加筋土挡土墙课程设计
加筋土挡土墙设计

G W1 W2 W3 2249.54(kN/ m)
(1)滑动稳定方程
1.1 (M1 +M 2 +M3)-1.4M E =1.1 2249.54 0.4 1.4 449.810=360.06kN / m 0
(2)抗滑动稳定系数
Kc
0.4 2249.54 2.00 1.3 449.81
i K 0 - K a) K i=K 0 (
z 6
计算结果见表 2。
-2-
道路与交通工程 1004 班 2.内部稳定计算 1)筋带设计断面计算
加筋土挡土墙设计
已知筋带断裂强度标准值 f k 为 220MPa ,筋带厚度 1.0mm,查细则表 12.3.17,取筋带抗拉计算调节系数 R 2 =2.8 ,筋带抗拉性能分项系数
0.8 (M1 +M 2 +M 3)-1.4M E =0.8 11324.84-1.4 1781.25=6566.12kNm/m 0
(3)倾覆稳定系数
K0 =
M M
y 0
=
M1 +M 2 +M 3 11324.84 = =6.36 1.5 ME 1781.25
由上(1) 、 (2)验算结果显示:加筋体的抗倾覆稳定性符合细则第 5.3.4 条的规定。
f =1.25 ,按公式 0
2)筋带长度计算
Af k 计算,计算结果见表 2。 1000 f R 2
按细则计算各层筋带在活动区、锚固区的长度及总长。设各层筋带长度均为 10.0m。 (1)计算加筋体简化破裂面的尺寸(图 2) 简化破裂面的垂直部分距面板背部的水平距离为:
b H =0.3H=0.3 11=3.3m
加筋土挡土墙设计课程设计

加筋土挡土墙设计课程设计一、课程目标知识目标:1. 掌握加筋土挡土墙的基本概念、构造原理及设计方法;2. 了解加筋土挡土墙在工程中的应用及其优势;3. 掌握相关土力学知识,如土压力计算、土体稳定性分析等。
技能目标:1. 能够运用所学知识,独立完成加筋土挡土墙的设计计算;2. 能够分析工程案例,评估加筋土挡土墙的适用性和经济性;3. 能够运用专业软件进行加筋土挡土墙的模拟分析和优化设计。
情感态度价值观目标:1. 培养学生对土木工程专业的热爱,增强职业责任感;2. 培养学生严谨的科学态度和团队合作精神;3. 增强学生的环保意识,认识到加筋土挡土墙在环境保护和资源利用方面的优势。
本课程针对高年级土木工程专业学生,结合课程性质、学生特点和教学要求,将课程目标分解为具体的学习成果。
通过本课程的学习,使学生能够掌握加筋土挡土墙的设计方法,具备解决实际工程问题的能力,同时培养学生的专业素养和价值观。
二、教学内容1. 加筋土挡土墙基本概念:介绍加筋土挡土墙的定义、分类及其在我国的发展应用。
参考教材章节:第三章“加筋土结构概述”2. 构造原理与设计方法:讲解加筋土挡土墙的构造原理,包括筋材布置、土压力计算等;介绍设计方法及步骤。
参考教材章节:第四章“加筋土挡土墙设计”3. 工程案例分析:分析典型加筋土挡土墙工程案例,探讨其设计要点及施工技术。
参考教材章节:第五章“工程实例分析”4. 相关土力学知识:回顾土压力计算、土体稳定性分析等土力学基本知识,为加筋土挡土墙设计提供理论支持。
参考教材章节:第二章“土力学基本理论”5. 软件应用与实践:介绍专业软件在加筋土挡土墙设计中的应用,指导学生进行模拟分析和优化设计。
参考教材章节:第六章“加筋土挡土墙数值分析与模拟”6. 实践教学:组织学生进行现场教学,实地考察加筋土挡土墙工程,加深对理论知识的理解。
教学内容按照教学大纲和课程目标进行科学、系统的安排,确保学生能够循序渐进地掌握加筋土挡土墙的设计方法,并在实践中加以运用。
加筋土挡墙设计

2、 路基横断面设计
2.1 横断面各部尺寸的拟定
I 级、重型铁路标准路基与道床结构的设计 路基面 宽度/米 双线线 间距/米 道床顶 面宽度/ 米 12 4 3.4 0.5 土质 1.75 4.5 道床厚 度/米 基床表 层类型 道床边 坡坡率 路基面 高度/米
上铺轨道情况介绍 钢轨类型 混凝土轨枕 铺轨根数 类型 60 轨 Ⅲ型 根/km 1667 混凝土轨枕 长度/米 2.6
2
某Ⅰ级重型铁路, 旅客列车设计行车速度 140km/h, 该段路堤处于直线地段, 地面平坦,路堤设计高度为 4.5 米,双线铁路。由于右侧用地受到限制,因此需 在右侧设置加筋土挡土墙; 路基填料为砂类土,容重 20 KN / m 3 ,内摩擦角 35o ,填土与墙背间 的摩擦角 0.5 17.5o 。 墙面板形状为矩形,高为 1.0m,宽为 1.8m,厚为 0.12m,混凝土强度等级 为 C20。 拉筋采用钢塑复合拉筋带 CAT50022,规 格 50×2.2mm,破断拉力≥22.0 KN 极限抗拉强度≥200MPa,破断伸长率 5.5%,单位长度重量 182m/kg。 挡土墙的条形基础的受力层为硬质岩,其容许承载力为 [ ]地基 =1200kPa。基 础。
3.2 ቤተ መጻሕፍቲ ባይዱ筋土挡墙的组成及选择 加筋土挡土墙一般由基础,填料,面板,拉筋,帽石等主要的部分组成。 面板的作用是阻挡拉筋间填料从侧向挤出,并保证拉筋,填料,墙面板构成 一定形状的整体,常用的面板形式有矩形板,双十字板,槽形板,十字板等,本 次设计用的墙面板形状为矩形,高为 1m,宽为 1.8m,厚为 0.12m,混凝土强度 等级为 C20。 拉筋的选择, 拉筋在加筋土挡土墙中起到非常重要的作用, 因此选择的拉筋 应具有较高的抗拉强度,较好的柔性,韧性,以适应变形能力,同时拉筋是平衡 侧压力而使挡墙稳定的材料, 要求拉筋和填料之间具有较大的摩擦系数, 并要求 拉筋有较好的抗疲劳性能,具有抗老化,耐腐蚀及化学稳定性好的特征,以保证 永久结构物的使用寿命,满足使用年限方面的要求;
挡土墙设计

加筋土支挡结构课程设计班级:姓名:学号:指导老师:时间:2016年12月第一章加筋土挡土墙一、概述加筋土挡土墙指的是由填土、拉带和镶面砌块组成的加筋土承受土体侧力的挡土墙。
加筋土挡土墙是在土中加入拉筋,利用拉筋与土之间的摩擦作用,改善土体的变形条件和提高土体的工程特性,从而达到稳定土体的目的。
加筋土挡土墙由填料、在填料中布置的拉筋以及墙面板三部分组成。
一般应用于地形较为平坦且宽敞的填方路段上,在挖方路段或地形陡峭的山坡,由于不利于布置拉筋,一般不宜使用。
挡土墙是公路工程中应用中最广泛的一种构筑物。
是一种支撑路堤土和山体土坡,防止填土和土体变形失稳,承受侧向土压力的建筑物,随着时代的发展和对出行的需要,高速公路建设要求也日益增高,挡土墙也显着越来越重要。
其结构形式也向着多样化发展,设计理念也不断创新,可谓是与时俱进。
加筋土挡土墙是在土中加入拉筋,利用拉筋与土之间的摩擦作用,改善土体的变形条件和提高土体的工程特性,从而达到稳定土体的目的。
二、加筋土挡土墙特点加筋土实质上是填土、拉筋、面板三者的结合体。
土和拉筋之间的摩擦改善了土的物理力学性质,使土与拉筋结合成为一个整体。
在这个整体中起控制作用的是填土与拉筋间的摩擦力。
面板的作用是阻挡填土或填砂的坍塌挤出,迫使填料与拉筋结合为整体。
加筋土挡墙就是利用填土与拉筋的摩擦力去平衡填土的侧压力。
这样就使得加筋土挡墙更加轻型化和简单化。
近年来加筋土技术广泛应用于土木工程,其优越性愈来愈明显。
经归纳,其特点概括如下:(1)组成加筋土的面板和筋带可以预先制作,在现场用机械(或人工)分层填筑,这种装配式的方法,施工简便、快速,并且节省劳力和缩短工期;(2)加筋土是柔性结构物, 能适应地基轻微的变形;(3)加筋土挡土墙抗振动性强,因此它也是一种良好的抗震结构物;(4)加筋土挡土墙节约占地, 造型美观。
加筋土挡土墙的墙面板可以垂直砌筑,可大量减少占地。
挡土墙的总体布设和面板的型式图案可根据周围环境特点和需要进行设计;(5)加筋土挡土墙造价比较低。
加筋土挡土墙设计与施工技术

加筋土挡土墙设计与施工技术(一) 概述一、结构与挡土原理加筋土挡土墙是由基础、墙面板、帽石、拉筋和填料等几部组成,如图1一1所示。
其挡土原理是依靠填料与拉筋之间的摩擦力来平衡墙面所承受的水平土压力(即加筋土挡土墙的内部稳定),并以基础、墙面板、帽石、拉筋和填料等组成复合结构而形成土墙以抵抗拉筋尾部填料所产生的土压力(即加筋土挡土墙外部稳定),从而保证了挡土墙的稳定。
加筋土挡土墙的优点是对地基承载力要求低,属于轻型支挡结构,适合在软弱地基上建造,施土简便,施土速度快,污土量少,节省投资,少占地,外形也美观。
图1一1 加筋上挡上墙结构图加筋土挡土墙一般应用于支挡填土土程,由于加筋土挡土墙所具有的特点,在公路、铁路、煤矿土程中得到较多的应用。
但是对于8度以上地区和具有强烈腐蚀环境中示宜使用,对于浸水条件下应慎重应用。
二、加筋加固机理1) 加筋土基本原理砂性土在自重或外力作用下易产生严重的变形或倒塌,若在土中沿应变方向埋置具有挠性的筋带材料形成加筋土,则土与筋带材料产生摩擦,使加筋土犹如具有了某种程度的粘着性,从而改良了土的力学特性。
当前解释和分析加筋土的强度主要有两种观点,一种把加筋土视为组合材料,即认为加筋土是复合体结构(亦称锚定式结构),用摩擦原理来解释与分析;另一种把加筋土视为均质的各向异性材料,即认为加筋土是复合材料结构,用莫尔一库仑理论来解释与分析,称为准粘聚力原理。
下面由此介绍加筋土的加固机理。
2) 摩擦原理解释在加筋土结构中,填土自重和荷载等其他外力产生的侧压力作用于面板,通过面板上的筋带连结件将此侧压力传递给筋带,企图将筋带从土中拉出。
而筋带材料又被土压住,于是填土与筋带之间的摩擦力阻止筋带被拔出。
因此,只要筋带材料具有足够的强度,并与土产生足够的摩阻力,则加筋的土体就可保持稳定。
怎样才能使土与筋带互相产生摩擦力而示滑移呢?图1一2表示两个与筋带相接触的土颗粒,在摩擦力和垂直于筋带平面的法向压力作用下,其合力与筋带的法向平面成α角。
加筋土挡土墙_毕业设计

目录第1章绪论 (1)1.1 挡土墙介绍 (1)1.2 挡土墙分类与加筋土挡土墙概述 (2)1.2.1 重力式挡土墙 (2)1.2.2 悬臂式挡土墙 (2)1.2.3 扶壁式挡土墙 (3)1.2.4 锚定板及锚杆式挡土墙 (3)1.2.5 土钉墙 (3)1.2.6 加筋土挡土墙 (3)1.3 加筋土挡土墙设计内容 (5)第2章设计基本资料 (7)2.1 设计计算内容 (7)2.2 基本参考资料 (8)2.3 工程设计资料 (9)第3章设计计算内容 (10)3.1 填料 (10)3.2 拉筋 (10)3.3 墙面板 (11)3.4 沉降缝 (11)3.5 结构尺寸设计 (12)3.6 基础设计及整体稳定性分析 (12)3.6.1 挡土墙基础设计 (12)3.6.2 挡土墙基础计算 (13)3.6.3 水平土压力计算 (16)3.6.4 垂直土压力计算 (17)3.6.5 内部稳定性验算 (18)3.6.6 外部稳定性验算 (25)3.6.7 轴向力偏心距 (28)3.7 设计计算内容 (28)3.7.1 筋带受力计算 (28)13.7.2 内部稳定计算 (30)3.7.2 外部稳定计算 (34)第4章加筋土挡土墙施工 (40)4.1 加筋土挡土墙施工特征 (40)4.2 施工准备及原材料选择 (41)4.3 加筋土挡土墙基础施工 (42)4.4 砂砾石垫层施工 (42)4.5 加筋土工格栅的铺设 (43)4.6 锚杆施工 (43)4.7 泄水孔施工 (43)4.8 填料填筑 (44)4.9 加筋土挡土墙面板施工 (45)4.10 帽石、栏杆施工 (46)4.11 施工关键环节 (46)第5章设计总结 (48)参考文献 (51)结束语 (52)致谢 (53)附录A 外文翻译 (54)A.1 相关外文资料 (54)A.2 对应中文翻译 (58)附录B 有关图纸 (61)B.1 墙面板图 (61)B.2 挡土墙横断面图 (61)23第1章绪论1.1 挡土墙介绍挡土墙是公路工程中广泛采用的一种构造物,是一种支承路堤土或山坡土体,防止填土或土体变形失稳,承受侧向土压力的建筑物。
挡土墙设计课程设计报告

挡土墙设计课程设计报告一、教学目标本课程的教学目标是使学生掌握挡土墙设计的基本原理和方法,能够运用所学知识进行简单的挡土墙设计。
具体目标如下:1.掌握挡土墙的定义、分类和作用。
2.理解挡土墙设计的基本原理。
3.熟悉挡土墙设计的流程和步骤。
4.能够运用所学知识进行简单的挡土墙设计。
5.能够运用计算机软件进行挡土墙设计的辅助计算和绘图。
情感态度价值观目标:1.培养学生的创新意识和实践能力。
2.培养学生的团队合作意识和沟通表达能力。
二、教学内容根据课程目标,教学内容主要包括以下几个方面:1.挡土墙的定义、分类和作用。
2.挡土墙设计的基本原理。
3.挡土墙设计的流程和步骤。
4.挡土墙设计的计算方法和技巧。
5.挡土墙设计的计算机软件应用。
第一周:介绍挡土墙的定义、分类和作用。
第二周:讲解挡土墙设计的基本原理。
第三周:介绍挡土墙设计的流程和步骤。
第四周:讲解挡土墙设计的计算方法和技巧。
第五周:介绍挡土墙设计的计算机软件应用。
三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法,包括:1.讲授法:讲解基本原理、概念和方法。
2.案例分析法:分析实际案例,引导学生运用所学知识进行挡土墙设计。
3.实验法:进行挡土墙设计的实验,让学生动手操作,提高实践能力。
4.讨论法:分组讨论,促进学生之间的交流与合作。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:选用权威、实用的挡土墙设计教材。
2.参考书:提供相关领域的参考书籍,拓展学生知识面。
3.多媒体资料:制作课件、视频等多媒体资料,提高学生的学习兴趣。
4.实验设备:准备相应的实验设备,保证实验教学的顺利进行。
以上是挡土墙设计课程的教学设计报告,希望能对您的教学有所帮助。
五、教学评估本课程的评估方式包括平时表现、作业和考试三个部分,以全面客观地评估学生的学习成果。
平时表现评估:1.课堂参与度:评估学生在课堂上的发言和讨论积极性。
加筋土挡土墙设计与施工结构设计

加筋土挡土墙设计与施工结构设计1研究动态与发展趋势1.1 研究动态土工加筋技术(Earth Reinforcement)是一种在土工结构物中或者原位土体中埋设抗拉性能较好的材料而使系统力学特性能得到改善的土体加固方法。
20世纪60年代,亨利(Henri Vidal)提出了加筋土概念,1965年,法国修建了世界上第一座加筋土挡墙[1]。
此后,该技术引起了世界的广泛关注。
前西德《地下建设》杂志(1979年)曾誉之为“继钢筋混凝土之后又一造福人类的复合材料”[2];70年代,国际上先后召开了加筋土技术的国际研讨会,并成立了“加筋土工程协会”等国际间的合作研究机构;80年代,许多国家在拓展填料、筋材的应用范围方面做了大量工作。
西马克(Simac)[3]等人开展的土工合成材料取得了重要成果。
20世纪90年代至今,加筋土的研究工作则主要集中在如下几个方面:(1)完善设计计算理论,并研究与其他加固技术的配合应用问题;(2)将加筋土看作匀质“复合材料”,采用有限元法和弹塑性理论进行分析研究;(3)研究加筋带的寿命;(4)加筋土体变形的因素和计算方法;(5)外载荷在加筋体内的扩散及其对加筋土体内部稳定的影响和加筋地基承载力计算等。
在加筋土的设计方法上,仍以极限平衡法最为普遍,其次是有限元法。
席德(Seed)[4]提出了位移法。
后来,在加筋土设计方面,有些国家的设计人员开始采用极限状态法,但目前尚未被普遍使用。
在试验研究方面,根据试验方法和条件的不同,可分为几个方面:性能试验、三轴试验、模型试验、原位试验。
性能试验主要是得到筋材或者筋-土作用时的各种物理、力学指标,以便为数值分析和计算确定参数。
戴尔(Dyer)[5]试验发现土和筋材间的摩擦角小于土本身的摩擦角。
姚代禄发现加筋与土之间的剪切阻力比原压实土的剪切阻力有所降低,却增加了土整体强度[6]。
吴景海通过格栅的拉拔试验得作用于横肋的被动土压力起主要作用[7]。
林宇亮、杨果林研究了柔性网面土工格栅加筋土挡墙的工程特性,试验测试墙背侧向土压力、垂直土压力、筋带变形以及面墙变形情况[8]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《路基设计原理》课程论文加筋土挡土墙(理正软件+手算)学生成绩:学生学号:学生姓名:学生专业:课程名称:路基设计原理任课教师:提交日期:2016 年月日第1章软件计算部分 (1)1.1 原始条件 (1)1.1.1 墙身尺寸 (1)1.1.2 物理参数 (1)1.1.3 坡线土柱 (2)1.1.4 计算参数 (2)1.2 无荷载的情况 (2)1.2.1 内部稳定性验算 (2)1.2.2 外部稳定性验算 (3)1.3 所有荷载都作用的情况 (4)1.3.1 内部稳定性验算 (4)1.3.2 外部稳定性验算 (5)1.4 各组合最不利结果 (6)1.4.1 内部稳定性验算 (6)1.4.2 外部稳定性验算 (6)第2章手算部分 (7)2.1 设计资料 (7)2.2 荷载计算 (7)2.2.1 永久荷载 (7)2.2.2 可变荷载 (7)2.2.3 荷载组合 (7)2.3 无荷载作用时,为荷载组合① (7)2.3.1 外部稳定性分析验算 (7)2.3.2 内部稳定性分析验算 (8)2.4 所有荷载均作用时,为组合② (11)2.4.1 外部稳定性分析验算 (11)2.4.2内部稳定性分析验算 (12)2.5 最不利荷载组合 (16)2.5.1 外部稳定性验算最不利荷载组合 (16)2.5.2 内部稳定性验算最不利荷载组合 (16)2.6 面板结构设计 (17)参考文献 (18)附录加筋土挡土墙剖面图 (19)第1章软件计算部分加筋土挡土墙验算[执行标准:铁路]计算项目:加筋土式挡土墙 3计算时间:2016-04-25 14:55:41 星期一------------------------------------------------------------------------ 1.1 原始条件1.1.1 墙身尺寸挡墙类型: 路肩墙墙身总高: 6.500(m)筋带竖向间距是否不等: 否单个筋带厚: 1(mm)筋带水平方向间距: 0.420(m)筋带竖直方向间距: 0.400(m)筋带长度竖向分段数: 1分段序号高度(m) 筋带长(m)1.1.2 物理参数加筋土容重: 22.000(kN/m3)加筋土内摩擦角: 35.000(度)筋带容许拉应力: 50.000(MPa)土与筋带之间的摩擦系数: 0.400挡土墙类型: 一般挡土墙墙后填土内摩擦角: 30.000(度)墙后填土粘聚力: 8.000(kPa)墙后填土容重: 22.000(kN/m3)地基土容重: 18.000(kN/m3)修正后地基土容许承载力: 350.000(kPa)地基土容许承载力提高系数:墙趾值提高系数: 1.200墙踵值提高系数: 1.300平均值提高系数: 1.000墙底摩擦系数: 0.500地基土类型: 土质地基地基土内摩擦角: 30.000(度)土压力计算方法: 库仑1.1.3 坡线土柱坡面线段数: 3折线序号水平投影长(m) 竖向投影长(m) 换算土柱数1 1.000 0.000 02 0.875 0.500 03 6.000 0.000 1第1个: 距离1.000(m),宽度3.300(m),高度2.800(m)(用户输入) 地面横坡角度: 0.000(度)填土对横坡面的摩擦角: 35.000(度)墙顶标高: 0.000(m)1.1.4 计算参数稳定计算目标: 自动搜索最危险滑裂面搜索时的圆心步长: 1.000(m)搜索时的半径步长: 1.000(m)筋带对稳定的作用: 筋带力沿圆弧切线内部稳定分析采用方法: 应力分析法超载土压应力计算方法: 弹性理论法条分法的土条宽度: 0.500(m)墙后填土粘聚力: 10.000(kPa)墙体填土粘聚力: 10.000(kPa)地基土粘聚力: 10.000(kPa)土条切向分力与滑动方向反向时: 当作下滑力对待1.2 无荷载的情况1.2.1 内部稳定性验算采用应力分析法全墙抗拔验算满足: 安全系数=13.452 >= 2.0001.2.2 外部稳定性验算[土压力计算] 计算高度为 7.000(m)处的库仑主动土压力按假想墙背计算得到:第1破裂角: 33.534(度)Ea=106.535(kN) Ex=92.262(kN) Ey=53.268(kN) 作用点高度 Zy=1.913(m) 墙身截面积 = 39.000(m2) 重量 = 858.000 (kN)墙顶上的土重(包括超载) = 50.188(kN) 重心坐标(3.712,0.242)(相对于墙面坡上角点)墙顶上的土重(不包括超载) = 50.188(kN) 重心坐标(3.712,0.242)(相对于墙面坡上角点)(1)滑动稳定性验算基底摩擦系数0.500滑移力92.262(kN) 抗滑力480.728(kN)滑移验算满足: Kc=5.210>1.300(2)倾覆稳定性验算相对于墙趾点,墙身重力的力臂 Zw=3.000 (m)相对于墙趾点,墙土压力Ey的力臂 Zx=6.000 (m)相对于墙趾点,墙土压力Ex的力臂 Zy=1.913 (m)验算挡土墙绕墙趾的倾覆稳定性倾覆力矩176.539(kN-m) 抗倾覆力矩3079.890(kN-m)倾覆验算满足: K0=17.446>1.600(3)地基应力及偏心距验算基础为天然地基,验算墙底偏心距及压应力作用于基础底的总竖向力961.455(kN) 作用于墙趾下点的总弯矩=2903.351(kN-m)墙计算宽度B =6.000(m) 偏心距e-0.020(m)墙底面合力作用点距离墙趾点的距离 Zn3.020(m)基底压应力: 墙趾157.078 墙踵=63.407(kPa)最大应力与最小应力之比163.407 / 157.078 = 1.040作用于基底的合力偏心距验算满足: e=-0.020 <= 0.167*6.000 = 1.000(m)墙趾处地基承载力验算满足: 压应力=157.078 <= 420.000(kPa) 墙踵处地基承载力验算满足: 压应力=163.407 <= 455.000(kPa) 地基平均承载力验算满足: 压应力=160.243 <= 350.000(kPa) (4) 整体稳定验算圆心: (-2.000,10.000) 半径 15.000(m) 安全系数 2.122总的下滑力 892.783(kN)总的抗滑力 1894.325(kN)土体部分下滑力 892.783(kN)土体部分抗滑力 1894.325(kN)筋带的抗滑力 0.000(kN)整体稳定验算满足: 最小安全系数=2.122 >= 1.2501.3 所有荷载都作用的情况1.3.1 内部稳定性验算采用应力分析法筋带抗拔验算满足: 最小安全系数=10.084 >= 2.000全墙抗拔验算满足: 安全系数=13.695 >= 2.0001.3.2 外部稳定性验算[土压力计算] 计算高度为 7.000(m)处的库仑主动土压力按假想墙背计算得到:第1破裂角: 33.012(度)Ea=111.391(kN) Ex=96.467(kN) Ey=55.695(kN) 作用点高度 Zy=2.075(m) 墙身截面积 = 39.000(m2) 重量 = 858.000 (kN)墙顶上的土重(包括超载) = 242.688(kN) 重心坐标(4.287,0.447)(相对于墙面坡上角点)墙顶上的土重(不包括超载) = 50.188(kN) 重心坐标(3.712,0.242)(相对于墙面坡上角点)(1) 滑动稳定性验算基底摩擦系数 = 0.500滑移力= 96.467(kN) 抗滑力= 578.191(kN)滑移验算满足: Kc = 5.994 > 1.300(2) 倾覆稳定性验算相对于墙趾点,墙身重力的力臂 Zw = 3.000 (m)相对于墙趾点,墙土压力Ey的力臂 Zx = 6.000 (m)相对于墙趾点,墙土压力Ex的力臂 Zy = 2.075 (m)验算挡土墙绕墙趾的倾覆稳定性倾覆力矩= 200.175(kN-m) 抗倾覆力矩= 3948.675(kN-m)倾覆验算满足: K0 = 19.726 > 1.600(3) 地基应力及偏心距验算基础为天然地基,验算墙底偏心距及压应力作用于基础底的总竖向力 = 1156.383(kN) 作用于墙趾下点的总弯矩=3748.500(kN-m)墙计算宽度 B = 6.000 (m) 偏心距 e = -0.242(m)墙底面合力作用点距离墙趾点的距离 Zn = 3.242(m)基底压应力: 墙趾=146.172 墙踵=239.289(kPa)最大应力与最小应力之比 = 239.289 / 146.172 = 1.637作用于基底的合力偏心距验算满足: e=-0.242 <= 0.167*6.000 =1.000(m)墙趾处地基承载力验算满足: 压应力=146.172 <= 420.000(kPa)墙踵处地基承载力验算满足: 压应力=239.289 <= 455.000(kPa)地基平均承载力验算满足: 压应力=192.730 <= 350.000(kPa)(4) 整体稳定验算圆心: (-2.000,10.000)半径 15.000(m)安全系数 2.038总的下滑力 981.348(kN)总的抗滑力 1999.634(kN)土体部分下滑力 981.348(kN)土体部分抗滑力 1999.634(kN)筋带的抗滑力 0.000(kN)整体稳定验算满足: 最小安全系数=2.038 >= 1.2501.4 各组合最不利结果1.4.1 内部稳定性验算采用应力分析法筋带抗拔验算最不利为:组合1(无荷载的情况)筋带抗拔验算满足: 最小安全系数=8.293 >= 2.000全墙抗拔验算最不利为:组合1(无荷载的情况)全墙抗拔验算满足: 安全系数=13.452 >= 2.0001.4.2 外部稳定性验算(1) 滑移验算安全系数最不利为:组合1(无荷载的情况)抗滑力 = 480.728(kN),滑移力 = 92.262(kN)。
滑移验算满足: Kc = 5.210 > 1.300(2) 倾覆验算安全系数最不利为:组合1(无荷载的情况)抗倾覆力矩 = 3079.890(kN-M),倾覆力矩 = 176.539(kN-m)。
倾覆验算满足: K0 = 17.446 > 1.600(3) 地基验算作用于基底的合力偏心距验算最不利为:组合2(所有荷载都作用的情况) 作用于基底的合力偏心距验算满足: e=0.242 <= 0.167*6.000 = 1.000(m) 墙趾处地基承载力验算最不利为:组合1(无荷载的情况)墙趾处地基承载力验算满足: 压应力=157.078 <= 420.000(kPa)墙踵处地基承载力验算最不利为:组合2(所有荷载都作用的情况)墙踵处地基承载力验算满足: 压应力=239.289 <= 455.000(kPa)地基平均承载力验算最不利为:组合2(所有荷载都作用的情况)地基平均承载力验算满足: 压应力=192.730 <= 350.000(kPa)(4) 整体稳定验算整体稳定验算最不利为:组合2(所有荷载都作用的情况)最小安全系 = 2.038第2章 手算部分2.1 设计资料某I 级重型双线铁路,旅客列车设计行车速度140km/h, 某段路堤处于直线地段,根据实际情况,需设置挡土墙。