高中数学必修5

合集下载

高中数学必修五-等差数列

高中数学必修五-等差数列

等差数列知识集结知识元等差数列的性质知识讲解1.等差数列的性质【等差数列】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.等差数列的通项公式为:a n=a1+(n﹣1)d;前n项和公式为:S n=na1+n(n﹣1)或S n=(n∈N+),另一重要特征是若p+q=2m,则有2a m=a p+a q(p,q,m都为自然数)例:已知等差数列{a n}中,a1<a2<a3<…<a n且a3,a6为方程x2﹣10x+16=0的两个实根.(1)求此数列{a n}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{a n}为等差数列,设首项为a1,公差为d,∴a1+2d=2,a1+5d=8,解得a1=﹣2,d=2.∴a n=﹣2+(n﹣1)×2=2n﹣4(n∈N*).∴数列{a n}的通项公式为a n=2n﹣4.(2)令268=2n﹣4(n∈N*),解得n=136.∴268是此数列的第136项.这是一个很典型的等差数列题,第一问告诉你第几项和第几项是多少,然后套用等差数列的通项公式a n=a1+(n﹣1)d,求出首项和公差d,这样等差数列就求出来了.第二问判断某个数是不是等差数列的某一项,其实就是要你检验看符不符合通项公式,带进去检验一下就是的.【等差数列的性质】(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(首项不一定选a1).例题精讲等差数列的性质例1.设等差数列{a n}的前n项和为S n,若a2+a8=15-a5,则S9等于()A.18B.36C.45D.60例2.记等差数列{a n}的前n项和为S n.若a5=3,S13=91,则a1+a11=()A.7B.8C.9D.10例3.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12等差数列的通项公式知识讲解1.等差数列的通项公式【知识点的认识】等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代入2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是等差数列,题中a n的求法是数列当中常用到的方式,大家可以熟记一下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为首项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的一个重要性质,即等差中项的特点,通过这个性质然后解方程一样求出首项和公差即可.【考点点评】求等差数列的通项公式是一种很常见的题型,这里面往往用的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.例题精讲等差数列的通项公式例1.在等差数列{a n}中,a4,a12是方程x2+3x+1=0的两根,则a8=()A.B.C.D.不能确定例2.在等差数列{a n}中,a2+a10=0,a6+a8=-4,a100=()A.212B.188C.-212D.-188例3.在等差数列{a n}中,若a2=5,a4=3,则a6=()A.-1B.0C.1D.6当堂练习单选题练习1.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12练习2.等差数列{a n}中,已知a2+a6=4,则a4=()A.1B.2C.3D.4练习3.在等差数列{a n}中,若a3+a9=17,a7=9,则a5=()A.6B.7C.8D.9练习4.《孙子算经》是中国古代重要的数学著作,上面记载了一道有名的“孙子问题”(又称“物不知数题”),后来我国南宋数学家秦九韶在《数书九章∙大衍求一术》中将此问题系统解决.“大衍求一术”是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.后传入西方,被称为“中国剩余定理”.现有一道一次同余式组问题:将正整数中,被3除余2且被5除余1的数,按由小到大的顺序排成一列,则此列数中第10项为()A.116B.131C.146D.161练习5.已知2,b的等差中项为5,则b为()A.B.6C.8D.10练习6.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A.B.C.D.练习7.等差数列{a n}中,S n是它的前n项和,a2+a3=10,S6=54,则该数列的公差d为()A.2B.3C.4D.6练习8.等差数列{a n}中,a1+a8=10,a2+a9=18,则数列{a n}的公差为()A.1B.2C.3D.4练习9.在等差数列{a n}中,已知a2+a6=18,则a4=()A.9B.8C.81D.63。

人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)
本教案共包括必修五全部章节,共计 xx 课时,主要涵盖以下
内容:
第一章函数的概念
本章主要介绍函数的概念、性质、分类以及函数图像的绘制等
方面的知识点。

通过本章的研究,学生将能够掌握函数的基本概念,理解函数的重要性以及掌握函数图像的绘制方法。

第二章三角函数
本章主要介绍正弦函数、余弦函数、正切函数等三角函数的定义、图像及其性质等方面的知识点,并针对不同类型的三角函数进
行了详细的讲解。

通过本章的研究,学生将能够深入理解三角函数
的概念,掌握三角函数的性质,运用三角函数解决实际问题。

第三章数学归纳法与递推数列
本章主要介绍数学归纳法的基本原理及其在数学证明中的运用,同时通过递推数列的研究,进一步巩固对数学归纳法的理解和应用。

通过本章的研究,学生将能够掌握数学归纳法的基本原理及其在数
学证明中的应用,同时掌握递推数列的推导与实际应用技巧。

第四章极坐标系与参数方程
本章主要介绍极坐标系的定义、性质,以及参数方程的基本概
念与运用等方面的知识点。

通过本章的研究,学生将能够理解极坐
标系的概念与性质,掌握参数方程的推导与实际应用技巧。

第五章一元函数微积分学初步
本章主要介绍导数与微分、不定积分、定积分等知识点。

通过
本章的学习,学生将能够掌握导数与微分的基本概念与计算方法,
掌握不定积分与定积分的计算方法,以及这些知识在实际问题中的
应用。

高中数学必修五--等比数列

高中数学必修五--等比数列
2 4 8 16
这些数列 有什么共同点
概念形成
一、等比数列的定义
一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等
比数列.这个常数叫做等比数列的公比,公比通常用字母 q 表示 q 0 ,即 an q (q 0) . an1
概念形成
二、等比数列的通项公式
概念形成
四、等比数列的性质
(1)在一个等比数列中,从第 2 项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项,
即 an2 an1 an1 (n 2) .
(2)在有穷等比数列中,与首末两项等距离的两项之积等于首末两项之积,即
a1 an a2 an1 a3 an2 L .
(3)在等比数列中,若 m n p q ,则 am an ap aq .
(4)若 {an } , {bn } 均为等比数列,则 {an
bn} ,{k
an}
(k
0)
,{ 1 an
} 仍为等比数列,公比分别为
q1
q2

q1 ,
1 q1
.Байду номын сангаас
(5)等比数列依次每 n 项的和仍为等比数列,公比为 qn
n
(6) a1 a2 L an (a1 an )2 . (正项数列中)
课堂小结
四、等比数列的性质
一个思想 类比思想
两个方法 不完全归纳法
叠乘法
三个公式
谢谢大家
人教版高中数学必修五
不完全归纳法
叠乘法
概念形成
二、等比数列的通项公式
【问题3】怎样用函数观点来分析等比数列的通项公式呢?
类比思想
概念形成

高中数学科目必修5目录

高中数学科目必修5目录

高中数学科目必修5目录目录是书籍正文前所载的目次,是揭示和报道图书的工具。

目录是记录图书的书名、著者、出版与收藏等情况,按照一定的次序编排而成,为反映馆范、指导阅读、检索图书的工具。

下面是店铺为大家整理的高中数学必修5目录,希望对大家有所帮助!高中数学必修5目录第一章解三角形1.1正弦定理与余弦定理1.1.1 正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.2.2数列的递推公式(选学)2.2 等差数列2.2.1等差数列2.2.2等差数列的前项和2.3等比数列2.3.1等比数列2.3.2等比数列的前项和第三章不等式3.1不等关系与不等式3.2 均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题数学教学建议1.注意创设问题情境,激发学生学习数学的兴趣内在动力是数学学习的根本动力,在教学过程中应该充分调动学生学习数学的兴趣。

解三角形、数列和不等式三章内容有着丰富的实际背景,除了教科书中的实例还有很多很好的相关的素材,教学过程中应该充分给予挖掘,并针对学生的实际认真设计教学方案,提高教学的整体效果。

2.既要重视背景的揭示,也要关注基础的落实“标准”特别强调通过丰富的实际背景反映数学的实质,强调数学的应用价值,这在教科书中已经有了很充分的体现。

但是,数学的学习离不开实践,“做数学”是最有效的数学学习方法。

因此,在教学过程中应该重视基础的落实,将常规的练习和探究性问题、实习作业有机结合起来,给学生创造更多的实践机会,在“做数学”的过程中落实基础。

3.注意避免过于繁琐的形式化训练从数学教学的传统上来看,解三角形、数列和不等式三章的内容有不少高度技巧化、形式化的问题,在教学过程中应该注意尽量避免这一类问题的出现。

弱化过分繁琐和技巧化的代数恒等变形是高中数学课程标准的明确要求,应该在教学过程中很好的把握。

4.适当的使用信息技术高中数学课程应提倡实现信息技术与课程内容的有机整合(如把算法融入到数学课程的各个相关部分),整合的基本原则是有利于学生认识数学的本质。

高中数学必修5目录 (3)

高中数学必修5目录 (3)

高中数学必修5目录第一章实数• 1.1 实数的概念• 1.2 实数的四则运算• 1.3 实数的比较大小• 1.4 实数的绝对值与范围• 1.5 实数的相反数与倒数• 1.6 实数的乘法逆元• 1.7 有理数及其性质• 1.8 无理数及其性质• 1.9 实数的分类第二章函数与方程2.1 函数的概念和性质• 2.1.1 函数的定义• 2.1.2 函数的性质• 2.1.3 函数的图像• 2.1.4 奇函数和偶函数• 2.1.5 初等函数2.2 一次函数与一次方程• 2.2.1 一次函数的性质• 2.2.2 一次方程的性质• 2.2.3 一次函数与一次方程的应用2.3 二次函数与二次方程• 2.3.1 二次函数的性质• 2.3.2 二次方程的性质• 2.3.3 二次函数与二次方程的应用2.4 幂函数与指数函数• 2.4.1 幂函数的性质• 2.4.2 指数函数的性质• 2.4.3 幂函数与指数函数的应用2.5 对数与对数函数• 2.5.1 对数的概念• 2.5.2 对数的性质• 2.5.3 对数函数的性质• 2.5.4 对数与指数的应用2.6 复合函数与反函数• 2.6.1 复合函数的概念• 2.6.2 复合函数的性质• 2.6.3 反函数的概念• 2.6.4 反函数与初等函数的关系• 2.6.5 反函数的性质第三章三角函数3.1 弧度制与角度制• 3.1.1 角的度量单位• 3.1.2 弧度制与角度制的转换3.2 三角函数的定义与性质• 3.2.1 正弦函数、余弦函数、正切函数的定义• 3.2.2 三角函数的周期性• 3.2.3 三角函数的奇偶性• 3.2.4 三角函数的关系式3.3 三角函数的图像与性质• 3.3.1 三角函数图像的基本性质• 3.3.2 三角函数图像的变换• 3.3.3 三角函数的应用3.4 几何解析法与三角函数的应用• 3.4.1 几何解析法的基本思想• 3.4.2 几何解析法的步骤• 3.4.3 几何解析法的应用3.5 三角函数的和角与差角• 3.5.1 正弦、余弦、正切的和角公式3.6 二倍角、半角与倍角的三角函数• 3.6.1 正弦、余弦、正切的二倍角公式• 3.6.2 正弦、余弦、正切的半角公式• 3.6.3 正弦、余弦、正切的倍角公式第四章数列与数学归纳法4.1 数列的概念• 4.1.1 数列的定义• 4.1.2 数列的性质4.2 等差数列与等差数列的求和• 4.2.1 等差数列的定义与性质• 4.2.2 等差数列的求和公式• 4.2.3 等差数列的应用4.3 等比数列与等比数列的求和• 4.3.1 等比数列的定义与性质• 4.3.3 等比数列的应用4.4 数学归纳法的基本思想与步骤• 4.4.1 数学归纳法的基本思想• 4.4.2 数学归纳法的步骤• 4.4.3 数学归纳法的应用第五章平面向量5.1 平面向量的表示与概念• 5.1.1 平面向量的定义• 5.1.2 平面向量的性质• 5.1.3 平面向量的基本运算5.2 平面向量的数量积• 5.2.1 数量积的定义与性质• 5.2.2 数量积的计算及其几何意义• 5.2.3 正交向量及其判定5.3 平面向量的叉积• 5.3.1 叉积的定义与性质• 5.3.2 叉积的计算及其几何意义• 5.3.3 向量共线、平行的判定5.4 平面向量的混合积• 5.4.1 混合积的定义与性质• 5.4.2 混合积的计算及其性质5.5 平面向量的坐标表示• 5.5.1 平面向量的坐标表示• 5.5.2 平面向量的空间坐标表示第六章解析几何6.1 平面的方程• 6.1.1 平面的法线及其方程• 6.1.2 平面的点法式方程• 6.1.3 平面的一般方程• 6.1.4 平面与坐标轴的交点与平面的截距6.2 直线的方程• 6.2.1 直线的斜率与倾斜角• 6.2.2 直线的截距及其方程• 6.2.3 直线的一般方程• 6.2.4 直线与坐标轴的交点6.3 空间的平面与直线• 6.3.1 平面的方程• 6.3.2 直线的方程• 6.3.3 平面与直线的位置关系6.4 空间的平面与坐标轴• 6.4.1 空间平面与坐标轴交点的坐标第七章概率初步7.1 随机事件与随机实验•7.1.1 随机事件的概念•7.1.2 随机实验与样本空间•7.1.3 事件的关系与运算7.2 频率与概率•7.2.1 频率的定义及其性质•7.2.2 概率的定义及其性质•7.2.3 频率与概率的关系7.3 条件概率与独立性•7.3.1 条件概率的定义•7.3.2 事件的独立性7.4 排列与组合•7.4.1 排列与组合的概念•7.4.2 排列与组合的计算7.5 随机变量与概率分布•7.5.1 随机变量的概念•7.5.2 离散型随机变量的概率分布•7.5.3 随机变量的数学期望7.6 几何概率与条件概率•7.6.1 几何概率的计算•7.6.2 条件概率与事件的独立性以上是《高中数学必修5》的目录,共包括七个章节。

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。

作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。

高中数学必修5全册知识点总结(理科)

高中数学必修5全册知识点总结(理科)

高中数学必修5知识点第一章解三角形(一)解三角形:1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有2sin sin sin a b c RC ===A B (R 为C ∆AB 的外接圆的半径)2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ;3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆A B =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,推论:222cos 2b c abc+-A =第二章数列1、数列中n a 与n S 之间的关系:11,(1),(2).n n n S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。

2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n≥2,n∈N +),那么这个数列就叫做等差数列。

⑵等差中项:若三数a A b 、、成等差数列2a bA +⇔=⑶通项公式:1(1)()n m a a n d a n m d=+-=+-或(n a pn q p q =+、是常数).⑷前n 项和公式:()()11122n n n n n a a S na d -+=+=⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+;②下标为等差数列的项() ,,,2m k m k k a a a ++,仍组成等差数列;③数列{}b a n +λ(b ,λ为常数)仍为等差数列;④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb +(k 、p 是非零常数)、*{}(,)p nq a p q N +∈、,…也成等差数列。

高中数学必修5:数列

高中数学必修5:数列

必修Ⅴ 数列一、数列的概念1、数列:数列与函数的关系: 数列的通项公式: 数列的递推公式: 数列的前n 项和=n S 通项n a 与n S 的关系:=n a2、由递推公式求通项公式的常见方法:①形如:d a a n n =--1(为常数)p a a n n =-1(为常数),用 求通项公式 ②形如:()n f a a n n =--1,()n g a a n n =-1,用 求通项公式 ③形如:q pa a n n +=-1 ()0,1,0≠≠≠q p p ,用 求通项公式 ④形如qpa a a n n n +=--11 ()0,0≠≠q p ,用 求通项公式 3、数列求和的常见方法①倒序求和:通项满足 时,用此方法求和 ②分组求和:通项满足 时,用此方法求和 ③错位相减法:通项满足 时,用此方法求和 ④裂项求和:通项满足 时,用此方法求和 ⑤并项求和:通项满足 时,用此方法求和4、判断数列单调性的方法:①利用数列的单调性:若01>-+n n a a ()*N n ∈,数列 ;若01<-+n n a a ()*N n ∈,数列 ②利用数列是一个特殊的函数,以及相应函数的单调性,确定数列的单调性。

二、等差数列1、等差数列的定义:2、等差数列的通项公式:=n a从函数角度理解等差数列的通项n a 是关于n 的3、等差数列的性质:①序号差的关系:=-m n a a ②序号和的关系:若s r n m +=+,则4、等差数列的前n 项和:=n S =从函数角度理解等差数列的前n 项和n S 是关于n 的等差数列的前n 项和n S 的性质:①一般地:k S ,k S 2,k S 3仍然成 ,公差为②n S 可以转化成最中间一项或两项的和 n a a S n n ⋅+=21 若n 为偶数()k n 2=时=n S ,若n 为奇数()12-=k n 时=n S 等差数列的前n 项和n S 最值的求法:①利用n S 是关于n 的二次型函数求最值,注意函数的定义域∈n②分析等差数列前有限项的正负,求n S 的最值:若前有限项为正数项,可以求n S 的 值,若前有限项为负数项,可以求n S 的 值5、等差中项的定义:若A 为a 与b 的等差中项,则=A三、等比数列1、等比数列的定义:2、等比数列的通项公式:=n a从函数角度理解等差数列的通项n a 是关于n 的3、等比数列的性质: ①序号差的关系:=mn a a ②序号和的关系:若s r n m +=+,则 4、等比数列的前n 项和:1≠q 时,=n S = ,1=q 时,=n S 等比数列的前n 项和n S 的性质:一般地:若0≠k S k S ,k S 2,k S 3仍然成 ,公比为5、等比中项的定义:若G 为a 与b 的等比中项,则=G。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档