Y C
2、若题设中的A、B两点的坐 标未知,而只知∠ACB=90度,

抛物线与坐标轴交点构成的三角形问题

抛物线与坐标轴交点构成的三角形问题 -- 思考与探索面积篇例 1:已知抛物线 y=-x 2+2x+3与 x 轴交于 A,B 两点,其中 A 点位于 B 点的左侧,与 y 轴交于 C 点,顶点为 P , 半轴交于点 C ,M 为抛物线的顶点,那么△ ACM 与△ ACB 的面积比不变,请你求出这个比值。

2例 2、如图,一元二次方程 x 2 2x 3 0的二根 x 1,x 2( x 1 x 2 )是抛物线 y ax bx c 与 x 轴 的两个交点 B,C 的横坐标,且此抛物线过 A (3,6)点.(1)求此二次函数的解析式.(2)设此抛物线的顶点为 p ,对称轴与线段 AC 相交于点 Q ,求点 P 和点 Q 的坐标.(3)在 X 轴上有一动点 M ,当 MQ+MA 取得最小值时,求点 M 的坐标(4)设 AC 与Y 轴交与 D 点, E 点坐标为(0,1),在 X 轴上找一点 F ,抛物线对称轴上找一点 G ,使四 边形 AFGE 的周长最短,并求出当四边形周长最短时的点 F 、G 点坐标,并求出四边形 AFGE 的周长。

S △COP S△PABy轴负 S △ AOC = _______ S △ BOC 例:在平面直角坐标系中,有两点 小敏发现所有过 A ,B 两点的抛物线如果与形状篇1、已知抛物线y =ax2+bx+c与x轴正、负半轴分别交于A、B两点,与y 轴负半轴交于点C。

若OA=4,OB=1,∠ACB=90°,求抛物线解析式。

A(-1,0)和B( 3,0),顶点为C,若∠ ACB=90度.问2:在抛物线的解析式中,b2 4ac3. 若题设中的A、B 两点的坐标未知,而已知∠ACB有关,那么如果△ ACB是等边三角形,则△是多少?最后, ①思因果; ②思规律; ③思多解; ④思变通;⑤思归类;⑥思错误.ACB=90度,你能求出b2 4ac 吗?4. 从上面的探索中我们看到解析式中的△与∠问1: C 点的坐标是多少?。

第11讲 函数抛物线中的三角形

初三(上)数学第十讲 抛物线中特殊的三角形【知识梳理】一、重要基础知识回顾①抛物线顶点的坐标公式:( ),顶点为 。

②若抛物线与x 轴有两个交点A )0(1,x ,B )0,(2x ,AB=_________=__________. ③韦达定理:若)0(02≠=++a c bx ax 有两实根21,x x ,则_______________。

二、抛物线中的重要公式及应用1.抛物线交x 轴与A 、B 两点,与y 轴交于C 点,顶点为M ,△ABC 为直角三角形,则: AB=_______,并探索此时a 与c 的关系.2.第一类抛物线内接三角形的规律,当y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点,C 是顶点(利用含30°、45°角的直角三角形)可推导出以下结论: ①.当△ABC 是等腰Rt △时,△=_______;面积=_______. ②.当△ABC 是等边三角形时,△=_______;面积=______.③.当△ABC 是顶角为120°的等腰三角形时,△=_______;面积_______。

( 以上结论在填空、选择、探索性问题中比较简洁、高效。

有时在考试中甚至可做到“秒杀”。

)① ② ③3.一直线与抛物线交于A 、B 两点,在直线下方抛物线上有一动点C ,满足ABC S ∆面积最大值,时,有_________________。

☆4.探索:二次函数与等腰三角形、直角三角形的探索结合。

联想一次函数中等腰三角形、直角三角形的探索。

【典例解析】☆【知识随堂】1.二次函数y=x2-mx+m-2 图象与x轴交于A、B两点,与y轴交于点C点,M为顶点.(1)当m=________时,△AMB为直角三角形;(2)当m=________时,△AMB为正三角形;(3) 当m=________时,AB=3AM;(4) 若∠ACB=90°则m=________.2.设二次函数y=x2+2ax+3(a<0)的图象顶点为M,与x轴交点为A、B,当△ABM为等边三角形时,a的值为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档