临床药物代谢动力学与体内过程

合集下载

药物的体内过程完整版

药物的体内过程完整版

药物的体内过程集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]第三章药物代谢动力学(药动学)药动学(pharmacokinetics)是研究机体对药物的处置过程的科学,即研究药物在体内的吸收、分布、代谢及排泄的过程和血药浓度随时间变化的规律的科学。

第一节药物体内过程体内过程即吸收(absorption)、分布(distribution)、代谢(metabolism)和排泄(excretion)的过程,又称ADME系统。

吸收、分布、排泄通称药物转运(tranportationofdrug)。

代谢变化也称生物转化(biotransformation)。

代谢和排泄合称为消除(elimination)图3-1药物体内过程示意图一、药物的跨膜转运1.被动转运(passivetransport)类型:1)脂溶扩散(lipiddiffusion;简单扩散)2)水溶扩散(aqueousdiffusion;滤过)3)易化扩散(facilitateddiffusion)(需载体,有饱和、竞争抑制)特点:顺差(浓度、电位),不耗能;不需载体,无饱和、竞争抑制。

2.主动转运(activetransport)特点:逆差(浓度、电位),耗能;需载体,有饱和、竞争抑制。

3.膜动转运(cytopsistransport)胞饮(pinocytosis)胞吐(exocytosis)整个体内过程都涉及药物体内跨膜转运。

大多数药物体内转运过程属于被动转运(脂溶扩散)。

分子量小,非解离型,脂溶性大,极性小的药物易被动转运。

二、吸收药物从给药部位进入血液循环的过程称为吸收。

吸收速度主要影响药物起效的快慢;吸收程度主要影响药物作用的强弱。

影响吸收速度和程度的因素:药物理化性质、剂型、剂量给药途径:起效:吸入>肌内注射>皮下注射>口服>直肠>皮肤吸收环境等。

1.消化道吸收1)口服(oraladministration,peros,p.o.)大多数药物常采用口服给药,以肠道(小肠)吸收为主。

药物代谢动力学在临床用药中的应用

药物代谢动力学在临床用药中的应用

药物代谢动力学在临床用药中的应用随着药物研发和临床应用的不断深入,药物代谢动力学在临床用药中的应用逐渐成为研究的热点之一。

药物代谢动力学主要研究药物在人体内的代谢过程及其动力学特征,通过研究药物的代谢途径、代谢产物、代谢酶等参数,可以为临床用药提供科学依据,指导用药方案的制定,提高药物治疗效果,减少药物不良反应。

一、药物代谢动力学的基本概念药物代谢动力学是研究药物在体内代谢过程的一门科学,主要包括药物在体内的吸收、分布、代谢和排泄等过程。

其中,药物代谢是指药物经过生物体内代谢酶的作用,转化为代谢产物的过程。

药物的代谢通常发生在肝脏,也可以在肾脏、肠道等部位发生。

药物代谢动力学研究药物代谢的速度、代谢产物的结构、代谢途径、代谢酶的种类和活性等参数,可以为药物的药效学、毒理学、药代动力学等研究提供依据。

二、药物代谢动力学在临床用药中的应用1. 个体化用药药物代谢动力学研究表明,不同个体对同一种药物的代谢速度存在差异。

有些人代谢速度较快,药物在体内的清除速度较快,需要增加药物的剂量才能达到治疗效果;有些人代谢速度较慢,药物在体内的滞留时间较长,对药物的剂量要求较低。

因此,了解患者的药物代谢动力学特征,可以根据个体差异,选择最适合的药物剂量和用药方案,实现个体化用药,提高治疗效果。

2. 预测药物的药效和毒性药物代谢动力学研究可以揭示药物在体内的代谢途径和代谢产物,预测药物的药效和毒性。

通过研究药物的代谢途径和代谢产物的活性,可以了解药物的治疗效果和毒性发生的机制,指导用药方案的制定。

例如,一些药物经过代谢后产生的活性代谢产物可能具有毒性,药物代谢动力学研究可以提醒临床医生注意药物的毒副作用。

3. 药物相互作用药物代谢动力学研究还可以揭示药物之间的相互作用。

有些药物可能通过影响代谢酶的活性和代谢途径,影响其他药物的代谢,导致药物浓度的变化和药效的改变。

因此,在临床用药中,需要考虑药物之间的相互作用,避免药物不良反应的发生。

药物代谢动力学 药物的体内过程 体内过程

药物代谢动力学 药物的体内过程 体内过程

04 器 官 的 血 流 量
(一)药物与血浆蛋白结合
游离型
血液中
结合型
组织中 消除
游离型药物
有活性 可分布 可代谢 可排泄
结合型药物
暂时失去药理活性 不分布,储存在血液中 可逆性结合 有饱和性 存在竞争性置换现象
双香豆素与血浆蛋白结合率
保泰松与血浆蛋白结合率
双香豆素游离 型增多,造成 自发性出血
经皮给药
脂溶性药物可通过皮肤进入血液循环。 如:硝苯地平贴皮剂、硝酸甘油缓释贴皮剂。
二、药物的分布
概念:药物吸收后,随血液循环到达机体各组织器官的 过程。 特点:是物分布的因素
药物的血浆
蛋 白 结 合 率 01
体液的pH
02
药物与组织
03 的 亲 和 力
体 内 屏 障 05
➢ 药酶诱导剂:增强肝药酶活性或增加肝药酶生成的 药物 ,如巴比妥类、苯妥英钠、保泰松等;
➢ 药酶抑制剂:减弱肝药酶活性或减少肝药酶生成的 药物 ,如氯霉素、异烟肼、甲硝唑等;
肝药酶 诱导剂 抑制剂
耐受性
酶活性
酶量




药物代谢速 度 ↑

药效 ↓ ↑
四、药物的排泄
药物的原形及其代谢 产物通过排泄或分泌器官 自体内排出的过程,是药 物消除的重要方式。
(四)局部组织器官血流量
血流量大的器官(肝、肾、脑、肺)一般药物 的分布较快,血流量小的器官(皮肤、脂肪)分布较 慢,但并不能决定药物的最终分布浓度。
(五)体内屏障
1.血脑屏障
➢ 脂溶性高、极性小、分子量小的药物可以透过血脑屏障 进入脑组织。
➢ 新生儿的血脑屏障尚未发育完全,故其CNS易受某些药 物的影响。

临床药物代谢动力学

临床药物代谢动力学
n 年龄不同 肝药酶活性不同
◆ 胎儿和新生儿药物代谢 酶 活性很低,常规剂量就可出 现很强毒性。
◆老年人的药物代谢功能会 降低。
n 性别: CYP2C19活性,女性>男 性
o 3.病理因素 :肝炎患者药物代谢减慢
o 4.药物相互作用
o 酶诱导剂:苯巴比妥、其他巴比妥类药物、苯妥英钠 、卡马西平、利福平等 o 酶抑制剂:氯霉素、异烟肼、西咪替丁等,
结合率<20%,与血浆蛋 白结合低
o弱酸性药物主要与白蛋白结 合(水杨酸钠80-90%)
o②弱碱性药物主要与α1酸性 糖蛋白或脂蛋白结合(如奎尼 丁80%)
o③许多内源性物质及维生素 等主要与球蛋白结合
(糖皮质激素-CBG 80%,10%结合白 蛋白)
o这种结合是可逆的,结合与解离 处于动态平衡。
血浆蛋白结合率 临床意义:
2)主要经胆汁排泄而非肾脏排泄的药物,当肾功能 不全时,可不必调整剂量 3)药物从胆汁排出量大时,有肝肠循环的药作用时 间延长
肝肠循环(hepatoenteral circulation) 由胆汁排入十二指肠的部分药物可再经肠 黏膜上皮细胞吸收,经门静脉到肝脏后重 新进入体循环。
如洋地黄毒苷
o 肝肠循环延迟药物排泄(半衰期延长 ),延长作用时间
影响药物分布的因素:
o血浆蛋白结合率: o器官血流量 o细胞膜屏障:
n 血脑屏障 n 胎盘屏障
o体液PH
n 细胞内液PH7.0,细胞外液7.4 n 弱酸性药在细胞外液浓度高,不易进入细胞内
o药物与组织亲和力 o药物转运体
血浆蛋白结合率
药物血浆蛋白结合率%= 【结合药物的浓度】/【 总浓度】
结合率>90%,表示高度 结合;
老年人血浆蛋白含量减少

药物的体内过程及药物代谢动力学

药物的体内过程及药物代谢动力学

药物的体内过程及药物代谢动力学1药物的体内过程1.1吸收药物的吸收是它从用药部位转运至血液的过程。

其吸收快、慢、难、易,可受多种因素的影响:(1)药物本身的理化性质:脂溶性物质因可溶于生物膜的类脂质中而扩散,故较易吸收;小分子的水溶性物质可自由通过生物膜的膜孔而扩散而被吸收;而如硫酸钡,它既不溶于水又不溶于脂肪,虽大量口服也不致引起吸收中毒,故可用于胃肠造影。

非解离型药物可被转运,故酸性有机药物如水杨酸类、巴比妥类,在酸性的胃液中不离解,呈脂溶性,故在胃中易于吸收。

而碱性有机药物如生物碱类,在胃液中大部分离解,故难以吸收,到肠内碱性环境中才被吸收。

改变吸收部位环境的ph,使脂溶性药物不离解部分的浓度提高时,吸收就会增加,例如用碳酸氢钠使胃液ph升高时,可使碱性药物在胃中的吸收增加,而酸性药物的吸收则减少。

(2)给药的途径:在组织不破损不发炎的情况下,除静脉给药(直接进入血流)外,吸收的快慢顺序如后:肺泡(气雾吸入)——肌内或皮下注射——粘膜(包括口服、舌下给药)——皮肤给药。

(3)药物浓度、吸收面积以及局部血流速度等,一般地说,药物浓度大,吸收面积广,局部血流快,可使吸收加快。

胃肠道淤血时,药物吸收就会减慢。

1.2分布药物吸收入血后随血液循环向全身分布,有的分布均匀,有的分布并不均匀。

有些药物对某些组织有特殊的亲和力,例如碘浓集于甲状腺中;氯喹在肝中浓度比血浆中浓度约高数百倍;汞、锑、砷等以及类金属在肝、肾中沉积较多,故在中毒时这些器官常首先受害。

药物分布至作用部位,必须透过不同的屏障,如毛细血管壁、血脑屏障、胎盘等。

对于毛细血管壁,脂溶性或水溶性小分子易于透过;非脂溶性药物透过的速度与其分子大小成反比(大分子药物如右旋糖酐,通过毛细血管很慢,停留在血液中的时间较长,故可作为血浆代用品);解离型药物较难透过。

对于血脑屏障,水溶性化合物难以通过,脂溶性物质如乙醚、氯仿等则易于通过。

青霉素不易通过血脑屏障,进入脑脊髓液的比率很小,故用它治疗流脑时,必须加大剂量,才能保证脑脊液中有足够的浓度。

临床药代动力学

临床药代动力学

• 1979年瑞典发现一批癫痫病人中,使用不同批号 苯妥英钠后,发生严重中毒。
原因:苯妥英钠的晶体颗粒大小差异甚大,造成生 物利用度从低于50%到高于98%。
• 卡托普利:进食服药,吸收减少,宜餐前1小时服用。 • 福善美:必须在每天第一次进食前至少半小时
清晨用一满杯白水送服
服药避免躺卧
• 有些药物和食物同服又能促进其吸收,如维生素B2、螺内 酯等。
• 原因:卡马西平为肝药酶诱导剂,西咪替丁为 肝药酶抑制剂,多潘立酮为CYP3A4强效抑制 剂,三者合用有待商榷.

✓药物原形或代谢产物通过排泄器官或 分泌器官排出体外的过程
排泄途径
肾脏
消化道 肺脏 汗腺 乳汁
罗盖全说明书(部分)
• 【药代动力学】 a)活性成分的一般性质 吸收 骨化三醇在肠道内被迅速吸收。口服单剂本品0.25-1.0μg,3-6小时内达血药峰浓
在血液转动过程中,骨化三醇和其他维生素D代谢产物同特异血浆蛋白结合。 可以设想,外源性骨化三醇能通过母体血液进入到胎儿的血和乳汁中。 代谢 已鉴别出数种骨化三醇的代谢产物,各有不同的维生素D活性。1α,25-二羟-24氧代-维生素D3,1α,23,25-三羟-24-氧代-维生素D3,1α,24R,25-三羟基维生素 D3,1α,25R-二羟基维生素D3-26,23S-内酯,1α,25S-26-三羟维生素D3,1α,25-二 羟-23-氧代-维生素D3,1α,25R-26-三羟-23-氧代-维生素D3和1α-羟基-23-羧基-24,25 ,26,37-四去甲维生素D3。 排泄 血中骨化三醇的清除半衰期为3-6小时,但单剂量骨化三醇的药理学作用大约可持 续3-5天。骨化三醇被分泌进入胆汁并参与肝肠循环。健康志愿者静脉使用放谢标记的 骨化三醇后,24小时内,大约27%的放射活性在粪便中发现,大约7%的放射活性在尿 中发现。健康志愿者口服1μg放射标记的骨化三醇,24小时内大约10%的放射活性在 尿中发现。静脉使用放射标记的骨化三醇后第6天,尿中和粪便中平均累积排泄量分别 是16%和49%。 b)病人的特性 肾病综合征或接受血液透析的病人中,骨化三醇血药浓度降低,达峰时间延长。

药物在体内的分布和代谢动力学

药物在体内的分布和代谢动力学

药物在体内的分布和代谢动力学药物在人体内的分布和代谢动力学是药理学领域的重要研究方向之一。

了解药物在体内的分布过程和代谢途径,可以对药物有效性、安全性以及个体差异等问题进行深入研究,从而指导合理用药和个体化治疗。

一、药物在体内的分布动力学药物在体内的分布动力学主要涉及药物在体内的吸收、分布、代谢和排泄等过程。

下面将逐一探讨这些过程。

1. 药物的吸收药物的吸收是指药物从给药部位(如口服、皮肤贴敷等)进入血液循环的过程。

吸收速度和程度直接影响药物在体内的分布和效应。

吸收速度受药物的理化性质、给药途径、给药剂型等因素影响。

2. 药物的分布药物进入血液循环后,会通过血液被输送到全身各器官和组织。

药物在组织间的分布受到多种因素影响,如血流量、血-脑屏障、血-胎盘屏障等,以及药物的脂溶性、离子性、蛋白结合率等。

3. 药物的代谢药物在体内经历代谢过程,主要发生在肝脏。

药物代谢主要分为两类反应:相对稳定的相位Ⅰ反应和相对不稳定的相位Ⅱ反应。

相位Ⅰ反应主要是通过氧化、还原、水解等反应,使药物被激活或转化为更易排除的代谢产物。

相位Ⅱ反应主要是与内源物质(如谷胺酸、乙酰辅酶A等)结合,形成可溶性的代谢产物。

4. 药物的排泄药物的排泄是指药物经过肾脏、胆汁等途径从体内排出的过程。

肾脏是药物排泄的主要通道,其中肾小球滤过、肾小管分泌和肾小管重吸收是影响药物排泄的关键环节。

另外,胆汁、呼吸道、汗腺、乳腺等也是药物排泄的途径之一。

二、药物的代谢动力学药物代谢动力学主要研究药物在体内的排除和降解速率,以及药物代谢过程中的动力学参数。

下面将介绍几个常用的代谢动力学参数。

1. 半衰期(T1/2)药物的半衰期是指药物在体内浓度下降到初始浓度一半的时间。

半衰期反映了药物在体内代谢、分布和排泄的速度。

较短的半衰期意味着药物代谢和排泄速度较快,较长的半衰期意味着药物在体内停留时间较长。

2. 最大浓度(Cmax)和最小浓度(Cmin)最大浓度和最小浓度分别表示药物在给药后达到的最高和最低浓度。

药物代谢动力学体内过程和主要研究内容

药物代谢动力学体内过程和主要研究内容

• 例:丙磺舒的pKa=3.4
胃液pH=1.4
血液pH=7.4
10pH-pKa =
[离子型] [非离子型]
10pH-pKa =
[离子型] [非离子型]
101.4-3.4 =
[离子型] [非离子型]
107.4-3.4 =
[离子型] [非离子型]
10000= 100
药物血浆浓度维持较长时间:如 硝酸甘油软膏 (全身给药方式)。
(四)舌下给药(sublingual)
由舌下静脉,不经肝脏而直接进入体循环,适合 经胃肠道吸收时易被破坏或有明显首过消除的药 物。如硝酸甘油、异丙肾上腺素。
23
(五)注射给药
(1) 静脉注射给药(Intravenous) 直接将药物注入血管
代谢
20
(二) 吸入 (Inhalation)
气体和挥发性药物(全麻药)及小颗粒(2μm) : 直接从肺泡吸收入血液,发挥全身作用)
肺泡表面积大(100-200m2) 血流量大
较大颗粒(10μm): 可在支气管和肺泡表面发挥局 部作用(平喘药)
21
(三)局部用药
用药目的:在皮肤、眼、鼻、喉、阴道等部位产 生局部作用 。
大于较碱侧。
• 意义:影响药物的吸收、排泄,如:碱化血液和尿 液可以使酸性药物(苯巴比妥)加速排泄。
(二) 药物浓度差以及细胞膜通透性、面积和厚度
1. 膜两侧浓度差;
通透量 (单位时间分子数)
= (C1-C2)×
面积×通透系数 厚度
(三) 血流量
(四)细胞膜转运蛋白的量和功能
第二节 药物的体内过程
共同特点: 1、需膜上特异性载体蛋白,有结构特异性 2、有饱和性、竞争性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
临床药物代谢动力学和体内过程
主要内容
药物的体内过程 药物代谢动力学参数 临床给药方案的拟定与调整
第一节 药物的体内过程
临床药物代谢动力学
临床药物代谢动力学(Clinical parma-
cokinetics)简称为临床药代动力学或临床 药动学,它是以药动学的基本原理和基本规 律为理论基础,研究药物在人体(主要是患 者)内吸收(absorption, A)、分布(distribution, D)、代谢(metabolism, M)和排 泄(excretion,E)的ADME体内过程动态 变化规律,并运用数字图解或方程计算来表 达其规律。
log C
1000
100
10
1
0.1
t(h)
0 2 4 6 8 10 12
ห้องสมุดไป่ตู้
药动学参数
血药浓度-时间曲线下面积(AUC) 表观分布容积(Vd)-分布 半衰期(t1/2)-消除 清除率(CL)-消除
➢ 稳态的药动学参数 ➢ 生物利用度:F,Fr
血药浓度-时间曲线下面积(AUC)
C(mg/L) 6 4 2
一级速率过程:简单扩散过程
K为一级速率常数
零级速率过程:主动转运和易化扩散过 程
k0为零级速率常数
一级动力学vs零级动力学
消除规律 t1/2 AUC
药-时曲线 消除速率常数
一级动力学 恒比消除 与剂量无关 与剂量成比例
指数衰减图形 K
零级动力学
恒量消除
与剂量有关
与(剂量)2成比 例
直线衰减图形
二室模型
将整个机体看作一个房室 将整个机体划分为两个房室 (血流量多、血流速度快的 组织器官构成中央室,其余 构成周边室)
机体组织内药量与血浆内药物分子瞬时取得平衡。
一室模型与二室模型的比较(静 脉注射)
一室模型
二室模型
K
X0
C,V
K代表消除速率常数
中央室 K10
X0
XC,VC
K12
K21
周边室 Xp,Vp
P-糖蛋白在ADME过程介导的外排作用
引自:Lemahieu W, Maes B. Current Enzyme Inhibition, 2007; 3: 217-241.
二、药物的吸收
• 药物从给药部位进入血液循环的过程称为 吸收。
• 临床上的给药途径除局部用药外,一般包 括血管内(动脉、静脉)给药途径和血管 外(口腔、胃肠道、肌内、皮下、肺和直 肠)给药途径。 后者涉及吸收。
肝CYP酶比例
影响药物代谢的因素
• 遗传因素:多态性 • 环境因素 :酶抑制与诱导 • 食物与营养状态 • 年龄与性别 • 病理因素
药物代谢酶基因多态性
• 异喹胍羟化代谢多态性 • S-美芬妥英羟化代谢多态性 • N-乙酰化转移酶(NAT)及其多态
性 • 硫嘌呤甲基转移酶(TPMT)及其多
态性 • UGT酶系及其多态性
K0
房室模型(compartment model)
概念:按动力学特点把身体视为若干个 房室(Compartment)。 ①接受药物及消除药物的速率常数相似 的部位可视一个房室; ②与器官、组织的血流量、膜的通透性、 药物与组织的亲和力等相关。
封闭系统与开放系统
一室模型与二室模型的比较
一室模型
• 转运体在药物体内转运过程的作用
吸收:例如在胃肠道P-GP介导的外排; 分布:屏障组织中存在的外排转运体; 代谢:ABC转运超家族及OATP在肝胆
外排药物中的作用; 排泄:例如外排转运体阻止药物重吸收。
药物转运体(举例)
• P-糖蛋白(P-glycoprotein, P-gp )
多药耐药基因1(multidrug resistance 1, MDR1,现称ABCB1)的产物,广泛分布于 全身组织器官。 P-糖蛋白的作用是将药物(包括其他化学物 质)从细胞内转运到细胞外,降低细胞内的 药物浓度。P-糖蛋白在药物吸收、分布、代 谢等过程介导了重要的外排作用 。
药物的体内过程
一、药物的转运机制与转运体
• 被动转运 滤过 简单扩散
• 载体转运 主动转运 易化扩散
一、药物的转运机制与转运体
• 药物转运体(transporter)
摄取性转运体:OATP、OAT、OCT、 PEPT、CNT、MCT……
外排性转运体:P-GP、MRP、BCRP、 LRP ……
药物转运体
• 药物的代谢又称生物转化或药物转化, 是指药物在体内经酶或其他作用而发生 的化学结构改变。
• 药物代谢的方式主要分为两类: I相代谢反应:氧化、还原、水解 II相代谢反应:结合
药物代谢酶:CYP450酶
• CYP450酶是最为重要的一种混合功能氧 化酶。
• 因该酶含有一种性质特殊的血红蛋白, 在还原状态下可与一氧化碳结合在λ= 450 nm处呈明显的吸收峰,所以又被称 为细胞色素P450(简称CYP)。
一室模型与二室模型的比较
一房室模型 (血管外给药)
Ka
K
X0
C,V
Ka代表吸收速率常数
二房室模型 (血管外给药)
Ka 中央室 K10
X0
XC,VC
K12
K21
周边室 Xp,Vp
静注二室一级动力学模型
C(ng/ml)
250
200
150
100 α相
50
β相
0
t(h)
0 2 4 6 8 10 12
C A e t B e t
药物在胃肠道的吸收

小肠 大肠
表面积



吸收 方式
酸性药液体 主要部位 药
被动吸收
被动、主 动吸收、 其他
缓(控)释 剂、栓剂
被动为主 胞饮、吞 饮
影响药物自胃肠道吸收的因素
• 药物方面因素 • 机体方面因素:
胃排空及肠蠕动功能 血流量 首关消除(first-pass elimination)
CYP酶的诱导剂与抑制剂
五、药物的排泄
• 药物的排泄是指体内药物或其代谢物排 出体外的过程 。
• 肾是大多数药物排泄的重要器官,经胆 汁排泄也较重要,某些药物也可从肠、 肺、乳腺、唾液腺或汗腺排出 。
肾排泄
• 肾小球滤过 • 肾小管分泌 • 肾小管重吸收
第二节 药代动力学参数
速率过程与速率常数
其他途径的吸收
• 注射部位的吸收 • 呼吸道的吸收 • 皮肤和黏膜吸收
三、药物的分布
• 药物从血液循环向机体各组织转运的过 程称为分布。
影响药物分布的因素
• 组织血流量 • 药物的组织亲和力 • 血浆蛋白结合 • 体液的pH和药物的理化性质 • 体内屏障
血脑屏障 胎盘屏障 血眼屏障
四、药物的代谢
相关文档
最新文档