2020高中物理 课时提升作业四 第二章 原子结构 2.1 电子 教科版选修3-5
高中物理第2章原子结构第3节玻尔的原子模型第4节氢原子光谱与能级结构课件鲁科版选修3

定态 E1,辐射的光子能量为 hν=E2-E1
基本 内容
假设
原子的不同能量状态对应于电子的不同运行轨道.原
子的能量状态是不连续的,电子不能在任意半径的轨 轨道 道上运行,只有轨道半径 r 跟电子动量 mev 的乘积满 假设 足下式 mevr=n2hπ(n=1,2,3,…)这些轨道才是可
对玻尔原子模型的理解 1.轨道量子化:轨道半径只能够是一些不连续的、某些分立的 数值. 模型中保留了卢瑟福的核式结构,但他认为核外电子的轨道是 不连续的,它们只能在某些可能的、分立的轨道上运动,而不 是像行星或卫星那样,能量大小可以是任意的量值.例如,氢 原子的电子最小轨道半径为 r1=0.053 nm,其余可能的轨道半 径还有 0.212 nm、0.477 nm、…不可能出现介于这些轨道半径 之间的其他值.这样的轨道形式称为轨道量子化.
按照玻尔原子理论,氢原子中的电子离原子核越远, 氢原子的能量________(选填“越大”或“越小”).已知氢原 子的基态能量为 E1(E1<0),电子质量为 m,基态氢原子中的电 子吸收一频率为 ν 的光子被电离后,电子速度大小为 ________(普朗克常量为 h). [思路点拨] 根据玻尔原子理论与能量守恒定律求解.
得到了氢原子的能级结构图(如图所示).
n=∞————————E∞=0 ⋮
n=5 ————————E5=-0.54 eV n=4 ————————E4=-0.85 eV n=3 ————————E3=-1.51 eV n=2 ————————E2=-3.4 eV n=1 ————————E1=-13.6 eV
4.原子跃迁时需注意的几个问题 (1)注意一群原子和一个原子 氢原子核外只有一个电子,这个电子在某个时刻只能处在某一 个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨 道时,可能的情况只有一种,但是如果容器中盛有大量的氢原 子,这些原子的核外电子跃迁时就会有各种情况出现.
高中物理 第2章 原子结构 2.1 电子的发现与汤姆孙模型教案

第1节电子的发现与汤姆孙模型●课标要求1.知道阴极射线是由电子组成的,电子是原子的组成部分,是比原子更基本的物质单元.2.体会电子的发现过程中蕴含的科学方法及人类探索原子结构的重大意义.3.知道汤姆孙的原子模型,认识19世纪末三大发现的物理意义.●教学地位本节教科书由阴极射线、电子的发现和汤姆孙模型三部分内容组成.重点是电子的发现过程蕴含的科学方法.首先通过实验说明阴极射线的存在,然后指出“19世纪后期”,物理学家对阴极射线的本质的认识有两种观点”,最后仍然通过实验研究发现了电子.电子的发现说明原子不是组成物质的最小微粒,对揭示原子结构有重大意义,是近代物理三大发现(X射线、放射性、电子)之一.电子的发现是一个很好的培养学生分析问题和解决问题能力的内容.认识电子发现的重大意义,体会电子的发现过程中蕴含的科学方法,是教学中的重点.●新课导入建议实验引入给阴极射线管加上高压,并将磁铁靠近阴极射线管,你会观察到什么现象?为什么会出现这种现象?阴极射线到底是什么?本节课我们重复着科学家的足迹进行探究.●教学流程设计课前预习安排:1.看教材2.填写【课前自主导学】同学之间可进行讨论⇒步骤1:导入新课,本节教学地位分析⇒步骤2:老师提问,检查预习效果可多提问几个学生⇒步骤3:师生互动完成“探究1”除例1外可再变换命题角度,补充一个例题以拓展学生思路⇓步骤7:先由学生自己总结本节的主要知识,教师点评,安排学生课下完成【课后知能检测】⇐步骤6:指导学生完成【当堂双基达标】,验证学习情况⇐步骤5:师生互动完成“探究2”重在分析错误的原因⇐步骤4:让学生完成【迁移应用】,检查完成情况并点评课标解读重点难点1.了解物质结构早期探究的基本历程.2.知道阴极射线的产生及其本质,理解汤姆孙对阴极射线研究的方法及电子发现的意义.3.了解汤姆孙原子模型. 1.理解阴极射线的研究过程.(重点)2.汤姆孙发现电子的理论推导.(难点)3.电子电荷量的测定.(难点)物质结构的早期探究(1)古人对物质的认识①我国西周的“五行说”认为万物是由金、木、水、火、土5种基本“元素”组成的.②古希腊的亚里士多德认为万物的本质是土、水、火、空气四种“元素”,天体则由第五种“元素”——“以太”构成.③古希腊哲学家德谟克利特等人建立了早期的原子论,认为宇宙间存在一种或多种微小的实体,叫做“原子”.(2)通过实验了解物质的结构①1661年,玻意耳以化学实验为基础建立了科学的元素论.②19世纪初,道尔顿提出了原子论,认为原子是元素的最小单位.③1811年,意大利化学家阿伏伽德罗提出了分子假说,指出分子可以由多个相同的原子组成.(3)结论在物质的结构中存在着分子、原子这样的层次,宏观物质的化学性质决定于分子,而分子则由原子组成.原子是构成物质的不可再分割的最小颗粒,它既不能创生,也不能消灭.2.思考判断(1)玻意耳认为万物的本质是土、水、火、空气四种元素的元素论.(×)(2)阿伏伽德罗提出分子可以由多个原子组成.(√)(3)19世纪初期形成的原子论观点认为原子是构成物质的最小颗粒是不可分的.(√)3.探究交流试简述道尔顿提出原子论的依据.【提示】18世纪一系列重要的实验结果,如化学反应遵从质量守恒定律,元素形成化合物时遵从定比定律、倍比定律等,启示人们推想物质是由一些不可毁灭的微粒构成的,而且各种不同的元素微粒按照一定的比例形成化合物,在此基础上,19世纪初,道尔顿提出了原子论,认为原子是元素的最小单元.电子的发现及汤姆孙模型1.(1)汤姆孙的探究方法①让阴极射线分别通过电场或磁场,根据偏转现象,证明它是带负电的粒子流,通过静电偏转力与磁场偏转力相抵消等方法,确定了阴极射线粒子的速度,并测量出了其比荷.②换用不同金属的阴极,所得粒子的比荷值大体相同.③粒子带负电,阴极射线的电荷与氢离子的电荷大小基本相同,比荷是氢离子的近两千倍,说明阴极射线粒子的质量远小于氢离子质量.④组成阴极射线的粒子称为电子.(2)结论①阴极射线是高速电子流.②不同物质都能发射这种带电粒子,它是各种物质中共有的成分,比最轻的氢原子的质量还要小的多,汤姆孙将这种带电粒子称为电子.(3)电子发现的意义以前人们认为物质由分子组成,分子由原子组成,原子是不可再分的最小微粒.现在人们发现了各种物质里都有电子,而且电子的质量比最轻的氢原子质量小得多,这说明电子是原子的组成部分.电子带负电,而原子是电中性的,可见原子内还有带正电的物质,这些带正电的物质和带负电的电子如何构成原子呢?电子的发现大大激发了人们研究原子内部结构的热情,拉开了人们研究原子结构的序幕.(4)19世纪末物理学的三大发现①1895年伦琴发现了X 射线;②X 射线发现后不久,贝克勒尔发现了放射性;③1897年汤姆孙发现了电子.(5)汤姆孙的原子模型原子带正电的部分充斥整个原子,很小很轻的电子镶嵌在球体的某些固定位置,正像葡萄干嵌在面包中那样.2.思考判断(1)电子的发现,说明原子具有一定的结构.(√)(2)电子是第一种被人类发现的微观粒子.(√)(3)电子的发现,是19世纪末的三大著名发现之一.(√)3.探究交流为什么汤姆孙要通过电场和磁场研究阴极射线?【提示】 当时对阴极射线本质的认识存在两种认识:一是认为是带电粒子,二是认为是以太波.而汤姆孙认为阴极射线是带电粒子,而带电粒子可受电场力和磁场力.“阴极射线”性质的研究1.如何确定阴极射线的带电性质?2.如何确定阴极射线的比荷? 3.阴极射线的本质是什么?1.电性的确定 方法一:让阴极射线进入已知电场,由所受电场力方向确定带电的性质.方法二:让阴极射线进入磁场,由所受洛伦兹力的方向,根据左手定则确定带电的性质.2.比荷的测定方法图2-1-1(1)让粒子通过正交的电磁场,如图2-1-1所示,让其做直线运动,根据二力平衡条件,即F 洛=F 电(Bqv =qE )得到粒子的运动速度v =E B.图2-1-2(2)在其他条件不变的情况下,撤去电场,如图2-1-2所示,保留磁场,让粒子只在磁场中运动,由洛伦兹力提供向心力即Bqv =mv 2R,根据磁场情况和轨迹偏转情况,由几何知识求出其半径R .(3)由以上方法确定粒子比荷的表达式:q m =E B 2R. 3.电子的发现(1)汤姆孙测得阴极射线粒子的比荷约为1011 C/kg ,电荷量与氢离子基本相同,质量为氢离子的11 800. (2)最后经定量计算,汤姆孙认定组成阴极射线的粒子为电子.1.阴极射线的来源:若放电管的真空度高,阴极射线的粒子主要来自阴极;若放电管的真空度不高,粒子还可能来自管中气体.2.阴极射线不是X 射线.(2012·文昌检测)1897年,物理学家汤姆孙正式测定了电子的比荷,打破了原子是不可再分的最小单位的观点.因此,汤姆孙的实验是物理学发展史上最著名的经典实验之一.在汤姆孙测电子比荷的实验中,采用了如图2-1-3所示的阴极射线管,从电子枪C 出来的电子经过A 、B 间的电场加速后,水平射入长度为L 的D 、G 平行板间,接着在荧光屏中心F 出现荧光斑.若在D 、G 间加上方向向下,场强为E 的匀强电场,电子将向上偏转;如果再利用通电线圈在D 、G 电场区加上一垂直纸面的、磁感应强度为B 的匀强磁场(图中未画),荧光斑恰好回到荧光屏中心,接着再去掉电场,电子向下偏转,偏转角为θ,试解决下列问题. 图2-1-3(1)说明图中磁场沿什么方向;(2)根据L 、E 、B 和θ,求出电子的比荷.【审题指导】 阴极射线带负电,根据运动的速度方向及在磁场中的偏转方向利用左手定则判断磁场方向,并利用几何关系计算比荷.【解析】 (1)由于所加磁场使电子受到向下的洛伦兹力,因此磁场的方向垂直纸面向里.(2)如图,当电子在DG 间做匀速直线运动时,有eE =evB ①当电子在DG 间的磁场中偏转时,有evB =mv 2r② 同时又有L =r sin θ③由①②③式得e m =E sin θB 2L. 【答案】 见解析1.比荷的测定问题只是带电粒子在磁场和电场中运动的一类典型例子,这种方法可以推广到带电粒子在复合场中的运动,求其他相关的问题.2.解决带电粒子在电磁场中运动的问题时要注意以下几点:(1)带电粒子的带电性质.(2)正确描绘运动轨迹.(3)能确定半径、圆心.(4)会利用几何知识把有关线段与半径联系起来.(2013·琼海检测)如图2-1-4所示是汤姆孙的气体放电管的示意图,下列说法中正确的是( )汤姆孙的气体放电管的示意图图2-1-4A .若在D 1、D 2之间不加电场和磁场,则阴极射线应打到最右端的P 1点B .若在D 1、D 2之间加上竖直向下的电场,则阴极射线应向下偏转C .若在D 1、D 2之间加上竖直向下的电场,则阴极射线应向上偏转D .若在D 1、D 2之间加上垂直纸面向里的磁场,则阴极射线不偏转【解析】 实验证明,阴极射线是电子流,它在电场中偏转时应偏向带正电的极板一侧,可知选项C 正确,选项B 错误.加上磁场时,电子在磁场中受洛伦兹力作用,要发生偏转,因而选项D 错误.当不加电场和磁场时,电子所受的重力可以忽略不计,因而不发生偏转,选项A 的说法正确.【答案】 AC易错案例警示——对汤姆孙原子模型的意义认识不清导致错误 下列说法正确的是 ( )A.汤姆孙研究阴极射线,用测定粒子比荷的方法发现了电子B.电子的发现证明了原子是可分的C.汤姆孙认为原子里面带正电荷的物质应充斥整个原子,而带负电的电子,则镶嵌在球体的某些固定位置D.汤姆孙原子模型是正确的【正确解答】通过物理学史可得,选项A正确;根据电子发现的重要意义可得,选项B正确;选项C描述的是汤姆孙原子模型,选项C正确;汤姆孙原子模型本身是错的,选项D错误.【答案】ABC【易错分析】本题易错选项及错误原因分析如下:电子电荷量的测定——密立根油滴实验1.密立根油滴实验的原理电子所带的电荷量最早是由美国科学家密立根所做的油滴实验测出的.密立根实验的原理如图教2-1-1所示.图教2-1-1(1)两块水平放置的平行金属板A、B与电源相接,使上板带正电,下板带负电,油滴从喷雾器喷出后,经上面金属板中间的小孔,落到两板之间的匀强电场中.(2)大多数油滴在经过喷雾器喷嘴时,因摩擦而带负电,油滴在电场力、重力和空气阻力的作用下下降.观察者可在强光照射下,借助显微镜进行观察.2.方法(1)两板间的电势差、两板间的距离都可以直接测得,从而确定极板间的电场强度E,但是由于油滴太小,其质量很难直接测出.密立根通过测量油滴在空气中下落的终极速度来测量油滴的质量.没加电场时,由于空气的黏性,油滴所受的重力大小很快就等于空气给油滴的摩擦力而使油滴匀速下落,可测得速度v1.(2)再加一足够强的电场,使油滴做竖直向上的运动,在油滴以速度v2匀速运动时,油滴所受的静电力与重力、阻力平衡.根据空气阻力遵循的规律,即可求得油滴所带的电荷量.3.结论密立根测定了数千个带电油滴的电荷量,发现这些电荷量都等于某个最小电荷量的整数倍,从而证实了电荷是量子化的,并求得了元电荷即电子或质子所带的电荷量e.1.历史上第一个发现电子的科学家是( )A.贝可勒尔 B.道尔顿C.伦琴D.汤姆孙【解析】贝可勒尔发现了天然放射现象,道尔顿提出了原子论,伦琴发现了X射线,汤姆孙发现了电子.【答案】 D图2-1-52.如图2-1-5所示,在阴极射线管正上方平行放一通有强电流的长直导线,则阴极射线将( )A.向纸内偏转B.向纸外偏转C.向下偏转D.向上偏转【解析】本题综合考查电流产生的磁场、左手定则和阴极射线的产生及性质.由题目条件不难判断阴极射线所在处磁场垂直纸面向外,电子从负极端射出,根据左手定则可判定阴极射线(电子)向上偏转.【答案】 D3.关于电荷的电荷量,下列说法错误的是( )A.电子的电荷量是由密立根油滴实验测得的B.物体所带电荷量可以是任意值C.物体所带电荷量最小值为1.6×10-19 CD.物体所带的电荷量都是元电荷的整数倍【解析】密立根油滴实验测出了电子的电荷量为1.6×10-19C,并提出了电荷量量子化的观点,因而A、C对,B错;任何物体的电荷量都是e的整数倍,故D对;因此选B.【答案】 B4.关于阴极射线的性质,下列说法正确的是 ( )A.阴极射线带负电B.阴极射线带正电C.阴极射线中的负电粒子的比荷与氢离子的基本相同D.阴极射线中的负电粒子的带电荷量与氢离子的相同【解析】阴极射线是电子流,故带负电,A对B错.电子与氢离子的带电荷量相同,但质量不同,故C错D对.【答案】AD5.阴极射线是从阴极射线管的阴极发出的高速运动的图2-1-6粒子流,这些微观粒子是________.若在如图2-1-6所示的阴极射线管中部加垂直于纸面向里的磁场,阴极射线将________(选填“向上”、“向下”或“向外”)偏转.【解析】阴极射线即为电子流.当电子流穿过垂直纸面向里的磁场时,将受到洛伦兹力的作用而向下偏转(注意电流方向与电子流方向相反).【答案】电子向下。
教科版高中物理选修《电子核式结构》word学案2

教科版高中物理选修《电子核式结构》word学案2课题:2.1-2.2电子、原子的核式结构模型(第二课时)姓名:学号:班级:课后练习1.在阴极射线管(左为负)正上方平行房一根通有强C.向下偏转D.向上偏转2. 粒子散射实验的结果说明()A.原子核是由质子和中子组成的B.原子中的正电荷平均分布在整个原子范畴内C.原子中的正电荷和几乎全部质量都集中在专门小的区域范畴内D.原子中的电子只能在某些不连续的轨道上运动3.关于α粒子散射实验的下述说法中正确的是()A、在实验中观看到的现象是绝大多数α粒子穿过金箔后,仍沿原先的方向前进,少数发生了较大偏转,极少数偏转超过90,有的甚至被弹回,接近180.B、使α粒子发生明显偏转的力是来自于带正电的核及核外电子,当α粒子接近核时,是核的排斥力使α粒子发生明显的偏转,当α粒子接近电子时,是电子的吸引力使之发生明显的偏转。
C、实验说明原子的中心有一个极小的核,它占有原子体积的极小部分D、实验说明原子中心的核带有原子的全部正电荷及全部质量。
4.在α粒子散射实验中,当α粒子最接近金核时()A、α粒子动能最小B、α粒子受到的库仑力最大C、α粒子的电势能最大D、α粒子与金核有核力作用5.卢瑟福的α粒子散射实验的结果()A、证明了质子的存在B、证明了原子核是由质子和中子组成的C、说明了原子的全部正电荷和几乎全部质量都集中在一个专门小的核上D、说明原子中的电子只能在某些不连续的轨道上运动6.在α粒子散射实验中,假如一个α粒子跟金箔中的电子相撞,则()A、α粒子的动能和动量几乎没有缺失B、α粒子缺失了部分的动能和动量C、α粒子可不能发生明显的偏转D、α粒子将发生较大角度的偏转7.原子的核式结构的实验基础()A、汤姆孙对电子荷质比的测定B、卢瑟福的α粒子散射实验C、居里夫妇发觉放射性元素D、查德威克发觉中子8.卢瑟福的原子核式结构理论的要紧内容()A、原子的中心有个核,叫原子核B、原子的正电荷平均分布在整个原子中C、原子的全部正电荷和几乎全部质量都集中在原子核里D、带负电的电子在核外绕核旋转9.卢瑟福的α粒子散射实验第一次显示了()A、质子比电子重B、质子的全部正电荷都集中在原子核里C、α粒子是带正电的D、能够用人的方法产生放射性现象10.卢瑟福对α粒子散射实验的解说是()A、使α粒子产生偏转的力要紧是原子中的电子对α粒子的作用力B、使α粒子产生偏转的力要紧是库仑力C、原子核专门小,α粒子接近它的机会专门小,因此绝大多数的α粒子仍眼原先的方向前进D、能产生大角度偏转的α粒子是穿过原子时离原子核近的α粒子11.汤姆孙的原子结构模型的特点是正电荷在球体内,卢瑟福的原子结构模型的特点是原子为12.若氢原子的核外电子绕核做半径为r的匀速圆周运动,则核外电子的角速度ω= 电子绕核的运动可等效为环形电流,则电子运动的等效电流I=(已知电子的质量为m,静电力常量用k表示)13.氢原子的核外电子能够在半径为2.12ⅹ10-10m的轨道上运动,试求电子在那个轨道上运动时,电子的速度是多少?(me=9.1ⅹ10-30kg)14.实验测得α粒子与金核Au17979对心碰撞时所能达到的离金核的最小距离为2ⅹ10-10m.由此数据估算金核的密度(取一位有效数字)。
【2019-2020】高中物理课时提升作业五第二章原子结构2

教学资料参考范本【2019-2020】高中物理课时提升作业五第二章原子结构2撰写人:__________________部门:__________________时间:__________________(30分钟50分)一、选择题(本大题共7小题,每小题5分,共35分)1.(多选)关于α粒子散射实验的下列说法中正确的是( )A.在实验中观察到的现象是绝大多数α粒子穿过金箔后,仍沿原来方向前进,少数发生了较大偏转,极少数偏转超过90°,有的甚至被弹回接近180°B.使α粒子发生明显偏转的力是来自带正电的核及核外电子,当α粒子接近核时,是核的排斥力使α粒子发生明显偏转,当α粒子接近电子时,是电子的吸引力使之发生明显偏转C.实验表明原子中心有一个极小的核,它占有原子体积的极小部分D.实验表明原子中心的核带有原子的全部正电及全部质量【解析】选A、C。
A是对α粒子散射实验的正确描述,正确;使α粒子偏转的力是原子核对它的库仑斥力,电子对α粒子的影响就像灰尘对枪弹的影响,完全可以忽略,故B错误;极少数α粒子被弹回表明:作用力很大→原子内部的“核”质量很大,电量集中,故C正确;原子核外的电子尽管质量小,但也有质量,D错误。
2. 在卢瑟福的α粒子散射实验中,某一α粒子经过某一原子核附近时的轨迹如图中实线所示。
图中P、Q为轨迹上的点,虚线是过P、Q两点并与轨迹相切的直线,两虚线和轨迹将平面分为四个区域。
不考虑其他原子核对该α粒子的作用,那么关于该原子核的位置,下列说法中正确的是( )A.可能在①区域B.可能在②区域C.可能在③区域D.可能在④区域【解析】选A。
α粒子带正电,原子核也带正电,对靠近它的α粒子产生斥力,故原子核不会在④区域;如果原子核在②、③区域,α粒子会向①区域偏;如原子核在①区域,可能会出现如题图所示的轨迹,故应选A.本题是原子物理和静电场的综合题,它利用图示的形式给出了信息,所以同学们在做题时,要从图中找出隐含的信息,以便准确解题。
高中物理课时提升作业七第二章原子结构2.4玻尔的原子模型能级教科版选修3_5word版本

课时提升作业七玻尔的原子模型能级(30分钟50分)一、选择题(本大题共6小题,每小题5分,共30分)1.(多选)根据玻尔理论,氢原子中,量子数n越大,则下列说法中正确的是( )A.电子的轨道半径越大B.核外电子的速率越大C.氢原子能级的能量越大D.核外电子的电势能越大【解析】选A、C、D。
由玻尔理论和氢原子能级图知量子数越大,则轨道半径及总能量越大,电势能也越大,故A、C、D都正确;当轨道半径变大时电场力做负功,动能减小,因此速率越小,故B错。
2.用紫外线照射一些物质时,会发生荧光效应,即物质发出可见光。
这些物质中的原子先后发生两次跃迁,其能量变化分别为ΔE1和ΔE2。
下列关于原子这两次跃迁的说法中正确的是( )A.先向高能级跃迁,再向低能级跃迁,且|ΔE1|<|ΔE2|B.先向高能级跃迁,再向低能级跃迁,且|ΔE1|>|ΔE2|C.两次均向高能级跃迁,且|ΔE1|>|ΔE2|D.两次均向低能级跃迁,且|ΔE1|<|ΔE2|【解析】选B。
物质原子吸收紫外线,由低能级向高能级跃迁,处于高能级的原子再向低能级跃迁,发出可见光,因紫外线光子能量大于可见光的光子能量,故|ΔE1|>|ΔE2|,B正确。
3.氦原子被电离出一个核外电子,形成类氢结构的氦离子。
已知基态的氦离子能量为E1=-54.4eV,氦离子能级的示意图如图所示。
在具有下列能量的光子中,不能被基态氦离子吸收而发生跃迁的是( )A.40.8 eVB.43.2 eVC.51.0 eVD.54.4 eV【解析】选B。
根据玻尔理论,氢原子吸收光子能量发生跃迁时光子的能量需等于能级差或大于基态能级的绝对值,氦离子的跃迁也是同样的。
因为E2-E1=-13.6eV-(-54.4)eV=40.8 eV,选项A是可能的。
E3-E1=-6.0eV-(-54.4)eV=48.4 eVE4-E1=-3.4eV-(-54.4)eV=51.0eV,选项C是可能的。
新教材高中物理第四章原子结构和波粒二象性3原子的核式结构模型课时作业含解析新人教版选择性必修第三册

子的核式结构模型时:40分钟根底达标.(多项选择)关于质子与中子,以下说法正确的选项是().原子核由质子、中子和电子组成.质子和中子统称为核子.卢瑟福发现了质子,并预言了中子的存在.卢瑟福发现了中子,并预言了质子的存在.(多项选择)卢瑟福的α粒子散射实验结果说明了().原子核是可分的.汤姆孙的“枣糕〞模型是错误的.原子是由均匀带正电的物质和带负电的电子构成.原子中的正电荷并非均匀分布.(多项选择)在α粒子散射实验中,选用金箔的原因以下说法正确的选项是() .金具有很好的延展性,可以做成很薄的箔.金核不带电.金原子核质量大,被α粒子轰击后不易移动.金核半径大,易形成大角度散射.α粒子散射实验中,使α粒子散射的原因是().α粒子与原子核外电子碰撞.α粒子与原子核发生接触碰撞.α粒子发生明显衍射.α粒子与原子核的库仑斥力的作用.(多项选择)根据α粒子散射实验,卢瑟福提出了原子的核式结构模型.如下图为原子核式结构模型的α粒子散射图景,图中实线表示α粒子运动轨迹.其中一个α粒子在从a 运动到b 再运动到c 的过程中,a 粒子在b 点时距原子核最近.以下说法正确的选项是() .卢瑟福在α粒子散射实验中发现了电子.α粒子出现较大角度偏转的原因是α粒子运动到b 时受到的库仑斥力较大.α粒子从a 到c 的运动过程中电势能先减小后变大.α粒子从a 到c 的运动过程中加速度先变大后减小.美国物理学家密立根于20世纪初进行了屡次实验,比拟准确地测定了电子的电荷量,其实验原理可以简化为如下图模型:两个相距为d 的平行金属板A 、B 水平放置,两板接有可调电源.从A 板上的小孔进入两板间的油滴因摩擦而带有一定的电荷量,将两板间的电势差调节到U 时,带电油滴恰好悬浮在两板间;然后撤去电场,油滴开始下落,由于空气阻力,下落的油滴很快到达匀速下落状态,通过显微镜观测这个速度的大小为v ,这个速度与油滴的质量成正比,比例系数为k ,重力加速度为g .那么计算油滴带电荷量的表达式为().q =kvd U B .q =vdg kU.q =kv Ud D .q =vg kUd.如下图,根据α粒子散射实验,卢瑟福提出了原子的核式结构模型,图中虚线表示原子核所形成的电场的等势线,实线表示一个α粒子的运动轨迹.在α粒子从a 运动到b 再运动到c 的过程中,以下说法中正确的选项是().动能先增大后减小.电势能先减小后增大.电场力先做负功后做正功,总功等于零.加速度先减小后增大.假设氢原子的核外电子绕核做半径为r 的匀速圆周运动,那么其角速度ω是多少?电子绕核的运动可等效为环形电流,那么电子运动的等效电流I 是多少?(电子的质量为m ,电荷量为e ,静电力常量用k 表示)课时作业(十一) 原子的核式结构模型.解析:原子核由质子、中子组成,故A 错误;质子和中子统称为核子,故B 正确;卢瑟福发现了质子,并预言了中子的存在,故C 正确、D 错误.案:BC.解析:α粒子散射实验没有证明原子是由什么构成的,也没有证明原子核是否可分,而是证明了正电荷在原子内部是如何分布的,由实验现象可知原子内部的正电荷并非均匀分布,而是集中在一个很小的“核〞里,从而证明了“枣糕模型〞是错误的,A 、C 错误,B 、D 正确.应选B 、D.案:BD.解析:α粒子散射实验中,选用金箔是因为金具有很好的延展性,可以做成很薄的箔,α粒子很容易穿过,A 正确;金原子核质量大,被α粒子轰击后不易移动,C 正确;金核带正电,半径大,易形成大角度散射,B 错误、D 正确.应选A 、C 、D.案:ACD.解析:电子的质量远小于α粒子的质量,所以α粒子与原子核外的电子的作用是很微弱的,A 错误;α粒子与原子核很近时,库仑斥力很强,足以使α粒子发生大角度偏转甚至反向弹回,使α粒子散射的原因是库仑斥力的作用,B 、C 错误,D 正确.案:D.解析:汤姆孙对阴极射线的探究发现了电子,A 错误:α粒子出现大角度偏转的原因是靠近原子核时受到较大的库仑斥力作用,B 正确;α粒子从a 到c 受到的库仑力先增大后减小,加速度先变大后减小,电势能先增大后变小,C 错误、D 正确.案:BD.解析:油滴悬浮,那么q U d =mg ,结合v =km ,解得q =vdg kU. 案:B.解析:α粒子及原子核均带正电,故α粒子受到原子核的斥力,α粒子从a 运动到b ,电场力做负功,动能减小,电势能增大,从b 运动到c ,电场力做正功,动能增大,电势能减小,a 、c 在同一条等势线上,a 、c 两点的电势差为零,那么α粒子从a 到c 的过程中电场力做的总功等于零,A 、B 错误,C 正确;α粒子所受的库仑力F =kq 1q 2r 2,b 点离原子核最近,所以α粒子在b 点时所受的库仑力最大,加速度最大,故加速度先增大后减小,D 错误. 案:C.解析:电子绕核运动的向心力是库仑力,因为ke 2r 2=mω2r ,所以ω=e r k mr;运动周期为T =2πω=2πr e mr k,其等效电流 =e T =e 22πr k mr. 案:e r k mr e 22πr k mr。
高中物理课时自测当堂达标第二章原子结构2.1电子教科版选修3-5(2021年整理)
2018-2019学年高中物理课时自测当堂达标第二章原子结构2.1 电子教科版选修3-5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中物理课时自测当堂达标第二章原子结构2.1 电子教科版选修3-5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中物理课时自测当堂达标第二章原子结构2.1 电子教科版选修3-5的全部内容。
2。
1 电子课时自测·当堂达标1.关于阴极射线的实质,下列说法正确的是( )A。
阴极射线实质是氢原子B。
阴极射线实质是电磁波C.阴极射线实质是电子D。
阴极射线实质是X射线【解析】选C。
阴极射线是原子受激发射出的电子,关于阴极射线是电磁波、X射线都是在研究阴极射线过程中的一些假设,是错误的.2。
(多选)关于电荷量,下列说法正确的是()A。
物体所带电荷量可以是任意值B.物体所带电荷量只能是某些特定值C。
物体所带电荷量的最小值为1.6×10-19CD.一个物体带1.6×10-9C的正电荷,这是它失去了1。
0×1010个电子的缘故【解析】选B、C、D。
电荷量是量子化的,即物体的带电量只能是最小电荷量的整数倍,这一电荷量是1.6×10—19C,A错误,B和C正确;物体带正电,是由于它失去了带负电的电子,D正确。
3.(多选)1897年英国物理学家汤姆孙发现了电子并被称为“电子之父”,下列关于电子的说法正确的是( )A.汤姆孙通过阴极射线在电场和磁场中的运动得出了阴极射线是带负电的粒子的结论,并求出了阴极射线的比荷B.汤姆孙通过光电效应的研究,发现了电子C。
新教材高中物理第4章原子结构和波粒二象性4氢原子光谱和玻尔的原子模型课后提升训练新人教版选择性
第四章 4A 组·基础达标1.关于玻尔的原子模型理论,下列说法正确的是( )A .原子可以处于连续的能量状态中B .原子的能量状态不是连续的C .原子中的核外电子绕核做变速运动一定向外辐射能量D .原子中的电子绕核运动的轨道半径是连续的【答案】B 【解析】玻尔依据经典物理在原子结构问题上遇到了困难,引入量子化观念建立了新的原子模型理论,主要内容为:电子轨道是量子化的,原子的能量是量子化的,处在定态的原子不向外辐射能量.由此可知B 正确.2.(多选)如图所示为氢原子的能级图,A 、B 、C 分别表示电子在三种不同能级跃迁时放出的光子,其中( )A .频率最大的是BB .波长最长的是C C .频率最大的是AD .波长最长的是B【答案】AB 【解析】由ΔE =hν=hc λ可知,B 频率最大,C 波长最长.3.用能量为12.30 eV 的光子去照射一群处于基态的氢原子,则受到光的照射后下列关于氢原子跃迁说法正确的是( )A .电子能跃迁到n =2的能级上去B .电子能跃迁到n =3的能级上去C .电子能跃迁到n =4的能级上去D .电子不能跃迁到其他能级上去【答案】D 【解析】根据玻尔理论,即能级是量子化的.因此只有那些能量刚好等于两能级间的能量差的光子才能被氢原子所吸收,使氢原子发生跃迁.当氢原子由基态向n =2、3、4轨道跃迁时吸收的光子能量分别为ΔE 21=-3.4 eV -(-13.6 eV)=10.20 eV ,ΔE 31=-1.51 eV -(-13.6 eV)=12.09 eV ,ΔE 41=-0.85 eV -(-13.6 eV)=12.75 eV ,而外来光子的能量12.30 eV 不等于某两能级间的能量差,故不能被氢原子所吸收而发生能级跃迁,选项D 正确.4.氢原子从能级m 跃迁到能级n 时辐射红光的频率为ν1,从能级n 跃迁到能级k 时吸收紫光的频率为ν2,已知普朗克常量为h ,若氢原子从能级k 跃迁到能级m ,则( )A .吸收光子的能量为hν1+hν2B .辐射光子的能量为hν1+hν2C .吸收光子的能量为hν2-hν1D .辐射光子的能量为hν2-hν1【答案】D 【解析】氢原子从能级m 跃迁到能级n 时辐射红光,说明能级m 高于能级n ,E m -E n =hν1,而从能级n 跃迁到能级k 时吸收紫光,说明能级k 也比能级n 高,E k -E n =hν2,而紫光的频率ν2大于红光的频率ν1,所以hν2>hν1,因此能级k 比能级m 高,所以若氢原子从能级k 跃迁到能级m ,应辐射光子,且光子能量应为hν2-hν1.5.氢原子中巴耳末系中最短波长是( )A .4RB .43R C .R D .R 2 【答案】A 【解析】根据巴耳末公式有1λ=R ⎝ ⎛⎭⎪⎫122-1n 2,解得λ=1R ⎝ ⎛⎭⎪⎫122-1n 2,当时n =∞,波长最短,即最短波长为114R ,A 正确,B 、C 、D 错误. 6.氢原子部分能级的示意图如图所示,不同色光的光子能量如下表所示.( )A .红、蓝—靛B .黄、绿C .红、紫D .蓝—靛、紫【答案】A 【解析】根据跃迁假设,发射光子的能量hν=E m -E n .如果激发态的氢原子处于第二能级,能够发出-3.4 eV -(-13.6 eV)=10.2 eV 的光子,由表格数据判断出它不属于可见光;如果激发态的氢原子处于第三能级,能够发出12.09 eV 、10.2 eV 、1.89 eV 的三种光子,只有1.89 eV 的光属于可见光;如果激发态的氢原子处于第四能级,能够发出12.75 eV 、12.09 eV 、10.2 eV 、2.55 eV 、1.89 eV 、0.66 eV 的六种光子,1.89 eV 和2.55 eV 的光属于可见光,1.89 eV 的光为红光,2.55 eV 的光为蓝—靛光,选项A 正确.7.(多选)根据玻尔理论,氢原子中量子数n 越大( )A .电子的轨道半径越大B .核外电子的速率越大C .氢原子能级的能量越大D .核外电子的电势能越大【答案】ACD 【解析】根据玻尔理论,氢原子中量子数n 越大,电子的轨道半径就越大,A 正确;核外电子绕核做匀速圆周运动,库仑力提供向心力k e 2r 2=m v 2r,则半径越大,速率越小,B 错误;量子数n 越大,氢原子所处的能级能量就越大,C 正确;电子远离原子核的过程中,电场力做负功,电势能增大,D 正确.8.(多选)已知氢原子的能级图如图所示,现用光子能量介于10~12.9 eV 范围内的光去照射一群处于基态的氢原子,则下列说法中正确的是( )A .在照射光中可能被吸收的光子能量有无数种B .在照射光中可能被吸收的光子能量只有3种C .照射后可能观测到氢原子发射不同波长的光有6种D .照射后可能观测到氢原子发射不同波长的光有3种【答案】BC 【解析】根据跃迁规律hν=E m -E n 和能级图,可知A 错误,B 正确;氢原子吸收光子后能跃迁到最高为n =4的能级,能发射的光子的波长有C 24=6种,故C 正确,D 错误.9.(多选)有关氢原子光谱的说法正确的是( )A .氢原子的发射光谱是连续谱B .氢原子光谱说明氢原子只发出特定频率的光C .氢原子光谱说明氢原子能级是分立的D .氢原子光谱的频率与氢原子能级的能量差无关 【答案】BC 【解析】由于氢原子发射的光子的能量E =E n -E m =1n 2E 1-1m 2E 1=m 2-n 2n 2m 2E 1,所以发射的光子的能量值E 是不连续的,只能是一些特殊频率的谱线,故A 错误,B 正确.由于氢原子的轨道是不连续的,而氢原子在不同的轨道上的能级E n =1n 2E 1,故氢原子的能级是不连续的,而是分立的,故C 正确.当氢原子从较高轨道第n 能级跃迁到较低轨道第m 能级时,发射的光子的能量为E =E n -E m =1n 2E 1-1m 2E 1=m 2-n 2n 2m 2E 1=hν,显然n 、m 的取值不同,发射光子的频率就不同,故氢原子光谱线的频率与氢原子能级的能量差有关,故D 错误.故选BC .10.如图所示是氢原子的核外电子从量子数为n =3,4,…能级跃迁到n =2能级时发出的一系列谱线.则下列说法正确的是( )A .图中氢原子的H β谱线是氢原子的核外电子从量子数为n =3的能级跃迁到n =2能级时发出的谱线B .图中氢原子的H β谱线是氢原子的核外电子从量子数为n =4的能级跃迁到n =2能级时发出的谱线C .图中氢原子的H β谱线是氢原子的核外电子从量子数为n =5的能级跃迁到n =2能级时发出的谱线D .图中氢原子的H β谱线是氢原子的核外电子从量子数为n =6的能级跃迁到n =2能级时发出的谱线【答案】B 【解析】β谱线的波长是486.27 nm ,E β=hc λβ=2.556 eV ,根据E n =1n 2E 1,则E 2=122E 1=-3.4 eV ,所以氢原子的β谱线是氢原子的核外电子的能量E β′=E 2+E β=-3.4 eV +2.556 eV =-0.844 eV =116E 1,氢原子的β谱线是氢原子的核外电子从量子数为n =4的能级跃迁到n =2能级时发出的谱线.B 组·能力提升11.氢原子处于基态时,原子的能量为E 1=-13.6 eV ,问:(1)氢原子在n =4的定态上时,可放出几种光子?(2)若要使处于基态的氢原子电离,要用多大频率的电磁波照射此原子.解:(1)原子处于n =1的定态,这时原子对应的能量最低,这一定态是基态,其他的定态均是激发态.原子处于激发态时不稳定,会自动地向基态跃迁,而跃迁的方式多种多样,当氢原子从n =4的定态向基态跃迁时,可释放出6种不同频率的光子.(2)要使处于基态的氢原子电离,就是要使氢原子第一条可能轨道上的电子获得能量脱离原子核的引力束缚,则hν≥E ∞-E 1=13.6 eV =×10-18 J , 即ν≥E ∞-E 1h=错误! Hz =×1015 Hz. 12.氢原子能级跃迁如图所示,由图求:(1)如果有很多氢原子处于n =3的能级,在原子回到基态时,可能产生哪几种跃迁?出现几种不同光谱线?(2)如果用动能为11 eV 的外来电子去激发处于基态的氢原子,可使氢原子激发到哪一个能级上?(3)如果用能量为11 eV 的外来光去激发处于基态的氢原子,结果又如何?解:(1)对于处于n =3的很多氢原子而言,在它们回到n =1的基态时,可能观测到三种不同频率的光谱线,其频率分别为×1015 Hz 、×1014 Hz 、×1015Hz.(2)从氢原子能级图可以推算出:氢原子从n =1的能级激发到n =2的能级时所需吸收的能量ΔE 21=E 2-E 1=-3.4 eV -(-13.6 eV)=10.2 eV ,如果氢原子从n =1的能级激发到n =3的能级,那么所需吸收的能量为ΔE 31=E 3-E 1=-1.51 eV -(-13.6 eV)=12.09 eV ,因为外来电子的能量E 电=11 eV ,和上述计算结果相比较可知ΔE 21<E 电<ΔE 31,所以具有11 eV能量的外来电子,只能使处于基态的氢原子激发到n=2的能级,这时外来电子剩余的动能为:E外-ΔE21=(11-10.2)eV=0.8 eV.(3)如果外来光子的能量E光=11 eV,由于光子能量是一个不能再分割的最小能量单元,当外来光子能量不等于某两级能量差时,则不能被氢原子所吸收,氢原子也不能从基态激发到任一激发态.。
高中物理 第二章 原子结构 1 电子练习 教科版选修35
第二章原子结构1 电子对阴极射线的理解1.关于阴极射线的性质,判断正确的是( ) A.阴极射线带负电B.阴极射线带正电C.阴极射线的比荷比氢原子比荷大D.阴极射线的比荷比氢原子比荷小答案AC解析通过让阴极射线在电场、磁场中的偏转的研究发现阴极射线带负电,其比荷比氢原子的比荷大得多,故A、C正确.2.阴极射线从阴极射线管中的阴极发出,在其间的高电压下加速飞向阳极,如图2-1-7所示.若要使射线向上偏转,所加磁场的方向应为( )图2-1-7A.平行于纸面向左B.平行于纸面向上C.垂直于纸面向外D.垂直于纸面向里答案 C解析由于阴极射线的本质是电子流,阴极射线方向向右传播,说明电子的运动方向向右,相当于存在向左的电流,利用左手定则,使电子所受洛伦兹力方向平行于纸面向上,由此可知磁场方向应为垂直于纸面向外,故选项C正确.电子的电荷量3.汤姆孙对阴极射线的探究,最终发现了电子,由此被称为“电子之父”,关于电子的说法正确的是( )A.电子是原子核的组成部分B.电子电荷的精确测定最早是由密立根通过著名的“油滴实验”实现的C.电子电荷量的数值约为1.60210-19 CD.电子质量与电荷量的比值称为电子的比荷答案BC解析电子是原子的组成部分,电子的发现说明原子是可以再分的.电子的电荷量与质量的比值称为电子的比荷,也叫荷质比.4.关于电荷量,下列说法中错误的是( ) A.物体所带电荷量可以是任意值B.物体所带电荷量只能是某些值C.物体所带电荷量的最小值为1.610-19CD.一个物体带1.610-9C的正电荷,这是它失去了1.01010个电子的缘故答案 A解析电荷量是量子化的,即物体的带电量只能是某一最小电荷量的整数倍,这一最小电荷量是1.610-19C,A错误,B、C正确;物体带正电,是由于它失去了带负电的电子,D正确.。
高中物理课时自测当堂达标第二章原子结构2.4玻尔的原子模型能级教科版选修3-5(2021年整理)
2018-2019学年高中物理课时自测当堂达标第二章原子结构2.4 玻尔的原子模型能级教科版选修3-5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中物理课时自测当堂达标第二章原子结构2.4 玻尔的原子模型能级教科版选修3-5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中物理课时自测当堂达标第二章原子结构2.4 玻尔的原子模型能级教科版选修3-5的全部内容。
2.4 玻尔的原子模型能级课时自测·当堂达标1.(多选)关于玻尔原子理论的基本假设,下列说法中正确的是()A.原子中的电子绕原子核做圆周运动,库仑力提供向心力B。
电子绕核运动的轨道半径只能取某些特定的值,而不是任意的C。
原子的能量包括电子的动能和势能,电子动能可取任意值,势能只能取某些分立值D.电子由一条轨道跃迁到另一条轨道上时,辐射(或吸收)的光子频率等于电子绕核运动的频率【解析】选A、B。
由玻尔理论知,A、B正确;因电子轨道是量子化的,所以原子的能量也是量子化的,C错误;电子绕核做圆周运动时,不向外辐射能量,原子辐射的能量与电子绕核运动无关,D错误。
2。
(多选)光子的发射和吸收过程是()A.原子从基态跃迁到激发态要放出光子,放出光子的能量等于原子在始、末两个能级的能量差B。
原子不能从低能级向高能级跃迁C。
原子吸收光子后从低能级跃迁到高能级,放出光子后从较高能级跃迁到较低能级D.原子无论是吸收光子还是放出光子,吸收的光子或放出的光子的能量恒等于始、末两个能级的能量差值【解析】选C、D。
由玻尔理论的跃迁假设知,原子处于激发态时不稳定,可自发地向低能级跃迁,以光子的形式放出能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时提升作业四电子
(30分钟50分)
一、选择题(本大题共5小题,每小题6分,共30分)
1.汤姆孙对阴极射线本质的研究,采用的主要方法有 ( )
A.用阴极射线轰击金箔,观察其散射情况
B.用“油滴实验”精确测定电子电荷的带电量
C.让阴极射线通过电场和磁场,通过阴极射线的偏转情况判断其电性和计算其比荷
D.用阴极射线轰击荧光物质,对荧光物质发出的光进行光谱分析
【解析】选C。
汤姆孙是通过对阴极射线在电场和磁场中的偏转情况的研究,来判断其电性和计算其比荷的。
2.(多选)关于电子的发现,下列叙述中正确的是( )
A.电子的发现说明原子是由电子和原子核组成的
B.电子的发现说明原子具有一定的结构
C.电子是第一种被人类发现的微观粒子
D.电子的发现比较好地解释了物体的带电现象
【解析】选B、C、D。
发现电子之前,人们认为原子是不可再分的最小粒子,电子的发现说明原子有一定的结构,B正确;电子是人类发现的第一种微观粒子,C正确;物体带电的过程,就是电子的得失和转移的过程,D正确。
3.(多选)下列是某实验小组测得的一组电荷量,符合事实的是( )
A.+3×10-19C
B.+4.8×10-19C
C.-3.2×10-26C
D.-4.8×10-19C
【解析】选B、D。
电荷是量子化的,任何带电体所带电荷量只能是元电荷的整数倍。
1.6×10-19C是目前为止自然界中最小的电荷量,故B、D正确。
4.(多选)如图所示是阴极射线显像管及其偏转线圈的示意图。
显像管中有一个阴极,工作时它能发射阴极射线,荧光屏被阴极射线轰击就能发光。
安装在管颈的偏转线圈产生偏转磁场,可以使阴极射线发生偏转。
下列说法中正确的是
( )
A.如果偏转线圈中没有电流,则阴极射线应该打在荧光屏正中的O点
B.如果要使阴极射线在竖直方向偏离中心,打在荧光屏上的A点,则偏转磁场的方向应该垂直纸面向里
C.如果要使阴极射线在竖直方向偏离中心,打在荧光屏上的B点,则偏转磁场的方向应该垂直纸面向里
D.如果要使阴极射线在荧光屏上的位置由B向A点移动,则偏转磁场强度应该先由小到大,再由大到小
【解析】选A、C。
由粒子的电性及左手定则可知B项错误;由R=可知,B越小,R越大,故D项错误。
【补偿训练】
如图是电子射线管示意图,接通电源后,电子射线由阴极沿x轴正方向射出,在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z轴负方向)偏转,在下列措施中可采用的是( )
A.加一磁场,磁场方向沿z轴负方向
B.加一磁场,磁场方向沿y轴正方向
C.加一电场,电场方向沿z轴负方向
D.加一电场,电场方向沿y轴正方向
【解析】选B.由于电子沿x轴正方向运动,若使电子射线向下偏转,所受洛伦兹力应向下,由左手定则可知磁场方向应沿y轴正方向;若加电场使电子射线向下偏转,所受电场力方向应向下,则所加电场方向应沿z轴正方向,由此可知B正确。
5. 如图为示波管中电子枪的原理示意图。
示波管内被抽成真空,A为发射电子的阴
极,K为接在高电势点的加速阳极,A、K间电压为U。
电子离开阴极时的速度可以忽
略,电子经加速后从K的小孔中射出时的速度大小为v。
下面的说法中正确的是
( )
A.如果A、K间距离减半而电压仍为U不变,则电子离开K时的速度变为2v
B.如果A、K间距离减半而电压仍为U不变,则电子离开K时的速度变为
C.如果A、K间距离保持不变而电压减半,则电子离开K时的速度变为
D.如果A、K间距离保持不变而电压减半,则电子离开K时的速度变为v
【解析】选D。
由qU=mv2得v=,由公式可知,电子经加速电场加速后的速度与加速电极之间的距离无关,对于确定的加速粒子——电子,其速度只与电压有关,由此不难判定D 正确。
二、非选择题(20分)
6.一种测定电子比荷的实验装置如图所示。
在真空玻璃管内,阴极K发出的电子经阳极A与阴极K之间的高电压加速后,形成一细束电子流,以平行于平板电容器极板的速度进入两极板C、D间的区域。
若两极板C、D间无电压,电子将打在荧光屏上的O点;若在两极板间施加电压U,则离开极板区域的电子将打在荧光屏上的P点;若再在极板间施加一个方向垂直于纸面向外、磁感应强度为B的匀强磁场,则电子在荧光屏上产生的光点又回到O。
已知极板的长度l=5.00cm,C、D间的距离d=1.50cm,极板区的中点M到荧光屏中点O的距离为L=12.50cm,U=200V,B=6.3×10-4T,P点到O点的距离y=3.0cm。
试求电子的比荷。
【解题指南】解答本题要明确以下三点:
(1)粒子在正交的电磁场中做匀速直线运动时,洛伦兹力与电场力平衡。
(2)粒子在电场中偏转时,在平行极板方向做匀速直线运动,垂直极板方向做初速度为零的匀加速直线运动。
(3)粒子射出电场时,其速度方向的反向延长线与粒子初速度方向交于电场的中点。
【解析】因电子在正交的电场、磁场中不偏转且做匀速直线运动,所以有Bev=Ee=e,所以v=。
①
电子在只有偏转电场时,出场偏转距离设为y1,则由几何关系知=,
所以y1=②
而y1=at2=③
由①②③得,电子的比荷
==
C/kg
=1.6125×1011C/kg。
所以电子的比荷为1.6125×1011C/kg.
答案:1.6125×1011C/kg
【总结提升】测比荷的方法
测量带电粒子的比荷,常见的测量方法有两种:
(1)利用磁偏转测比荷,由qvB=m得=,只需知道磁感应强度B、带电粒子的初速度v 和偏转半径R即可。
(2)利用电偏转测比荷,偏转量
y=at2=·()2,故=。
所以在偏转电场U、d、L已知时,只需测量v和y即可。
【补偿训练】
美国科学家密立根通过油滴实验首次测得电子的电量。
油滴实验的原理如图所示,两块水平放置的平行金属板与电源相连,上、下板分别带正、负电荷。
油滴从喷雾器喷出后,由于摩擦而带电,经上板中央小孔落到两板间的匀强电场中,通过显微镜可以观察到油滴的运动情况,两金属板间的距离为d,忽略空气对油滴的浮力和阻力作用。
(1)调节两金属板间的电势差U,当U=U0时,使得某个质量为m1的油滴恰好做匀速直线运动,求该油滴所带的电荷量。
(2)若油滴进入电场时的初速度可以忽略,当两金属板间的电势差U=U1时,观察到某个质量为
m2的油滴进入电场后做匀加速直线运动,经过时间t运动到下极板,求此油滴所带的电荷量。
【解析】(1)质量为m1的油滴恰好做匀速直线运动,则其所受重力与库仑力平衡,即
m1g=,
得q=。
(2)质量为m2的油滴向下做匀加速运动,
d=at2,得a=。
若油滴带正电,所受库仑力方向向下,由牛顿第二定律得a=>g,到达下极板的时间很短,难以精确测量,与事实不符,则油滴带负电,受到库仑力的方向竖直向上,由牛顿第
二定律m2g-q=m2a,
解得q=(g-)。
答案:(1)(2)(g-)。