异面直线所成角的几种求法资料讲解

合集下载

异面直线所成角的几种求法资料讲解

异面直线所成角的几种求法资料讲解

异面直线所成角的几种求法仅供学习与交流,如有侵权请联系网站删除 谢谢2异面直线所成角的几种求法异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的。

因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小。

在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力。

一、向量法求异面直线所成的角例1:如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是相邻两侧面BCC 1B 1及CDD 1C 1的中心。

求A 1E 和B 1F 所成的角的大小。

解法一:(作图法)作图关键是平移直线,可平移其中一条直线,也可平移两条直线到某个点上。

作法:连结B 1E ,取B 1E 中点G 及A 1B 1中点H , 连结GH ,有GH//A 1E 。

过F 作CD 的平行线RS , 分别交CC 1、DD 1于点R 、S ,连结SH ,连结GS 。

由B 1H//C 1D 1//FS ,B 1H=FS ,可得B 1F//SH 。

在△GHS 中,设正方体边长为a 。

GH=46a (作直线GQ//BC 交BB 1于点Q , B A CD FEB 1 A 1 D 1C 1G HSRPQ仅供学习与交流,如有侵权请联系网站删除 谢谢3连QH ,可知△GQH 为直角三角形),HS=26a (连A 1S ,可知△HA 1S 为直角三角形), GS=426a (作直线GP 交BC 于点P ,连PD ,可知四边形GPDS 为直角梯形)。

∴Cos ∠GHS=61。

所以直线A 1E 与直线B 1F解法二:(向量法)分析:因为给出的立体图形是一个正方体, 所以可以在空间建立直角坐标系,从而可以利用 点的坐标表示出空间中每一个向量,从而可以用 向量的方法来求出两条直线间的夹角。

以B 为原点,BC 为x 轴,BA 为y 轴,BB 1为z 轴,设BC 长度为2。

异面直线所成角的三种经典求法

异面直线所成角的三种经典求法

直 线 所成 角 的通 法 , 常见 是 “ 一 静 一
动” :将 另 一 直 线 平移 至 已知 点 , 通
D + D c 。 一 E c 2 +( 2 、 /2) 一 2
2 D E・ DC 2. 2. 2 、 /
过 求 解 三 角形 来 解 决 异 面 直 线所 成
2 定 理 可得 c 。 s D 剧 — DE %E F DF2

方 法 归 纳 2: 补 形 法 的 实 质 是 将 直 线往 更 多的 “ 地 方” 平移 , 其 目 的 也 是将 异 面 直线 所成 的 角平 面化.


方法 四 : 建 立 空 间 直 角 坐标 系 ,

图1
可 .不 过 这 里 要 注 意 向 量 夹 角 与 异
± 皇 : 二 : :
2 。 4 1・曰
A B

所 以

加 41 = .
图2
面 直 线 所 成 的 角 的 取 值 范 围 不 一
样. 雹
A B = 2 V , A D
1 = 2 , 求 异 面 直 线
A D =X / — D D ] + — A D z = 、

,.
- 2 、 / ,
图4
DE与AB 所 成 的 角.
ADl =
.在 R t AD D ̄ B中 ,
D E = 肋 = 2 .& AD E F  ̄ , 由余 弦
, 1 ) , = ( 0 , 2 、 / , 0 ) .
、 / 可
= V2 2 + ( 2 、 / ) 2 + 2 = 4 .

设 异 面 直 线D E与AB所 成 的 角 为 ,

异面直线所成的角求法总结加分析

异面直线所成的角求法总结加分析

异面直线所成的角一、平移法:常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。

直接平移法1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,求AD 、BC所成角的大小.解:设BD 的中点G ,连接FG ,EG 。

在△EFG 中 EF =3FG =EG =1∴∠EGF=120° ∴AD 与BC 成60°的角。

2.正∆ABC 的边长为a ,S 为∆ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC和AB 的中点.求异面直线SA 和EF 所成角.答案:45°3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA =2π,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值.证明:连结CM ,设Q 为CM 的中点,连结QN 则QN∥SM∴∠QNB 是SM 与BN 所成的角或其补角ABC DA 1B 1C 1D 1EF连结BQ ,设SC =a ,在△BQN 中BN =a 25 NQ =21SM =42a BQ =a 414∴COS∠QNB=5102222=⋅-+NQ BN BQ NQ BN4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M 、N 分别是A 1B 1和A 1C 1的中点,若BC=CA =CC 1,求BM 与AN 所成的角.解:连接MN ,作NG∥BM 交BC 于G ,连接AG ,易证∠GNA 就是BM 与AN 所成的角.设:BC =CA =CC 1=2,则AG =AN =5,GN =BM =6,cos∠GNA=1030562556=⨯⨯-+。

补充构造异面直线所成角的几种方法

补充构造异面直线所成角的几种方法

补充构造异面直线所成角的几种方法一. 异面直线所成角的求法1、正确理解概念(1)在异面直线所成角的定义中,空间中的点O 是任意选取的,异面直线a 和b 所成角的大小,与点O 的位置无关。

(2)异面直线所成角的取值范围是(0°,]90︒ 2、熟练掌握求法(1)求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解,整个求解过程可概括为:一作二证三计算。

(2)求异面直线所成角的步骤:①选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊点。

②求相交直线所成的角,通常是在相应的三角形中进行计算。

③因为异面直线所成的角θ的范围是0°<θ≤90°,所以在三角形中求的角为钝角时,应取它的补角作为异面直线所成的角。

3、“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。

例1如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线B 1E 与GF 所成角的余弦是 。

EF1A 1B 1C 1D BCDGEF1A 1B 1C 1D ABCDG例2已知S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC , 且∠ASB =∠BSC =∠CSA =2π,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值.例3长方体ABCD —A 1B 1C 1D 1中,若AB=BC=3,AA 1=4,求异面直线B 1D 与BC 1所成角的大小。

BM AN CS B M ANC SM ANCS例4如图,PA ⊥平面ABC ,90ACB∠=︒且PA AC BC a ===,则异面直线PB 与AC所成角的正切值等于_____.练习:1.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是()31032()()()()21055A B C D2.如图,A 1B 1C 1—ABC 是直三棱柱(三侧面为矩形),∠BCA=90°,点D 1、F 1 分别是A 1B 1、A 1C 1的中点若BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是( ) 3013015()()()()1021510A B C D 3.正方体ABCD —A 1B 1C 1D 1中,直线BC 1与AC(A)相交且垂直 (B)相交但不垂直 (C)异面且垂直 (D)异面但不垂直 4.设a 、b 、c 是空间中的三条直线,下面给出四个命题: ①如果a ⊥b 、b ⊥c ,则a ∥c ;②如果a 和b 相交,b 和c 相交,则a 和c 也相交;③如果a 、b 是异面直线,c 、b 是异面直线,则a 、c 也是异面直线; ④如果a 和b 共面,b 和c 共面,则a 和c 也共面(第2F 1 ABCD 1 C 1A 1B 1B 1(第1题)A 1ABC 1D 1CD MNN MFEDCB A在上述四个命题中,真命题的个数是( )(A)4 (B)3 (C)2 (D)1 (E)0 5.如果直线l 和n 是异面直线,那么和直线l 、n 都垂直的直线 (A)不一定存在 (B)总共只有一条 (C)总共可能有一条,也可能有两条 (D)有无穷多条6.如图,四面体SABC 的各棱长都相等,如果E 、F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角等于(A)90° (B)60° (C)45° (D)30°7.右图是正方体的平面展开图,在这个正方体中, ① BM 与ED 平行; ②CN 与BE 是异面直线; ③CN 与BM 成60角;④DM 与BN 垂直.以上四个命题中,正确命题的序号是 ( )(A )① ② ③ (B )② ④ (C )③ ④ (D )② ③ ④8.如图,四面体ABCD 中,AC ⊥BD,且AC =4,BD =3,M 、N 分别是AB 、CD 的中点,则求MN 和BD 所成角的正切值为 。

高中数学:异面直线所成的角求法(汇总大全)

高中数学:异面直线所成的角求法(汇总大全)

异面直线所成的角一、平移法:常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。

直角平移法:1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,求AD 、BC 所成角的大小.解:设BD 的中点G ,连接FG ,EG 。

在△EFG 中 EF =3FG =EG =1∴∠EGF =120° ∴AD 与BC 成60°的角。

2.正∆ABC 的边长为a ,S 为∆ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC和AB 的中点.求异面直线SA 和EF 所成角. 正确答案:45°3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA=2π,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN ,则QN ∥SM∴∠QNB 是SM 与BN 所成的角或其补角 连结BQ ,设SC =a ,在△BQN 中 BN =a 25 NQ =21SM =42a BQ =a 414∴COS ∠QNB =5102222=⋅-+NQ BN BQ NQ BN4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M 、N 分别是A 1B 1和A 1C 1的中点,若BC =CA =CC 1,求BM 与AN 所成的角.解:连接MN ,作NG ∥BM 交BC 于G ,连接AG , 易证∠GNA 是BM 与AN 所成的角.设:BC =CA =CC 1=2,则AG =AN =5,GN =BM =6, cos ∠GNA =1030562556=⨯⨯-+。

如何求异面直线所成的角

如何求异面直线所成的角

如何求异面直线所成的角立体几何在中学数学中有着重要的地位,求异面直线所成的角是其中重的内容之一,也是高考的热点,求异面直线所成的角常分为三个步骤:作→证→求。

其中“作”是关键,那么如何作两条异面直线所成的角呢本文就如何求异面直线所成的角提出了最常见的几种处理方法。

Ⅰ、用平移法作两条异面直线所成的角一、端点平移法例1、在直三棱柱111C B A ABC -中,090CBA ∠=,点D ,F 分别是11A C ,11A B 的中点,若1AB BC CC ==,求CD 与AF 所成的角的余弦值。

解:取BC 的中点E ,连结EF ,DF ,//DF EC 且DF EC =∴四边形DFEC 为平行四边形//EF DC ∴EFA ∴∠(或它的补角)为CD 与AF 所成的角。

设2AB =,则EF =AF =EA =故2222EF FA EA EFA EF FA +-∠==arccos10EFA ∴∠=二、中点平移法例2、在正四面体ABCD 中, M ,N 分别是BC ,AD 的中点,求AM 与CN 所成的角的余弦值。

解:连结MD ,取MD 的中点O ,连结NO ,1O 、N 分别MD 、AD 为的中点,∴NO 为DAM ∆的中位线, ∴//NO AM ,ONC ∴∠(或它的补角)为AM 与CN 所成的角。

设正四面体ABCD 的棱长为2,则有2NO =,CN =2CO =, 故2222cos 23NO CN CO ONC NO CN +-∠== 2arccos 3ONC ∴∠=三、特殊点平移法例3、如图,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知4AB =,20CD =,7EF =,13AF BE FD EC ==,求异面直线AB 与CD 所成的角。

解:在BD 上取一点G ,使得13BG GD =,连结EG FG 、,在BCD ∆中,13BE BG EC GD ==,故//EG CD ,同理可证://FG ABFGE ∴∠(或它的补角)为AB 与CD 所成的角。

异面直线所成角求法总结加分析

异面直线所成角求法总结加分析异面直线之间的角有三种情况:垂直角、斜面角和平行角。

下面将对这三种角的概念、性质和求法进行总结和分析。

一、垂直角:垂直角是指两条异面直线相交时,形成的对立的角,其角度为90度。

垂直角的性质如下:1.对于两条异面直线来说,如果它们是垂直的,则它们所成的角度必定是90度。

2.两条垂直的直线称为互相垂直。

3.垂直角的两边是相互垂直的,一边减去90度后得到另一边所成的角度。

求法:已知两条异面直线,求它们的垂直角可以使用以下方法:1.根据两条直线的方向向量,计算它们的点积。

若点积为0,则两条直线是垂直的。

2.若两条直线的方程式已知,可以将两条方程式相乘后化简,得到一个二次方程。

如果该二次方程的判别式为0,则两条直线是垂直的。

二、斜面角:斜面角是指两条异面直线相交时,形成的不是对立的角,其角度不等于90度。

斜面角的性质如下:1.对于两条异面直线来说,如果它们不是垂直的,则它们所成的角度不等于90度。

2.斜面角的度数可以通过几何或三角函数求解。

求法:已知两条异面直线,求它们的斜面角可以使用以下方法:1.根据两条直线的方向向量,计算它们的夹角。

可以使用向量的点积或夹角公式求解。

2.若两条直线的方程式已知,可以将两条方程式中的方向向量代入夹角公式中求解。

三、平行角:平行角是指两条异面直线之间的对应角,如果两个对应角的度数相等,则这两条异面直线是平行的,平行角的性质如下:1.对于两条异面直线来说,如果它们是平行的,则它们所成的对应角度相等。

2.平行角的两边分别平行于两条异面直线。

求法:已知两条异面直线,求它们的平行角可以使用以下方法:1.根据两条直线的方向向量,计算它们的夹角。

如果夹角为0度,则两条直线是平行的。

2.若两条直线的方程式已知,可以将两条方程式中的方向向量代入夹角公式中求解。

综上所述,垂直角是指两条异面直线相交时形成的90度角;斜面角是指两条异面直线相交时形成的非90度角;平行角是指两条异面直线之间对应角的度数相等。

异面直线的夹角,线面角(含答案)

空间角1、异面直线所成角的求法一是几何法,二是向量法。

异面直线所成的角的范围:]2,0(π几何法求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解。

基本思路是选择合适的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊位置的点。

常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。

例1在正方体ABCD A B C D ''''-中,E 是AB 的中点,(1)求BA /与CC /夹角的度数. (2)求BA /与CB /夹角的度数. (3)求A /E 与CB /夹角的余弦值.例2:长方体ABCD —A 1B 1C 1D 1中,若AB=BC=3,AA 1=4,求异面直线B 1D 与BC 1所成角的余弦值。

直接平移:常见的利用其中一个直线a 和另一个直线b 上的一个已知点,构成一个平面,在此平面内做直线a 的平行线。

解法一:如图④,过B 1点作BE ∥BC 1交CB 的延长线于E 点。

则∠DB 1E 就是异面直线DB 1与BC 1所成角,连结DE 交AB 于M ,DE=2DM=35,cos ∠DB 1E=734170解法二:如图⑤,在平面D 1DBB 1中过B 点作BE ∥DB 1交D 1B 1的延长线于E ,则∠C 1BE 就是异面直线DB 1与BC 1所成的角,连结C 1E ,在△B 1C 1E 中,∠C 1B 1E=135°,C 1E=35,cos ∠C 1BE=734课堂思考:1.如图,PA ⊥矩形ABCD ,已知PA=AB=8,BC=10,求AD 与PC 所成角的余切值为。

2.在长方体ABCD- A 1B 1C 1D 1中,若棱B B 1=BC=1,AB=3,求D B 和AC 所成角的余弦值.例3 如图所示,长方体A 1B 1C 1D 1-ABCD 中,∠ABA 1=45°,∠A 1AD 1=60°,求异面直线A 1B 与AD 1所成的角的度数.课堂练习如图空间四边形ABCD 中,四条棱AB ,BC ,CD ,DA 及对角线AC ,BD 均相等,E 为AD 的中点,F 为BC 中, (1) 求直线AB 和CE 所成的角的余弦值。

异面直线成角求法附答案

求异面直线所成的角求异面直线所成的角,一般有两种方法,一种是几何法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求。

还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解。

异面直线所成的角的范围为( 0°, 90°]例:长方体ABCD -A 1B 1C 1D 1中,AB=AA 1=2cm ,AD=1cm ,求异面直线A 1C 1与BD 1所成的角。

解法1:平移法设A 1C 1与B 1D 1交于O ,取B 1B 中点E ,连接OE ,因为OE//D 1B ,所以∠C 1OE 或其补角就是异面直线A 1C 1与BD 1所成的角△C 1OE 中211E B C B E C 2312221BD 21OE 25C A 21OC 22212111221111=+=+==++⋅====()552325222325OEOC 2E C OE OC OE C cos 2221212211=⨯⨯-⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⋅-+=∠所以55a r c c o sOE C 1=∠所以所以异面直线111BD C A 与所成的角为55arccos图1解法2:补形法在长方体ABCD —A 1B 1C 1D 1的面BC 1上补上一个同样大小的长方体,将AC 平移到BE ,则∠D 1BE 或其补角就是异面直线A 1C 1与BD 1所成的角,在△BD 1E 中,BD 1=3,5BE =,5224E D 221=+=()()555325253BE BD 2E D BE BD BE D cos 2221212211-=⨯⨯-+=⋅-+=∠所以异面直线A 1C 1与BD 1所成的角为55arccos图2解法3:向量几何法:|b ||a |ba cos ⋅=θ设→→→1AA AD AB 、、为空间一组基向量ba C A ac b D A AA BA BD 0c b ,0c a ,0b a 2|c |,1|b |,2|a |c AA ,b AD ,a AB 1111111+=→-+=→+→+→=→=⋅=⋅=⋅====→=→=→3|c ||a ||b ||a c b ||BD |512|b a |C A 222212211=++=-+=→=+=+=→55533|C A ||BD |C A BD C A BD cos 341|a ||b |)b a )(a c b (C A BD 11111111122111-=-=→→→⋅→>=→→<-=-=-=+-+=→⋅→所以异面直线A 1C 1与BD 1所成的角为55arccos图4练习:1. A 为正三角形BCD 所在平面外一点,且AB=AC=AD=BC=a ,E 、F 分别是棱AD 、BC 的中点,连接AF 、CE ,如图所示,求异面直线AF 、CE 所成角的余弦值。

【高中数学】高中数学知识点:异面直线所成的角

【高中数学】高中数学知识点:异面直线所成的角异面直线所成角的定义:直线a和B是具有不同平面的直线。

如果它们通过空间中的任意点O并分别引导直线a′和B′B,则直线a′和B′形成的锐角(或直角)称为直线a和B与不同平面形成的角,如下图所示。

两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

在不同平面上直线形成的角度定义中,空间中的点O是可选的,与点O的位置无关。

求异面直线所成角的步骤:a、通过定义构造角度,一个可以固定,另一个可以平移,或者两个可以同时平移到特定位置,并且可以在特定位置选择顶点。

b、证明作出的角即为所求角;c、使用三角形来寻找角度。

特别提醒:(1)两条直线在不同平面上形成的角度与点O(平移后两条直线的交点)的选择无关(2)两异面直线所成角θ的取值范围是0<θ≤90.(3)判断空间中两条直线是不同平面直线的方法① 判断定理:平面外a点与平面内B点之间的连线与平面内的直线,但B点是不同的平面直线;② 相反的证明:不可能证明两条直线是共面的线线角的求法:(1)定义方法:使用“平移变换”使其成为两条相交直线形成的角度。

当不同平面上的直线垂直时,使用直线平面垂直度的定义或三垂线定理和逆定理来确定角度为90.(2)向量法:设两条直线所成的角为θ(锐角),直线l一和l二的方向向量分别为高中数学相关知识点:直线与平面的夹角直线与平面所成的角的定义:① 直线和平面形成三个角:a.斜线和平面所成的角:一条直线与平面α相交,但不和α垂直,这条直线叫做平面α的斜线.斜线与α的交点叫做斜足,过斜线上斜足以外的点向平面引垂线,过垂足与斜足的直线叫做斜线在平面α内的射影,平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.b、垂直线与平面之间的角度:如果直线与平面垂直,则它们形成的角度为直角。

c.一条直线和平面平行,或在平面内,则它们所成的角为0零.② 取值范围:0≤ θ≤90.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

异面直线所成角的几
种求法
异面直线所成角的几种求法
异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角
(或直角)来定义的。

因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小。

在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力。

、向量法求异面直线所成的角例1:如图,在正方体ABCD-A i B i C i D i中,E、F 分别是相邻两侧面
BCC i B i及CDD i C i的中心。

求A i E和B i F所成的角的大小。

解法一:(作图法)作图关键是平移直线,可平移其中一条直线,也可平移两条直线到某个点上。

B i
作法:连结B i E,取B i E中点G及A i B i中点Q 连结
GH,有GH//A i E。

过F作CD的平行线RS, 分别交
CC i、DD i于点R、S,连结SH,连结GS。

p
由B i H//C i D i//FS,B i H=FS,可得B i F//SH。

在厶GHS中,设正方体边长为a。

<6
GH= a (作直线GQ//BC交BB i于点Q,
4D i S

D
C
A
连QH,可知△ GQH为直角三角形),
6
HS= a (连A i S,可知△ HA i S为直角三角形)
2
y 26
GS=—^a (作直线GP交BC于点P,连PD,可知四边形GPDS为直角
i 梯形)。

••• Cos/ GHS=-。

6
所以直线A i E与直线B i F所成的角的余弦值为
解法二:(向量法)
分析:因为给出的立体图形是一个正方体,
所以可以在空间建立直角坐标系,从而可以利用
点的坐标表示出空间中每一个向量,从而可以用
向量的方法来求出两条直线间的夹角
以B为原点,BC为x轴,BA为y轴,BB i为z轴,设BC长度为2 则点A i的
坐标为(0,2, 2),点E的坐标为(1, 0,1),
点B i的坐标为(0, 0, 2),点F的坐标为(2, 1, 1);
所以向量EA i的坐标为(-1, 2, 1),向量B i F的坐标为(2, 1, -1),
所以这两个向量的夹角B满足
EA i B i F
|EA i | |B i F|
(1) 2 2 1 1(1)
.(1)2(2)2(1)2 v (2)2(1)2
1
_____ ~~。

(1)2 6
1
所以直线A i E与直线B i F所成的角的余弦值为-
6
小结:上述解法中,解法一要求有良好的作图能力,且能够在作图完毕 后能够看清楚图形中的各个三角形,然后在所需要的三角形中计算出各条线 段的长度,从而完成解三角形得到角的大小。

而解法二不需要学生作图,只 需建立空间直角坐标系,标出相应的点的坐标,从而得到所需向量的坐标, 求出两个向量的夹角,即所求的两条直线所成的角。

当然,如果题中给出的 是一可以建立坐标系的空间图形,比如刚才的正方体,或者说是长方体,或 者说空间图形中拥有三条直线两两垂直的性质,我们就可以建立空间直角坐 标系,从而利用向量的坐标表示来求两个向量的夹角。

如果没有这样的性 质,我们也可以利用空间向量基本定理,寻找空间的一组基底(即三个不共 面的向量,且这三个向量两两之间的夹角是已知的),空间中任何一个向量 都可以用这三个向量的线性组合表示出来,因而也可以运用向量的数乘来求 出空间中任意二个向量间的夹角。

例 2:已知空间四边形 ABCD 中,
AB=BC=CD=DA=AC=BD=a^,M 、N 分 别为BC 和AD 的中点,设AM 和CN 所成的角为a,求
cos a 的值。

解:由已知得,空间向量 且两两之间的夹角均为60°
所以向量AM 与向量NC 的夹角B (即角a 或者a 的补角) 满足cost 到竺,其中
| AM | | NC |
AM =1 ( AB +AC ),
2
NC = - AD + AC
2
由向量的加法可以得到B
C
D
AB ,AC ,AD 不共面,
1
1
AM NC 二一(AB + AC ) •( — AD + AC )
2 2
1 1^1 ・ J 1
二一(-AB AD + AB AC + ( - AD 2 2 2 -+1) =-a 2;
4 2
1 1
2
3 2 (AB + AC ) =一 (1+1+1) a = a 2; 2
4 4
/ 1 一 一 1 , 1 2 3 2
■( — AD + AC ) = — +1 a = a 。

2 4 2 4
例3:已知空间四边形 ABCD 中,AB=CD=3 , E 、 的点,
且BE : EC=AF : FD=1: 2,EF=、-7,求AB 和CD 所成的角的大小。

解:取 AC 上点 G ,使 AG : GC=1: 2。

连结 EG 、FG, '
■. >F
可知 EG//AB ,FG//CD ,3EG=2AB ,3FG=CD 。

一 一 —— 2 一 1 — r
由向量的知识可知 EF =EG +GF = —BA + -CD ,
3 3
设向量BA 和CD 的夹角为B 。

一 2 2 一 1
2 — 1
则由 | EF |2= (— BA + —CD ) •( BA + —CD ) =4+1+4cos 9=7,
3 3 3 3
得cos 9=丄,所以AB 和CD 所成的角为60°。

2
二、利用模型求异面直线所成的角
AC + AC AC )
2 1
| AM |2
= ( AB + AC ) | NC |2= (
AD + AC
2
2
所以 COSa=|
F 分别是BC 、AD 上
B ..
E
引理:已知平面a的一条斜线a与平面a所成的角为B i,平面a内的一条直线b与斜线a所成的角为B,与它的射影a'所成的角为B。

求证:cos9=
PA PA OA
所以cos 9= cos 0i •os 92。

这一问题中,直线a和b可以是相交直线,也可以是异面直线。

我们不妨把9i叫做线面角,9叫做线线角,9 2叫做线影角。

很明显,线线角是这三个角中最大的一个角。

我们可以利用这个模型来求两条异面直线a和b所成
的角,即引理中的角9。

从引理中可以看出,我们需要过a的一个平面a,以及该平面的一条斜线b以及b在a内的射影。

例4:如图,MA丄平面ABCD,四边形ABCD是正方形,且
M MA=AB=a,试求异面直线MB与AC所成的角
解:由图可知,直线MB在平面ABCD
直线MB与平面ABCD所成的角为45°,
直线AC 与直线MB 的射影AB 所成的角为45 所以直线AC 与直MB 所成的角为满足
1 cosB=cos45° cos45° —
所以直线AC 与MB 所成的角为60
例5:如图,在立体图形P-ABCD 中,底面ABCD 是一个直角梯形,
/ BAD=90 °,AD//BC , AB=BC=a , AD=2a , 且 PA 丄底面 成30°角,AE 丄PD 于D 。

求异面直线AE 与CD 所成的角的大小。

由PA 丄底面ABCD 可知,直线 AE 在平面
ABCD 内的射影为AD ,
直线AE 与平面ABCD 所成的角为/ DAE ,其大小为60 射影AD 与直线CD 所成的角为/ CDA ,其大小为45°, 所以直线与直线所成的角B 满足
cos6=cos60 cos45 =—,
4
所以其大小为arccos —2。

4
由上两例可知,求异面直线间的夹角,若存在一个平面的垂线,则可
以联想到利用线面角的这个公式来求得异面直线间的夹角,当然,上二例也 可用平移直线的方法来求,也可以用向量法来求,这里只作简单的介绍,不 再重复。

解:过E 作的平行线EF 交AD 于F ,
PD 与底面
C。

相关文档
最新文档