异面直线所成角的几种求法(最新编写)
异面直线所成角的几种求法资料讲解

异面直线所成角的几种求法仅供学习与交流,如有侵权请联系网站删除 谢谢2异面直线所成角的几种求法异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的。
因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小。
在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力。
一、向量法求异面直线所成的角例1:如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是相邻两侧面BCC 1B 1及CDD 1C 1的中心。
求A 1E 和B 1F 所成的角的大小。
解法一:(作图法)作图关键是平移直线,可平移其中一条直线,也可平移两条直线到某个点上。
作法:连结B 1E ,取B 1E 中点G 及A 1B 1中点H , 连结GH ,有GH//A 1E 。
过F 作CD 的平行线RS , 分别交CC 1、DD 1于点R 、S ,连结SH ,连结GS 。
由B 1H//C 1D 1//FS ,B 1H=FS ,可得B 1F//SH 。
在△GHS 中,设正方体边长为a 。
GH=46a (作直线GQ//BC 交BB 1于点Q , B A CD FEB 1 A 1 D 1C 1G HSRPQ仅供学习与交流,如有侵权请联系网站删除 谢谢3连QH ,可知△GQH 为直角三角形),HS=26a (连A 1S ,可知△HA 1S 为直角三角形), GS=426a (作直线GP 交BC 于点P ,连PD ,可知四边形GPDS 为直角梯形)。
∴Cos ∠GHS=61。
所以直线A 1E 与直线B 1F解法二:(向量法)分析:因为给出的立体图形是一个正方体, 所以可以在空间建立直角坐标系,从而可以利用 点的坐标表示出空间中每一个向量,从而可以用 向量的方法来求出两条直线间的夹角。
以B 为原点,BC 为x 轴,BA 为y 轴,BB 1为z 轴,设BC 长度为2。
异面直线所成的角求法课件

答案解析
答案一解析
首先,由于AB和CD为异面直线,且AB ⟂ CD,我们可以知道异面直线AB与CD所成的 角为∠BAC。因为∠BAC = 60°,所以异面直线AB与CD所成的角也为60°。
答案二解析
首先,找到与AB和AD₁都平行的平面或线段。在长方体中,这样的平面或线段是A₁D和 A₁B₁。然后,利用平移将异面直线AB和AD₁平移到同一个起点,例如点A。最后,利用 余弦公式计算异面直线AB与AD₁所成角的余弦值。具体计算过程涉及长方体的边长和
常见误区
列举了在求解过程中可能出现 的常见错误和误区,并给出了
正确的解释和纠正方法。
展望
01
02
03
04
进一步研究
鼓励学习者在掌握基本方法的 基础上,深入研究异面直线所 成的角的更多性质和应用。
与其他知识的结合
提倡将异面直线所成的角与其 他几何知识进行结合,形成更
完整的知识体系。
实际应用拓展
强调将所学知识应用于实际问 题解决中,培养解决实际问题
在空间向量中的应用
异面直线所成的角在空间向量中也有着重要的应用。向量 的数量积、向量的模长以及向量的夹角都可以通过异面直 线所成的角来表示。
在解决空间向量的加法、数乘以及向量的模长和夹角等问 题时,常常需要利用异面直线所成的角来建立向量关系, 从而得到向量的具体表示和运算结果。
在物理问题中的应用
成的角的余弦值等于 $frac{overset{longrightarrow}{a} cdot overset{longrightarrow}{b}}{|overset{lon
grightarrow}{a}| cdot
利用向量的夹角公式求异面直线所成的角
要点一
异面直线所成的角求法课件

然后求出$\vec{a}$和$\vec{b}$的模, $|\vec{a}|=\sqrt{1^2+2^2+3^2}=\sqrt{14}$, $|\vec{b}|=\sqrt{2^2+1^2+0^2}=\sqrt{5}$;
异面直线所成的角求法 课件
目录
• 引入 • 向量法求解异面直线所成角 • 几何法求解异面直线所成角 • 坐标法求解异面直线所成角 • 实际应用与拓展 • 总结与回顾
01
引入
异面直线的定义
定义 判定定理
异面直线所成角的概念
定义
范围
两条异面直线所成角的范围是(0°,90°], 若两条异面直线互相垂直,则说它们 所成的角是90°;若两条异面直线所成 的角是锐角或直角,则就按照锐角或 直角来度量。
求解异面直线所成角的意义
实际应用
拓展思维
02
向量法求解异面直线所成角
向量点积与夹角关系
点积定义
夹角与点积关系
利用向量点积求解异面直线所成角步骤
01
02
03
04
典型例题解析
例1:已知两异面直线上的向量分别为$\vec{a}=(1,2,3)$和 $\vec{b}=(2,1,0)$,求异面直线所成的角。
05
实际应用与拓展
异面直线所成角在实际问题中的应用
建筑设计 机器人路径规划 航空航天
拓展:其他空间几何角的求解方法
向量法
三角函数法
06
异面直线成角求法

求异面直线所成的角求异面直线所成的角,一般有两种方法,一种是几何法,这是高二数学人教版(A )版本倡导的传统的方法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求。
还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解,这是高二数学人教版(B )倡导的方法,下面举例说明两种方法的应用。
例:长方体ABCD -A 1B 1C 1D 1中,AB=AA 1=2cm ,AD=1cm ,求异面直线A 1C 1与BD 1所成的角。
解法1:平移法设A 1C 1与B 1D 1交于O ,取B 1B 中点E ,连接OE ,因为OE//D 1B ,所以∠C 1OE 或其补角就是异面直线A 1C 1与BD 1所成的角△C 1OE 中211E B C B E C 2312221BD 21OE 25C A 21OC 22212111221111=+=+==++⋅====()552325222325OEOC 2E C OE OC OE C cos 2221212211=⨯⨯-⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⋅-+=∠所以55a r c c o sOE C 1=∠所以 所以异面直线111BD C A 与所成的角为55arccos图1解法2:补形法在长方体ABCD —A 1B 1C 1D 1的面BC 1上补上一个同样大小的长方体,将AC 平移到BE ,则∠D 1BE 或其补角就是异面直线A 1C 1与BD 1所成的角,在△BD 1E 中,BD 1=3,5BE =,5224E D 221=+=()()555325253BE BD 2E D BE BD BE D cos 2221212211-=⨯⨯-+=⋅-+=∠所以异面直线A 1C 1与BD 1所成的角为55arccos图2解法3:利用公式21cos cos cos θθθ⋅=设OA 是平面α的一条斜线,OB 是OA 在α内的射影,OC 是平面α内过O 的任意一条直线,设OA 与OC 、OA 与OB 、OB 与OC 所成的角分别是θ、θ1、θ2,则21cos cos cos θθθ⋅=(注:在上述题设条件中,把平面α内的OC 换成平面α内不经过O 点的任意一条直线,则上述结论同样成立)D 1B 在平面ABCD 内射影是BD ,AC 看作是底面ABCD 内不经过B 点的一条直线,BD 与AC 所成的角为∠AOD ,D 1B 与BD 所成角为∠D 1BD ,设D 1B 与AC 所成角为θ,AOD cos BD D cos cos 1∠⋅∠=θ,55BD BD BD D cos 11==∠。
异面直线所成角的范围求异面直线所成角的步骤线线角的求法

一、如何求异面直线所成的角(1)直接平移法:通常的思路是:在两条异面直线其中一条上面选一个端点,引另一条的平行线。
(2)中位线平移(尤其是图中出现了线段的中点时)(3)补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。
二、求异面直线所成角的步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。
B、证明作出的角即为所求角;C、利用三角形来求角。
特别提醒:(1)两异面直线所成的角与点O(两直线平移后的交点)的选取无关.(2)两异面直线所成角θ的取值范围是00<θ≤900.(3)判定空间两条直线是异面直线的方法①判定定理:平面外一点A 与平面内一点B的连线和平面内不过点B的直线是异面直线;②反证法:证明两直线共面不可能.三、求异面直线所成角的常用方法有哪些过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)就是异面直线所成的角。
角的范围是θ∈(0°,90°]。
几何法和向量法求所成角几何法1.平移法。
将两条直线或其中一条平移(找出平行线)至它们相交,把异面转化为共面,用余弦定理或正弦定理来求(一般是余弦定理)。
一般采用平行四边形或三角形中位线来构造平行线。
2.三余弦定理法。
运用三余弦定理关键是要找出一条直线a所在的平面α和另一条直线b在该平面α内的射影,求出b与α所成角以及a 与b的射影b‘所成角,进而求a与b所成角。
3.三棱锥法。
三棱锥(四面体)中两条相对的棱互为异面直线,设有四面体ABCD,其中AD与BC互为异面直线,那么它们所成角θ满足以下关系:运用该公式也可以求异面直线所成角。
向量法1.向量几何法。
运用向量的加减法规则,把要求的异面直线用向量表示,并运用向量的运算法则(例如分配律、共线向量)来求出cosθ2.向量代数法。
异面直线所成角的计算

C1
D
C
则MON=120,
即异面直线AC与BD所成的角为60°.
2.已知正方体的棱长为a , M为AB的中点,N 为 BB1的中点, 求 A1M 与 C1 N 所成角的余弦值.
解: 如图,取AB的中点E, 连BE, 有BE∥ A1M
取CC1的中点G,连BG. 有BG∥ C1N 则∠EBG即为所求角. 在△EBG 中 D1 C1
1 2 1 2
∴异面直线 AD, BC 所成的角即为 EG, FG 所成的角(或其补角)
∵ EG AD 1, FG BC 1 ,
EG 2 FG 2 EF 2 1 ,∴ EGF 120 在 EGF 中, cos EGF 2 EG FG 2
,
∵两异面直线所成角的范围是: 00 , 90 0 ∴异面直线 AD, BC 所成的角为 60
BG=BE=
由余弦定理, cos∠EBG=2/5
5 2
a,, F C1 =
6 a 2
A1
E
F
B1
G D N C
想一想:还有其他定角的方法吗?
取EB1的中点F,连NF,有BE∥NF
则∠FNC为所求角.
A
M
B
小结:
1、求异面直线所成的角是把空间角转化为平面角,体现了化 归的数学思想.
化归的一般步骤是:定角
方法归纳: 平移法 即根据定义,以“运动”的观点,用“平移
转化”的方法,使之成为相交直线所成的角.
解法二:
如图,补一个与原长方体全等的并与原长方体有公共面
BC1的方体B1F, 连结A1E,C1E,则A1C1E为A1C1与BD1 所成的角(或补角), 在A1C1E中, 由余弦定理得
补充构造异面直线所成角的几种方法

补充构造异面直线所成角的几种方法一. 异面直线所成角的求法1、正确理解概念(1)在异面直线所成角的定义中,空间中的点O 是任意选取的,异面直线a 和b 所成角的大小,与点O 的位置无关。
(2)异面直线所成角的取值范围是(0°,]90︒ 2、熟练掌握求法(1)求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解,整个求解过程可概括为:一作二证三计算。
(2)求异面直线所成角的步骤:①选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊点。
②求相交直线所成的角,通常是在相应的三角形中进行计算。
③因为异面直线所成的角θ的范围是0°<θ≤90°,所以在三角形中求的角为钝角时,应取它的补角作为异面直线所成的角。
3、“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。
例1如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线B 1E 与GF 所成角的余弦是 。
EF1A 1B 1C 1D BCDGEF1A 1B 1C 1D ABCDG例2已知S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC , 且∠ASB =∠BSC =∠CSA =2π,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值.例3长方体ABCD —A 1B 1C 1D 1中,若AB=BC=3,AA 1=4,求异面直线B 1D 与BC 1所成角的大小。
BM AN CS B M ANC SM ANCS例4如图,PA ⊥平面ABC ,90ACB∠=︒且PA AC BC a ===,则异面直线PB 与AC所成角的正切值等于_____.练习:1.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是()31032()()()()21055A B C D2.如图,A 1B 1C 1—ABC 是直三棱柱(三侧面为矩形),∠BCA=90°,点D 1、F 1 分别是A 1B 1、A 1C 1的中点若BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是( ) 3013015()()()()1021510A B C D 3.正方体ABCD —A 1B 1C 1D 1中,直线BC 1与AC(A)相交且垂直 (B)相交但不垂直 (C)异面且垂直 (D)异面但不垂直 4.设a 、b 、c 是空间中的三条直线,下面给出四个命题: ①如果a ⊥b 、b ⊥c ,则a ∥c ;②如果a 和b 相交,b 和c 相交,则a 和c 也相交;③如果a 、b 是异面直线,c 、b 是异面直线,则a 、c 也是异面直线; ④如果a 和b 共面,b 和c 共面,则a 和c 也共面(第2F 1 ABCD 1 C 1A 1B 1B 1(第1题)A 1ABC 1D 1CD MNN MFEDCB A在上述四个命题中,真命题的个数是( )(A)4 (B)3 (C)2 (D)1 (E)0 5.如果直线l 和n 是异面直线,那么和直线l 、n 都垂直的直线 (A)不一定存在 (B)总共只有一条 (C)总共可能有一条,也可能有两条 (D)有无穷多条6.如图,四面体SABC 的各棱长都相等,如果E 、F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角等于(A)90° (B)60° (C)45° (D)30°7.右图是正方体的平面展开图,在这个正方体中, ① BM 与ED 平行; ②CN 与BE 是异面直线; ③CN 与BM 成60角;④DM 与BN 垂直.以上四个命题中,正确命题的序号是 ( )(A )① ② ③ (B )② ④ (C )③ ④ (D )② ③ ④8.如图,四面体ABCD 中,AC ⊥BD,且AC =4,BD =3,M 、N 分别是AB 、CD 的中点,则求MN 和BD 所成角的正切值为 。
高中数学:异面直线所成的角求法(汇总大全)

异面直线所成的角一、平移法:常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。
直角平移法:1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,求AD 、BC 所成角的大小.解:设BD 的中点G ,连接FG ,EG 。
在△EFG 中 EF =3FG =EG =1∴∠EGF =120° ∴AD 与BC 成60°的角。
2.正∆ABC 的边长为a ,S 为∆ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC和AB 的中点.求异面直线SA 和EF 所成角. 正确答案:45°3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA=2π,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN ,则QN ∥SM∴∠QNB 是SM 与BN 所成的角或其补角 连结BQ ,设SC =a ,在△BQN 中 BN =a 25 NQ =21SM =42a BQ =a 414∴COS ∠QNB =5102222=⋅-+NQ BN BQ NQ BN4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M 、N 分别是A 1B 1和A 1C 1的中点,若BC =CA =CC 1,求BM 与AN 所成的角.解:连接MN ,作NG ∥BM 交BC 于G ,连接AG , 易证∠GNA 是BM 与AN 所成的角.设:BC =CA =CC 1=2,则AG =AN =5,GN =BM =6, cos ∠GNA =1030562556=⨯⨯-+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异面直线所成角的几种求法
异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的。
因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小。
在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力。
一、向量法求异面直线所成的角
例1:如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是相邻两侧面BCC 1B 1及CDD 1C 1的中心。
求A 1E 和B 1F 所成的角的大小。
解法一:(作图法)作图关键是平移直线,可平移其中一条直线,也可平移两条直线
到某个点上。
作法:连结B 1E ,取B 1E 中点G 及A 1B 1中点H ,
连结GH ,有GH//A 1E 。
过F 作CD 的平行线RS ,分别交CC 1、DD 1于点R 、S ,连结SH ,连结GS 。
由B 1H//C 1D 1//FS ,B 1H=FS ,可得B 1F//SH 。
在△GHS 中,设正方体边长为a 。
GH=a (作直线GQ//BC 交BB 1于点Q ,46连QH ,可知△GQH 为直角三角形),HS=a (连A 1S ,可知△HA 1S 为直角三角形),2
6GS=a (作直线GP 交BC 于点P ,连PD ,可知四边形GPDS 为直角梯形)。
426∴Cos ∠GHS=。
6
1所以直线A 1E 与直线B 1F 所成的角的余弦值为。
61解法二:(向量法)分析:因为给出的立体图形是一个正方体,
所以可以在空间建立直角坐标系,从而可以利用点的坐标表示出空间中每一个向量,从而可以用
向量的方法来求出两条直线间的夹角。
以B 为原点,BC 为x 轴,BA 为y 轴,BB 1为z 轴,设BC 长度为2。
B A C
D
F E B 1A 1D 1C 1
G
H S R P
Q 1
则点A 1的坐标为(0,2,2),点E 的坐标为(1,0,1),
点B 1的坐标为(0,0,2),点F 的坐标为(2,1,1);所以向量的坐标为(-1,2,1),向量的坐标为(2,1,-1),1EA F B 1所以这两个向量的夹角θ满足
cos θ==-。
11112
22222)1()1()2()1()2()1()
1(1122)1(-++⋅++--⨯+⨯+⨯-61所以直线A 1E 与直线B 1F 所成的角的余弦值为61
小结:上述解法中,解法一要求有良好的作图能力,且能够在作图完毕后能够看清楚图形中的各个三角形,然后在所需要的三角形中计算出各条线段的长度,从而完成解三角形得到角的大小。
而解法二不需要学生作图,只需建立空间直角坐标系,标出相应的点的坐标,从而得到所需向量的坐标,求出两个向量的夹角,即所求的两条直线所成的角。
当然,如果题中给出的是一可以建立坐标系的空间图形,比如刚才的正方体,或者说是长方体,或者说空间图形中拥有三条直线两两垂直的性质,我们就可以建立空间直角坐标系,从而利用向量的坐标表示来求两个向量的夹角。
如果没有这样的性质,我们也可以利用空间向量基本定理,寻找空间的一组基底(即三个不共面的向量,且这三个向量两两之间的夹角是已知的),空间中任何一个向量都可以用这三个向量的线性组合表示出来,因而也可以运用向量的数乘来求出空间中任意二个向量间的夹角。
例2:已知空间四边形ABCD 中,AB=BC=CD=DA=AC=BD=a ,M 、N 分别为BC
和AD 的中点,设AM 和CN 所成的角为α,求cos α的值。
解:由已知得,空间向量,,不共面,
且两两之间的夹角均为60°。
由向量的加法可以得到=(+),=+AM 2121-AD AC 所以向量与向量的夹角θ(即角α或者α的补角)AM 满足cos θ,其中·=
(+)·(+)AM NC 212
1-AD AC =(·+·+()·+·)2121-2
1-=a 2(++1)=a 2;2141-2141-21A B
C
D
M
N
||2=(+)·(+)=(1+1+1)a 2= a 2;AM 2121414
3||2=(+)·(+)=+1 a 2= a 2。
NC 21-AD AC 21-AD AC 4121-4
3所以cos α=| cos θ|=。
32例3:已知空间四边形ABCD 中,AB=CD=3,E 、F 分别是BC 、AD 上的点,且BE :EC=AF :FD=1:2,EF=,求AB 和CD
所成的角的大小。
7解:取AC 上点G ,使AG :GC=1:2。
连结EG 、FG ,
可知EG//AB ,FG//CD ,3EG=2AB ,3FG=CD 。
由向量的知识可知=+,设向量和的夹角为θ。
BA CD 则由||2==4+1+4cos θ=7,得cos θ=,所以AB 和CD 所成的角为60°。
2
1二、利用模型求异面直线所成的角
引理:已知平面α的一条斜线a 与平面α所成的角为θ1,平面α内的一条直线b 与斜线a 所成的角为θ,与它的射影a ′所成的角为θ2。
求证:cos θ= cos θ1·cos θ2。
证明:设PA 是α的斜线,OA 是PA 在α上的射影,
OB//b ,如图所示。
则∠PAO=θ1,∠PAB=θ,∠OAB=θ2,
过点O 在平面α内作OB ⊥AB ,垂足为B ,连结PB 。
可知PB ⊥AB 。
所以cos θ1=, cos θ=,cos θ2=。
PA OA PA AB OA AB 所以cos θ= cos θ1·cos θ2。
这一问题中,直线a 和b 可以是相交直线,也可以是异面直线。
我们不妨把θ1叫做线面角,θ叫做线线角,θ2叫做线影角。
很明显,线线角是这三个角中最大的一个角。
我们可以利用这个模型来求两条异面直线a 和b 所成的角,即引理中的角θ。
从引理中可以看出,我们需要过a 的一个平面α,以及该平面的一条斜线b 以及b 在α内的射影。
例4:如图,MA ⊥平面ABCD ,四边形ABCD 是正方形,且MA=AB=a ,试求异面直线MB 与AC 所成的角。
A B C D E F G P
b A B O
αM
解:由图可知,直线MB 在平面ABCD 内的射影为AB ,
直线MB 与平面ABCD 所成的角为45°,
直线AC 与直线MB 的射影AB 所成的角为45°,
所以直线AC 与直MB 所成的角为θ,满足
cos θ=cos45°· cos45°=,2
1所以直线AC 与MB 所成的角为60°。
例5:如图,在立体图形P-ABCD 中,底面ABCD 是一个直角梯形,∠BAD=90°,AD//BC ,AB=BC=a ,AD=2a ,且PA ⊥底面ABCD ,PD 与底面成30°角,AE ⊥PD 于D 。
求异面直线AE 与CD 所成的角的大小。
解:过E 作的平行线EF 交AD 于F ,
由PA ⊥底面ABCD 可知,直线AE 在平面
ABCD 内的射影为AD ,直线AE 与平面ABCD 所成的角为∠DAE ,其大小为60°,
射影AD 与直线CD 所成的角为∠CDA ,其大小为45°,
所以直线与直线所成的角θ满足
cos θ=cos60°· cos45°=,4
2所以其大小为arccos 。
4
2由上两例可知,求异面直线间的夹角,若存在一个平面的垂线,则可以联想到利用线面角的这个公式来求得异面直线间的夹角,当然,上二例也可用平移直线的方法来求,也可以用向量法来求,这里只作简单的介绍,不再重复。
P E D F A B C。