七年级数学下册2.3.2平行线的性质导学案
七年级数学下册:2.3平行线的性质2导学案

课题2.3 平行线的性质2导学案学习目标1、利用平行线的性质1推导平行线的性质2,性质3。
2、通过对平行线的性质2,性质3的推导,培养学生“言之有据”重难点学习重点:平行线的性质2,性质3的推导。
学习难点:对平行线的性质2,性质3的理解。
一预习一、忆旧迎新二展示交流(小组合作一下,大胆去展示。
)二、感悟新知1、如图,已知两平行线AB、CD被直线AE所截。
(1)从∠1=110 °可以知道∠2是多少度?为什么?(2)从∠1=110 °可以知道∠3是多少度?为什么?(3)从∠1=110 °可以知道∠4是多少度?为什么?2、如图,∠1=∠2,∠3=100°,则∠4=.3、已知,如图,点A、B、C、D在一条直线上,EA⊥AD,FB⊥AD,垂足分别为A、B,∠E=∠F,那么CE与DF是否平行?为什么?4、如图,已知AB ∥CD,AD ∥BC。
试判断∠1与∠2是否相等,并说明理由。
三拓展延伸 (努力去完成,老师相信你。
) 三、运用新知 1、当AB ∥CD 时,则下列结论成立的是( ) (A)∠DAC=∠ACB (B) ∠DAB+∠ABC=180° (C)∠ADB=∠DBC (D) ∠BAC=∠ACD 2、(1)当______∥______时,∠ABD=∠CDB; (2)当_______∥_______时,∠ADB=∠ CBD; (3)当_______∥_______时,∠BAC=∠DCA; (4)当_______+_______=180°时,AD ∥BC (5)当_______∥_______时,∠BAD+∠ADC=180° 3、已知:如图,AB ∥CD,EG,FH 分别是∠ CEK, ∠ EFA 的 角平分线,证明:EG ∥HF. 4、宁波到台州的高速公路需开挖山洞,为节约开挖时间,需在山的 两面A 、B 同时开工,在A 处测得洞的走向是北偏东75°,那么在B 处 应按_________方向开工,才能使此洞两边准确接通. 5、小青不小心把家里的梯形玻璃块打碎了,还剩下梯形上底的一部分(如图)。
七年级数学下册 2.3 平行线的性质导学案 (新版)北师大版

2.3平行线的性质预习案一、学习目标知识与技能:理解平行线的性质的推导,掌握平行线的性质.过程与方法:经历平行线性质的探究过程,从中体会研究几何图形的一般方法.情感态度价值观:初步感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.二、预习内容1.阅读课本2.3节平行线的性质2.平行线的性质是什么?3.你能用自己的语言叙述研究平行线性质的过程吗?4.性质2和性质3是通过简单推理得到的,在推理论证中需要注意哪些问题?三、预习检测1.如图,已知平行线AB、CD被直线AE所截(1)从∠1=110o可以知道∠2 是多少度?为什么?(2)从∠1=110o可以知道∠3是多少度?为什么?(3)从∠1=110 o可以知道∠4 是多少度?为什么?2.如图,一条公路两次拐弯前后两条路互相平行.第一次拐的角∠B是142゜,第二次拐的角∠C是多少度?为什么?3.如果有两条直线被第三条直线所截,那么必定有()(A)内错角相等 (B)同位角相等(C)同旁内角互补(D)以上都不对4.∠1 和∠2是两条直线被第三条直线所截形成的同旁内角,要使这两条直线平行,必须( )A. ∠1= ∠2B. ∠1+∠2=90oC. 2(∠1+∠2)=360o D .∠1是钝角, ∠2是锐角探究案一、合作探究(9分钟),要求各小组组长组织成员进行合作探究、讨论。
探究(一):平行线的性质1.同位角相等,两直线平行.反过来怎么说?它还是对的吗?平行线的性质画两条平行线a//b,然后画一条截线c与a、b相交,标出如图的角. 任选一组同位角、内错角或同旁内角,度量这些角,把结果填入下表:观察各对同位角、内错角、同旁内角的度数之间有什么关系?说出你的猜想:猜想两条平行线被第三条直线所截,同位角____,内错角_____,同旁内角_____.再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?如果两直线不平行,上述结论还成立吗?探究(二):例题精析如图,是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角分别是多少度?二、小组展示(7分钟)每小组口头或利用投影仪展示, 一个小组展示时,其他组要积极思考,勇于挑错,谁挑出错误或提出有价值的疑问,给谁的小组加分(或奖星)三、归纳总结性质1:两条平行线被第三条直线所截,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等。
北师大版七年级下册第二章 平行于相交线-2.3平行线的性质导学案

最新北师大版七年级下册数学精品资料设计导学案教师活动 (环节、措施)学生活动(自主参与、合作探究、展示交流)学科: 数学 年级: 七年级 主备人: 审批: 学生∴A ′B ′∥CD(同位角相等,两直线平行).故过O 点有两条直线AB 、A ′B ′与已知直线CD 平行,这与平行公理矛盾.即假定是不正确的.∴∠1=∠2. 另证:(同一法)过∠1顶点O 作直线A ′B ′使∠E0B ′=∠2. ∴ A ′B ′∥CD(同位角相等,两直线平行).∵ AB ∥CD(已知),且O 点在AB 上,O 点在A ′B ′上, ∴ A ′B ′与AB 重合(平行公理) ∴∠1=∠2.平行线的性质二:两条平线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.启发学生,把这句话“翻译”成已知、求证,并作出相应的图形. 已知:如图2,直线AB 、CD 被EF 所截,AB ∥CD , 求证:∠3=∠2. 证明:∵ AB ∥CD(已知)∴∠1=∠2(两直线平行,同位角相等). ∵∠1=∠3(对顶角相等), ∴∠3=∠2(等量代换).说明:如果学生仿照性质一,用反证法或同一法去证,应该给以鼓励.并同时指出,既然性质一已证明正确,那么也可以直接利用性质一的结论,这样常常可以使证明过程简单些.然后介绍或引导学生得出上面的证法.平行线的性质三:两条平行线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补.要求学生仿照性质二,自己写出已知、求证、证明.教师请程度较好的学生上黑板板演,并巡视课堂,帮助有困难的学生克服困难,最后对黑板上学生的板书进行全班订正.已知:如图3,直线AB 、CD 被EF 所截,AB ∥CD . 求证:∠2+∠4=180°. 证法一:∵AB ∥CD(已知),∴∠1=∠2(两直线平行,同位角相等), ∵∠1+∠4=180°(邻补角), ∴∠2+∠4=180°(等量代换).课题 2.3平行线的性质 课时 1 课型 新授学习目标1、了解平行线的特征,能运用这些特征进行简单的推理或运算;2、会利用角的相等关系推出两直线平行。
人教版七年级下平行线性质导学案

平行线的性质导学案年级七年级学科数学主备人时间地点单元课题平行线的性质参备教师备课内容教学目标1掌握平行线的三条性质,并能用它们进行简单的推理和计算;2经历探索直线平行的性质的过程,培养学生的逻辑推理能力和有条理表达能力教学重难点掌握平行线的性质,能用平行线性质进行简单的推理和计算.平行线的三个性质教学过程一、复习巩固平行线的判定:1.同位角,两直线。
2.内错角,两直线。
3.同旁内角,两直线。
二、自主探究,学习新知引导问题 2:平行线关于同位角有什么性质?当两条被第三条直线所截时,产生的都是相等的.由此得到平行线的一条性质:两直线平行,同位角相等.如图5.36,AB//CD,EH 分别交 AB、CD 于 F、G,则∠1 与∠2的大小关系为,依据是两直线平行,引导问题 2:平行线关于内错角有什么性质?修改意见如图,已知:a// b ,那么内错角∠3与∠2有什么关系? 推理过程如下:∵a ∥b ( )∴ ∠1= ∠2 ( ), 又 ∵∠3 = __ (对顶角相等), ∴∠ 2 = ∠3。
( )性质:当两条 被第三条直线所截时,产生的 都是相等的.引导问题 3: 平行线关于同旁内角有什么性质? 如图5.39,已知 AB//CD ,∠1 =080,求 ∠2.解:∵AB//CD∴∠1 = ∠AMF(依据: , ) 又 ∵∠1 = 080 ∴∠AMF = 080,∠2 = 0180- = 0100 如图5.40,根据图中的 AB//CD ,∠1 + ∠2 =0180,可以得到平行线的一条性质: 三、课堂巩固例1 如图,已知直线a ∥b ,∠1=50°,求∠2的度数。
解: ∵ a ∥b ,( )∴∠ =∠1=50°( )∵∠2和∠3互为邻补角( )∴________+_______=1800( ) ∴∠2=1800-______ =1800-______ =_______整理归纳:平行线的性质:用几何语言表示平行线的性质: (1)∵a ∥b∴∠1= , ∠2 = ,∠3= , ∠4 = 。
人教版初一数学下册平行线的性质导学案

5.3平行线的性质导学案学习目标:1、经历探索平行线性质的过程,掌握平行线的性质.2、能运用性质进行简单的推理跟计算,会解决生活中的实际问题.3、在探究中获得亲自参与研究的情感体验,增强团结合作、勇于探索的精神. 重难点:1、平行线的三个性质及运用。
2、平行线的性质定理的推导及平行线的性质定理与判定定理的区别. 教学过程:一、 比萨斜塔视频引入,抛出问题比萨斜塔与地面所成的角中,∠1=85°,能否求出∠2和∠3的度数? 二、合作探究探究一.实验观察:两条平行线被第三条直线所截,同位角之间有什么大小关系? 步骤:1.图中哪些角互为同位角?把它们写出来:____________________2.选取其中任意一对同位角,判断它们的大小关系?87654321a bc3.得出结论:文字语言: 简写:_______________________________________. 符号语言:4.任意再画一条截线d ,验证结论.5.思考:是不是任意一条直线去截平行线a,b ,所得的同位角都相等呢?6.大胆猜想:两条平行线被第三条直线所截,内错角之间有什么关系?同旁内角呢? 探究二:演绎推理:两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
1、如图:已知a ∥b ,c 是截线,那么∠3与∠5是什么角?它们有什么大小关系?∠4与∠6呢? 解:∠3与∠5是_______角;猜想:证明:如右图因为a ∥b, c 是截线 所以 ∠1= ∠5( ), 又 ∠3 = ___(对顶角相等),所以∠ 3 = ∠5得出结论:文字语言:简写:_______________________________________. 符号语言:2、如图,已知a ∥b ,c 是截线,那么∠4与∠5是什么角?它们有什么大小关系?∠3与∠6呢?猜想: 证明:得出结论:文字语言: 简写:_______________________________________. 符号语言:87654321abc 87654321ab c(3(((421DCBAE跟踪练习:1、 如图,已知AB ∥CD ,∠1=150°.所以∠2 ∠1= .( )所以∠4 ∠1= .( ) 所以∠3+∠1 = . ( ) 三、典型例题:例1、如图所示是一块梯形铁片的残余部分,量得∠A =100º, ∠B=115°,梯形另外两个角各是多少度?四、能力展示如图在四边形ABCD 中,已知AB ∥CD,∠B = 60 º.①求∠C 的度数;②由已知条件能否求得∠A 的度数?五、拓展提升1.如图:你能运用这节课所学的知识来说明三角形的内角和是1800吗?2.回到引例中的问题:比萨斜塔与地面所成的角中,∠1=85°,能否求出∠2和∠3的度数?六、课堂小结(1)本节课你有哪些收获与感悟?(2)这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你能区分清楚吗? 七、作业布置:必做:课本P23复习巩固4, 5,6 选做:P25拓广探索16题. 八、课后反思:A B C。
2022年初中数学《平行线的判定》导学案(推荐)

5.2 平行线及其判定5.2.2 平行线的判定一、新课导入1.导入课题:上节课我们学习了平行线的概念和画法,这节课我们来研究如何判定两条直线是不是平行线〔板书课题〕.2.学习目标:〔1〕学会并记住平行线的判定方法1、2、3.〔2〕能运用平行线的判定方法进行简单的推理论证.3.学习重、难点:重点:平行线的判定方法1、2、3.难点:运用平行线的判定方法进行简单的推理论证.二、分层学习1.自学指导:〔1〕自学内容:课本P12至P13的内容.〔2〕自学时间:10分钟.〔3〕自学要求:阅读教材,重点处做好圈点,遇到疑难相互研讨.〔4〕自学参考提纲:①12“思考〞中用直尺和三角尺画平行线示意图,可以发现,在画平行线时,三角尺在移动时紧靠直尺,并且三角尺的角的大小不变,又在移动前、后,三角尺的角恰好是直线AB、CD被EF所截形成的一对同位角,这说明:如果∠DEF=∠BGF,那么AB∥CD.b.这一事实揭示的就是平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简称为同位角相等,两直线平行.用符号语言表述是:如图1,假设∠1=∠2,那么a∥b.c.在课本图5.2-7中,你能说出木工用图中的角尺画平行线的道理吗?②a.在图1中,∠2与∠3是一对内错角.∠3=∠2,能得到直线a∥b吗?分析:假设能由∠3=∠2转化为∠1=∠2,那么由判定方法1,就可得a∥b,你能写出推理过程吗?②可得到平行线的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简称为内错角相等,两直线平行.③a.在图1中,∠2与∠4是一对同旁内角.∠2+∠4=180°,能得到直线a∥b吗?分析:假设能由∠2+∠4=180°转化为∠1=∠2〔或∠3=∠2〕,那么由判定方法1〔或判定方法2〕,就可得a∥b,你能写出推理过程吗?②可得到平行线的判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简称为同旁内角互补,两直线平行.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:教师巡视课堂,关注学生在自学中遇到的疑难问题.②差异指导:对个别学习有困难的学生进行点拨引导.〔2〕生助生:小组相互交流学习,纠正认知偏差.4.强化:〔1〕判定方法1、2、3及其几何表述.〔2〕练习:课本P15“复习稳固〞的第1、2题.1.自学指导:〔1〕自学内容:课本P14例题.〔2〕自学时间:4分钟.〔3〕自学要求:阅读教材,重点处做好圈点,有疑点处做上记号.〔4〕自学参考提纲:①仔细体会,揣摩例题的几何推理过程,你能仿照它用别的方法说明b∥c 吗?②本例的结论也可作为平行线的一种判定方法,简述为:在同一平面内,垂直于同一条直线的两直线平行.③如图2,BE是AB的延长线.∠CBE=∠A可以判定哪两条直线平行?根据是什么?答案:BC∥AD.根据是同位角相等,两直线平行.∠CBE=∠C可以判定哪两条直线平行?根据是什么?答案:AB∥CD.根据是内错角相等,两直线平行.④如图3,这是小明同学自己制作的英语抄写纸的一局部,其中的横线互相平行吗?你有多少种判别方法?答案:平行.理由不唯一.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:关注学生完成自学参考提纲的进度、存在的问题及疑点.②差异指导:对个别学习有困难或认知缺乏的学生进行点拨引导.〔2〕生助生:小组内学生相互交流,取长补短.4.强化:〔1〕判断两条直线平行的方法:①平行公理的推论:如果两条直线都与第三条直线平行,这两条直线也互相平行.②平行线判定方法1,即同位角相等,两直线平行.③平行线判定方法2,即内错角相等,两直线平行.④平行线判定方法3,即同旁内角互补,两直线平行.⑤在同一平面内,垂直于同一条直线的两条直线互相平行.〔2〕练习:课本P14“练习〞第2题.三、评价1.学生学习的自我评价:各小组针对学习收获和存在的困惑进行总结交流.2.教师对学生的评价:〔1〕表现性评价:对学生在学习过程中的态度、方法和成效进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本节课通过“问题情境—合作探究—建立模型—求解—应用〞的根本过程,使学生体会到了数学知识之间的内在联系;通过对问题的探究,获得了一些研究问题的方法和经验;开展了思维能力,加深了对相关知识的理解,通过获得成功的体验和克服困难的经历,增强了学生学习数学、应用数学的自信心.(时间:12分钟总分值:100分)一、根底稳固〔70分〕1.〔20分〕如图,直线a,b,c被直线l所截,量得∠1=∠2=∠3.〔1〕假设∠1=∠2,那么a∥b,理由是同位角相等,两直线平行.〔2〕假设∠1=∠3,那么a∥c,理由是内错角相等,两直线平行.〔3〕直线a,b,c互相平行吗?为什么?解:平行,∵b∥a,c∥a,∴b∥c,∴a∥b∥c.第1题图第2题图第3题图第4题图2.(10分)如图,根据图中所给条件:〔1〕互相平行的直线有a∥b,c∥d;〔2〕互相垂直的直线有e⊥b,e⊥a.3.〔10分〕如图,如果∠3=∠7或∠4=∠8或∠2=∠6或∠1=∠5,那么a∥b,理由是同位角相等,两直线平行;如果∠5=∠3或∠2=∠8,那么a∥b,理由是内错角相等,两直线平行;如果∠2+∠5=180°或∠3+∠8=180°,那么a∥b,理由是同旁内角互补,两直线平行.4.〔10分〕如图,如果∠2=∠6,那么AD∥BC,如果∠3+∠4+∠5+∠6=180°, 那么AD∥BC;如果∠9 =∠DAB,那么AD∥BC;如果∠9=∠3+∠4,那么AB∥CD.5.〔20分〕如图,直线a,b被直线c所截,现给出以下四个条件:①∠1=∠5;②∠1=∠7;③∠4=∠7;④∠2+∠3=180°.其中能说明a∥b的条件序号为(A)A.①②B.①③C.①④D.③④二、综合应用〔20分〕6.如图,当∠1=∠3时,直线a,b平行吗?当∠2+∠3=180°时,直线a,b 平行吗?为什么?解:∵∠1=∠3,∠3=∠4,∴∠1=∠4,∴a∥b〔同位角相等,两直线平行〕.∵∠3=∠4,∠2=∠5,∠2+∠3=180°,∴∠4+∠5=180°,∴a∥b〔同旁内角互补,两直线平行〕.三、拓展延伸〔10分〕7.如下列图,直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,那么a与c平行吗?为什么?解:∵∠1=∠2,∴a∥b〔内错角相等,两直线平行〕.∵∠3+∠4=180°,∴b∥c〔同旁内角互补,两直线平行〕.又∵a∥b,∴a∥c〔如果两条直线都与第三条直线平行,那么这两条直线也互相平行〕.5.3.1 平行线的性质一、新课导入1.导入课题:利用同位角、内错角、同旁内角之间的关系可以判定两条直线平行.你还记得这些判定方法分别是如何表达的吗?反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么关系呢?这就是本节课我们所要研究的内容.〔板书课题〕2.学习目标:〔1〕能表达平行线的三条性质.〔2〕能运用平行线的三条性质进行简单的推理和计算.3.学习重、难点:重点:对平行线性质的理解及它们与平行线的判定之间的关系.难点:性质2和性质3的推理过程的逻辑表述.二、分层学习1.自学指导:〔1〕自学内容:课本P18的内容.〔2〕自学时间:8分钟.〔3〕自学要求:正确画图、测量、验证、归纳.〔4〕探究提纲:①画图:画两条平行线a∥b,再画一条截线c与直线a、b相交〔如图1所示〕.②测量:测量这些角的度数,把结果填入表内.③分析:∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?答案:同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,相等.④猜想:两条平行线被第三条直线截得的同位角有什么关系?⑤验证:如果改变截线的位置,你的猜想还成立吗?⑥归纳:a.你能用文字语言表述你发现的结论吗?b.你还能用符号语言表述该结论吗?2.自学:学生按探究提纲进行研讨式学习.3.助学:〔1〕师助生:①明了学情:了解学生围绕探究提纲进行学习的情况及存在的困惑.②差异指导:对个别学生在学法和认知有偏差时进行点拨引导.〔2〕生助生:小组内学生之间相互交流,展示成果,查找并纠正不正确的认识或结论.4.强化:〔1〕平行线的性质1及其几何表述.〔2〕经历平行线的性质1的探究过程,体会研究几何图形的一般方法.1.自学指导:〔1〕自学内容:课本P19的内容.〔2〕自学时间:8分钟.〔3〕自学要求:阅读教材,重要的局部做好圈点,疑点处做好记号.〔4〕自学参考提纲:①与平行线的判定类似,你能由性质1推出两条平行线被第三条直线截得的内错角之间的关系吗?a.结合图2,你能写出推理过程吗?b.类比性质1,你能用文字语言表述上面的结论吗?答案:两直线平行,内错角相等.c.你还能用几何语言表述该结论吗?②a.类似地,可以推出平行线关于同旁内角的性质3:两直线平行,同旁内角互补,如图2,用几何语言表述为:∵a∥b,∴∠2+∠4=180°.b.试写出用性质1推出性质3的推理过程.c.试写出用性质2推出性质3的推理过程.③如图3,平行线AB、CD被直线AE所截.∠1=110°,可以知道∠2是多少度吗?为什么?答案:∠2=110°.两直线平行,内错角相等.∠1=110°,可以知道∠3是多少度吗?为什么?答案:∠3=110°.两直线平行,同位角相等.∠1=110°,可以知道∠4是多少度吗?为什么?答案:∠4=70°.两直线平行,同旁内角互补.④如图4,AB∥CD,AE∥CF,∠A=39°,∠C是多少度?为什么?答案:∠C=39°.∵AB∥CD,∴∠C=∠FGB,又∵AE∥CF,∴∠A=∠FGB,∴∠A=∠C=39°.2.自学:同学们可参照自学参考提纲进行自学.3.助学:〔1〕师助生:①明了学情:教师深入课堂巡视了解学生的自学情况,尤其是性质2和性质3的推理过程,看学生能否写出来.②差异指导:对局部感到困难的学生进行点拨引导.〔2〕生助生:小组内相互交流、研讨、订正.4.强化:〔1〕平行线的性质1、2、3及其几何表述.〔2〕判定与性质的区别:从角的关系得到两直线平行,就是判定;从直线平行得到角相等或互补,就是性质.〔3〕练习:课本P20“练习〞第1题和第2题.三、评价1.学生学习的自我评价:各小组组长对本组的学习成果和困惑进行总结交流.2.教师对学生的评价:〔1〕表现性评价:对学生在学习中的态度、方法、成效及缺乏进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用标准性的几何语言.缺乏的是师生之间的互动配合和默契程度有待加强.(时间:12分钟总分值:100分)一、根底稳固〔60分〕1.〔10分〕如图,由AB∥CD可以得到〔C〕A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4第1题图第2题图2.〔10分〕如图,如果AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=〔C〕A.180°B.270°C.360°D.540°3.〔10分〕如图,一条公路两次转弯后,和原来的方向相同,那么如果第一次拐的角是76°,那么第二次拐的角是76度,根据是两直线平行,内错角相等.4.〔10分〕如图,要在公路的两侧铺设平行管道,如果公路一侧铺设的管道与纵向联通管道的角度为120°,那么,为了使管道对接,另一侧应以60°角度铺设纵向联通管道,根据是两直线平行,同旁内角互补.第3题图第4题图第5题图5.〔20分〕如图,a∥b,c、d是截线,假设∠1=80°,∠5=70°,求∠2、∠3、∠4各是多少度?为什么?解:∵a∥b,∴∠2=∠1=80°〔两直线平行,内错角相等〕,∠3=180°-∠5=110°(两直线平行,同旁内角互补).∵∠4=∠3(两直线平行,同位角相等),∴∠4=110°.二、综合运用〔20分〕6.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=122°,求图中其他角的度数.解:由题意得:∠3=∠1=45°,∠1+∠7=180°,∴∠7=180°-∠1=135°.∴∠8=∠7=135°.又∠4=∠2=122°,∠2+∠5=180°,∴∠5=180°-∠2=58°.∴∠6=∠5=58°.三、拓展延伸〔20分〕7.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°.〔1〕∠DAB等于多少度?为什么?〔2〕∠EAC等于多少度?为什么?〔3〕∠BAC等于多少度?〔4〕由〔1〕、〔2〕、〔3〕的结果,你能说明为什么三角形的内角和是180°吗?解:〔1〕∵DE∥BC,∴∠DAB=∠B=44°〔两直线平行,内错角相等〕.〔2〕∵DE∥BC,∴∠EAC=∠C=57°(两直线平行,内错角相等).〔3〕∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC=180°-∠DAB-∠EAC=180°-44°-57°=79°.。
北师大版七年级数学下册第二章《平行线性质》导学案
北师大版七年级数学下册第二章《平行线性质》导教案新北师大版七年级数学下册第二章?平行线的性质〔2〕?导教案课平行线的性质〔二〕课1课自学 +展现§时型题1、娴熟应用平行线的性质和鉴别直线平行的条件进行简单的运算及推理。
学习目标2、渐渐理解几何推理的要领,分清推理中“由于〞、“ 因此〞表达的意义,进而初步学会简单的几何推理。
1、用几何符号语言来进行平行线性质的推理。
重难点2、正确理解性质与判断的差别和联系,正确运用它们去推理证明,熟习推理书写格式。
学生活动〔自主参加、合作研究、展现沟通〕一、预习沟通1、平行线的性质有哪几条?2、鉴别直线平行的条件有哪几个?你此刻一共有几个判断直线平行的方法?3、经过自学你还有什么疑问?二、研究释疑学生活动〔自主参加、合作研究、展现沟通〕例 3:如图 3,直线 a∥b,直线 c∥d,∠ 1=107°,求∠ 2,∠3 的度数。
图 3三、牢固提高1、如图4,AE∥CD,假定∠1=37°,∠D=54°,求∠2和∠BAE的度数。
图 4例 1:依据图 1 回复以下问题:(1〕假定∠ 1=∠ 2,能够判断哪两条直线平行?依据是什么?(2〕假定∠ 2=∠ M ,能够判断哪两条直线平行?依据是什么?〔3〕假定∠ 2+∠ 3=180°,能够判断哪两条直线平行?依据是什么?图 1例 2:如图 2, AB∥ CD,假如∠ 1=∠ 2,那么 EF 与 AB 平行吗?谈谈你的原因。
2、如图 5, EF∥ AD,∠ 1=∠2, ∠ BAC=70°。
将求∠ AGD的过程填写完好:解 : 由于 EF∥AD,因此∠ 2=____(____________________________)又由于∠ 1=∠ 2因此∠ 1=∠ 3(______________)因此 AB∥_____(_____________________________)因此∠ BAC+______=180° (___________________________)由于∠ BAC=70°因此∠ AGD=_______.四、讲堂小结本节课你都有哪些收获?D1F2B E图 5图 2教课成功:后记缺少:。
2.3.1平行线的性质导学案北师大版数学七年级下册
初一(下)数学导学练§ 平行线的性质 导学练班级:_____________ 学生姓名:_____________ 日期:____月____日学习目标:基本目标:能够利用平行线的性质,结合其判定解决一些问题.拓展目标:激励学生在探索平行线性质的过程中,积极展开思考,理解掌握平行线的性质.提升目标:经历观察、操作、交流等活动,发展空间观念,推理能力和有条理表达的能力.重难点:重点:平行线的三条性质以及综合运用平行线的性质、判定等知识解题.难点:区分性质和判定以及怎样灵活运用他们解题.学习过程:【情景引入】 如图一是在三星堆考古工作中发掘出的一个残缺玉片,工作人员复原后发现其形状是梯形(如图二),并且已经量得∠A=115°,∠D=100°。
你能不能求出另外两个角的度数.【合作探究】任意画出两条平行线(a ∥b ),画一条截线c 与这两条平行线相交,用量角器测量这些角的度数,把结果填入表内,并回答:归纳:性质1:两条 直线被第三条直线所截,同位角 ,简称为:_____________________________.性质2:两条 直线被第三条直线所截,内错角 ,简称为:_____________________________.性质3:两条 直线被第三条直线所截,同旁内角 ,简称为:_____________________________.思考:如何根据性质1说出性质2成立的道理. (应用上图)∵a ∥b ∴15∠=∠(____________________________________)∵1∠=_____(______________) ∴45∠=∠(___________________________________)以上过程说明了:由性质1可以得出性质2.尝试:根据性质1说出性质3成立的道理.做一做 如图:︒=∠651,//,//3221l l l l ,求2∠的度数.例1 如图,一束平行光线AB 与 DE 射向一个水平镜面后被反射,此时AB ∥DE ,∠1 =∠2,∠3 = ∠4.(1)∠1 与 ∠3 的大小关系是_____________ ∠ 2 与 ∠4 的大小关系是_______________(2)探究反射光线 BC 与 EF 的位置关系,并说明理由.跟踪练习1 如图,已知D 是AB 上的一点,E 是AC 上的一点,∠ADE =60° ,∠B =60°,∠AED =40°.(1)探究DE 和BC 的位置关系,并说明理由.(2)求∠C 的度数,并说明理由.课堂检测1、下列说法,其中是平行线性质的是( )①两直线平行,同旁内角互补 ②同位角相等,两直线平行 ③内错角相等,两直线平行④垂直于同一条直线的两直线平行角∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8 度数 40°A.①B.②③C.④D.①④2、如图,已知:︒=∠︒=∠︒=∠1103,982,821,则_______4=∠3、如图:已知C D CD AB ∠=∠︒=∠,45,//α,求出C D ∠∠、和B ∠的度数.。
人教版七年级下册 平行线的判定和性质导学案设计
平行线的判定和性质导学案一、学习目标:熟练运用平行线的判定定理和性质解决问题。
二、学习重、难点:重点:正确把握平行线的性质和判定方法.难点:运用平行线的性质与判定证明线段的平行关系及角的相等关系.三、学习过程:复习1、:两条直线平行的判定方法:⑴平行线的定义,⑵平行线的传递性,平行线的判定公理:平行线的判定定理1:平行线的判定定理2:平行线的判定推论:2、两条直线平行的性质:⑴根据平行线的定义平行线的性质公理:平行线的性质定理1:平行线的性质定理2:3、举例:(1)、如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.证明:∵AB∥CD,∴∠MEB=∠MFD()又∵∠1=∠2,∴∠MEB-∠1=∠MFD-∠2,即∠MEP=∠______∴EP∥_____.()(2)如图,∠1=∠2,∠C=∠D,问:∠A与∠F相等吗?试说明理由.(3)如图,已知,若∠1=∠2,∠5=70°,求∠3、∠4各是多少度?为什么?(4)如图,∠1=30°,∠B=60°,AB⊥AC,AD与BC平行吗?AB与CD平行吗?(5)如图,已知∠1+∠2=180°,试说明∠5=∠6.(6)如图,DH∠EG∠BC,且DC∠EF,则图中与∠1相等的角(不包括∠1)的个数是()A.2B.4C.5D.6(7)如图,直线a,b都与直线c相交,给出下列条件:∠∠1=∠2;∠∠3=∠6;∠∠4+∠7=180°;∠∠5+∠8=180°.其中能判断a∠b的是()A.∠∠B.∠∠C.∠∠∠D.∠∠∠∠过关检测:1、已知,如图,AD∥BC,∠BAD=∠BCD,求证:AB∥CD.证明:∵AD∥BC(已知)∴∠1= ( )又∵∠BAD=∠BCD ( 已知)∴∠BAD-∠1=∠BCD-∠2( )即:∠3=∠4∴( )2、如图①,如果∠= ∠,那么根据可得AD∥BC(写出一个正确的就可以).3、如图8,已知AB∥CD,EF分别交AB,CD于点E,F,∠1=70°,则∠2的度数为______.4、已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,求证:∠B =∠C .2A BE CF D H G15、如图:AB ∥CD ,需增加什么条件才能使∠1=∠2成立?(至少举出两种)。
2022年初中数学《平行线》导学案(推荐)
一、导学1.导入课题:如图,直线a、b是铁路上的两条铁轨,它们会相交吗?今天我们就来研究这样的两条直线——平行线.2.学习目标:〔1〕了解平行线的概念,知道同一平面内不重合的两条直线的两种位置关系, 能表达平行公理以及平行公理的推论.〔2〕会用符号语言表示平行公理及其推论, 会用三角尺和直尺过直线外一点画这条直线的平行线.3.学习重、难点:重点:平行公理及其推论.难点:文字语言、图形语言、符号语言的相互转换.4.自学指导:〔1〕自学内容:课本P11至P12“练习〞之前的内容.〔2〕自学时间:10分钟.〔3〕自学要求:认真阅读教材,重点局部做好圈点;动手操作画图,并观察图形总结规律.〔4〕自学参考提纲:①定义:同一平面内,直线a与b不相交,这时直线a与b互相平行.换言之,同一平面内不相交的两条直线叫做平行线.②直线a与b是平行线,记作a∥b.③同一平面内,两条直线的位置关系有两种,分别是相交和平行.④联系实际生活,列举平行线的实例.a.如右图,直线a及直线a外两点B、C.b.用直尺和三角尺分别过点B、C作直线a的平行线,分别记作直线b和直线c.c.结合画图过程,观察所画图形,思考:过点B〔或C〕画直线a的平行线,能画几条?直线b和直线c有何位置关系?答案:1条;b∥c.d.归纳总结:平行线的画法〔用三角尺为例〕:一“落〞:把三角尺一边落在直线上;二“靠〞,用直尺紧靠三角尺的另一边;三“推〞,沿直尺推动三角尺,使三角尺与直线重合的边过点;四“点〞,沿三角尺过点的边画直线,所画直线即为所要画的线.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.〔与垂线的性质1相比较,注意它们的相同点和不同点〕推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.用符号语言表述为:如果b∥a,c∥a,那么b∥c.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:〔1〕明了学情:教师巡视课堂,了解学生的自学情况:①“过直线外一点画该直线的平行线〞的作图是否会操作.②平行公理与垂线性质1的相同点与不同点是否清楚.〔2〕差异指导:对个别学生进行指导,帮助理解画图的依据.2.生助生:各小组相互交流、纠正认知误区.四、强化1.平行线的概念及画法.2.平行公理及推论.3.练习:读以下语句,并画出图形.〔1〕点P是直线AB外一点,直线CD经过点P,且与直线AB平行.〔2〕直线AB与CD相交,点P是直线AB、CD外一点,直线EF经过点P 且与直线AB平行,与直线CD相交于点E.五、评价1.学生学习的自我评价:各小组组长汇报本组的学习情况,总结经验、收获和缺乏.2.教师对学生的评价:〔1〕表现性评价:对学生在学习中的态度、方法和收效进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本节课的重点是平行线的概念和平行公理及其推论.在本课中学生动手、动脑,独立思考,完全参与到知识的探索之中,是知识的探索者,教师也不再是满堂灌式的教学,而是学习的引导者,符合新的课堂理念.(时间:12分钟总分值:100分)一、根底稳固〔70分〕1.〔10分〕在同一平面内,两条直线的位置关系有:平行和相交.2.〔10分〕在同一平面内,两条相交直线不可能都与第三条直线平行,这是因为如果两条直线与第三条直线平行,那么这两条直线也互相平行.3.〔10分〕两条直线相交,交点的个数是1,两条直线平行,交点的个数是0.4.〔20分〕判断:〔1〕不相交的两条直线叫做平行线.(×)〔2〕如果一条直线与两条平行线中的一条平行, 那么它与另一条直线也互相平行.(√)〔3〕过一点有且只有一条直线平行于直线.(×)5.〔20分〕画图并解答.(1)画∠AOB,并用量角器画∠AOB的平分线OC,在OC上任取一点P,比较点P到OA、OB的距离的大小.(2)画∠AOB,在∠AOB的内部任取一点P,过点P作直线PC∥OA交OB 于点C,再过点P作直线PD∥OB交OA于点D,比较∠AOB与∠CPD的大小.解:〔1〕如图:PM、PN即为点P到OA、OB的距离,PM=PN.〔2〕如图:∠AOB=∠CPD二、综合运用〔20分〕6.在同一平面内,有三条直线,它们的交点个数可能是〔D〕A.0B.1C.2D.0,1,2,37.如图,假设AB∥CD,经过点E可画EF∥AB,那么EF与CD的位置关系是EF∥CD,理由是如果两条直线都与第三条直线平行,那么这两条直线也互相平行.第7题图第8题图三、拓展延伸〔10分〕8.如图,MN⊥AB,垂足为M,MN交CD于点N,过M点作MG⊥CD,垂足为G,EF过点N,且EF∥AB,交MG于点H,其中线段GM的长度是点M到CD的距离, 线段MN的长度是点N到AB的距离,又是两平行线AB与EF之间的距离,点N 到直线MG的距离是NG.5.3.1 平行线的性质一、新课导入1.导入课题:利用同位角、内错角、同旁内角之间的关系可以判定两条直线平行.你还记得这些判定方法分别是如何表达的吗?反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么关系呢?这就是本节课我们所要研究的内容.〔板书课题〕2.学习目标:〔1〕能表达平行线的三条性质.〔2〕能运用平行线的三条性质进行简单的推理和计算.3.学习重、难点:重点:对平行线性质的理解及它们与平行线的判定之间的关系.难点:性质2和性质3的推理过程的逻辑表述.二、分层学习1.自学指导:〔1〕自学内容:课本P18的内容.〔2〕自学时间:8分钟.〔3〕自学要求:正确画图、测量、验证、归纳.〔4〕探究提纲:①画图:画两条平行线a∥b,再画一条截线c与直线a、b相交〔如图1所示〕.②测量:测量这些角的度数,把结果填入表内.③分析:∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?答案:同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,相等.④猜想:两条平行线被第三条直线截得的同位角有什么关系?⑤验证:如果改变截线的位置,你的猜想还成立吗?⑥归纳:a.你能用文字语言表述你发现的结论吗?b.你还能用符号语言表述该结论吗?2.自学:学生按探究提纲进行研讨式学习.3.助学:〔1〕师助生:①明了学情:了解学生围绕探究提纲进行学习的情况及存在的困惑.②差异指导:对个别学生在学法和认知有偏差时进行点拨引导.〔2〕生助生:小组内学生之间相互交流,展示成果,查找并纠正不正确的认识或结论.4.强化:〔1〕平行线的性质1及其几何表述.〔2〕经历平行线的性质1的探究过程,体会研究几何图形的一般方法.1.自学指导:〔1〕自学内容:课本P19的内容.〔2〕自学时间:8分钟.〔3〕自学要求:阅读教材,重要的局部做好圈点,疑点处做好记号.〔4〕自学参考提纲:①与平行线的判定类似,你能由性质1推出两条平行线被第三条直线截得的内错角之间的关系吗?a.结合图2,你能写出推理过程吗?b.类比性质1,你能用文字语言表述上面的结论吗?答案:两直线平行,内错角相等.c.你还能用几何语言表述该结论吗?②a.类似地,可以推出平行线关于同旁内角的性质3:两直线平行,同旁内角互补,如图2,用几何语言表述为:∵a∥b,∴∠2+∠4=180°.b.试写出用性质1推出性质3的推理过程.c.试写出用性质2推出性质3的推理过程.③如图3,平行线AB、CD被直线AE所截.∠1=110°,可以知道∠2是多少度吗?为什么?答案:∠2=110°.两直线平行,内错角相等.∠1=110°,可以知道∠3是多少度吗?为什么?答案:∠3=110°.两直线平行,同位角相等.∠1=110°,可以知道∠4是多少度吗?为什么?答案:∠4=70°.两直线平行,同旁内角互补.④如图4,AB∥CD,AE∥CF,∠A=39°,∠C是多少度?为什么?答案:∠C=39°.∵AB∥CD,∴∠C=∠FGB,又∵AE∥CF,∴∠A=∠FGB,∴∠A=∠C=39°.2.自学:同学们可参照自学参考提纲进行自学.3.助学:〔1〕师助生:①明了学情:教师深入课堂巡视了解学生的自学情况,尤其是性质2和性质3的推理过程,看学生能否写出来.②差异指导:对局部感到困难的学生进行点拨引导.〔2〕生助生:小组内相互交流、研讨、订正.4.强化:〔1〕平行线的性质1、2、3及其几何表述.〔2〕判定与性质的区别:从角的关系得到两直线平行,就是判定;从直线平行得到角相等或互补,就是性质.〔3〕练习:课本P20“练习〞第1题和第2题.三、评价1.学生学习的自我评价:各小组组长对本组的学习成果和困惑进行总结交流.2.教师对学生的评价:〔1〕表现性评价:对学生在学习中的态度、方法、成效及缺乏进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用标准性的几何语言.缺乏的是师生之间的互动配合和默契程度有待加强.(时间:12分钟总分值:100分)一、根底稳固〔60分〕1.〔10分〕如图,由AB∥CD可以得到〔C〕A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4第1题图第2题图2.〔10分〕如图,如果AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=〔C〕A.180°B.270°C.360°D.540°3.〔10分〕如图,一条公路两次转弯后,和原来的方向相同,那么如果第一次拐的角是76°,那么第二次拐的角是76度,根据是两直线平行,内错角相等.4.〔10分〕如图,要在公路的两侧铺设平行管道,如果公路一侧铺设的管道与纵向联通管道的角度为120°,那么,为了使管道对接,另一侧应以60°角度铺设纵向联通管道,根据是两直线平行,同旁内角互补.第3题图第4题图第5题图5.〔20分〕如图,a∥b,c、d是截线,假设∠1=80°,∠5=70°,求∠2、∠3、∠4各是多少度?为什么?解:∵a∥b,∴∠2=∠1=80°〔两直线平行,内错角相等〕,∠3=180°-∠5=110°(两直线平行,同旁内角互补).∵∠4=∠3(两直线平行,同位角相等),∴∠4=110°.二、综合运用〔20分〕6.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=122°,求图中其他角的度数.解:由题意得:∠3=∠1=45°,∠1+∠7=180°,∴∠7=180°-∠1=135°.∴∠8=∠7=135°.又∠4=∠2=122°,∠2+∠5=180°,∴∠5=180°-∠2=58°.∴∠6=∠5=58°.三、拓展延伸〔20分〕7.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°.〔1〕∠DAB等于多少度?为什么?〔2〕∠EAC等于多少度?为什么?〔3〕∠BAC等于多少度?〔4〕由〔1〕、〔2〕、〔3〕的结果,你能说明为什么三角形的内角和是180°吗?解:〔1〕∵DE∥BC,∴∠DAB=∠B=44°〔两直线平行,内错角相等〕.〔2〕∵DE∥BC,∴∠EAC=∠C=57°(两直线平行,内错角相等).〔3〕∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC=180°-∠DAB-∠EAC=180°-44°-57°=79°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.2 平行线的性质
一、预习与质疑(课前学习区)
(一)预习内容:P52-P53
(二)预习时间:10分钟
(三)预习目标:
1.会利用平行线的特征解决一些简单的问题;
2.学会几何简单推理过程的书写。
(四)学习建议:
1.教学重点:平行线的性质,并能运用这些性质进行简单的推理或计算。
2.教学难点:平行线的性质,并能运用这些性质进行简单的推理或计算。
(五)预习检测:
1.平行线的性质有哪几条?
2.判别直线平行的条件有哪几个?你现在一共有几个判定直线平行的方法?解:(1)平行线的性质1:两条平行直线被第三条直线所截, 相等。
性质2:两条平行直线被第三条直线所截,内错角相等。
性质3:两条平行直线被第三条直线所截, 互补。
(1)判别直线平行的条件有
同位角相等
内错角两直线平行
同旁内角
活动一:教材精读
1. 如图:(1)若∠1=∠2,可以判定哪两条直线平行?根据是什么?
(2)若∠2=∠M,可以判定哪两条直线平行?根据是什么?
(3)若∠2 +∠3=180°,可以判定哪两条直线平行?根据是什么?
解:(1)∵∠1=∠2()
∴BF// ()
(2)∵∠1=∠2()
∴BF// ()
(3)∵∠2=∠M()
∴BF// ()
2.如图所示:AB∥CD,如果∠1=∠2,那么EF与AB平行吗?说说你的理由。
解:∵∠1 = ∠2 ()
∴ EF∥()
又∵AB∥CD()
∴∥(__________ )
3.已知直线a∥b,直线c∥d, ∠1=110°,求∠2,∠3的度数。
解:∵a∥b,且∠1=110°(已知)
∴∠2 = ∠1 =
∵c∥d( __________ )
∴∠1 +∠3 = ()
∴∠3 = 180°- (等式的基本性质)
= 180°-110°
=
实践练习:如图,选择合适的内容填空。
(1)∵AB//CD
∴ =∠2()
(2)∵∠3=∠1
∴ // (同位角相等,两直线平行)
(3)∵∠1+=180
∴AB//CD()
(六)生成问题:通过预习和做检测题你还有哪些疑惑请写在下面。
二、落实与整合(课中学习区)
活动二:合作探究
1.如图,平行直线AB,CD被直线EF所截,分别交直线AB,CD于点G,M。
GH和MN分别是∠EGB 和∠EMD的角平分线,问:GH和MN平行吗?请说明理由。
解:∵AB//CD()
∴∠EGB= ()
∵GH和MN分别是∠EGB和∠EMD的角平分线(已知)
1
且∠EMN=
2
∴∠EGH=∠EMN
∴// (同位角相等,)
三、检测与反馈(课堂完成)
1.填空
(1)如图,∵AC∥ED(已知)
∴∠A=_____()
(2)如图,∵AC∥ED(已知)
∴∠EDF=_____()
(3)如图,∵AB∥FD(已知)
∴∠A+____ =1800()
(4)如图,∵AB∥FD(已知)
∴∠EDF+____=1800()
(5)如图,∵BD∥EC(已知)
∴∠DBA=_____( ___________ __ )
∵∠C=∠D (已知)
∴∠DBA=______()
∴FD∥_____()
∴∠A=∠F ()
2.如图所示,已知AD//BC,∠DBC与∠C互余,B D平分∠ABC,如果∠A=1120,那么∠ABC的度数是多少?∠C的度数呢?
四、课后互助区
1.学案整理:整理“课中学习去”后,交给学习小组内的同学互检。
2.构建知识网络
互帮互助:
“我”认真阅读了你的学案,“我”有如下建议:________________________ “我”的签名:_____________。