异面直线所成的角的求法
异面直线所成角的几种求法资料讲解

异面直线所成角的几种求法仅供学习与交流,如有侵权请联系网站删除 谢谢2异面直线所成角的几种求法异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的。
因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小。
在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力。
一、向量法求异面直线所成的角例1:如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是相邻两侧面BCC 1B 1及CDD 1C 1的中心。
求A 1E 和B 1F 所成的角的大小。
解法一:(作图法)作图关键是平移直线,可平移其中一条直线,也可平移两条直线到某个点上。
作法:连结B 1E ,取B 1E 中点G 及A 1B 1中点H , 连结GH ,有GH//A 1E 。
过F 作CD 的平行线RS , 分别交CC 1、DD 1于点R 、S ,连结SH ,连结GS 。
由B 1H//C 1D 1//FS ,B 1H=FS ,可得B 1F//SH 。
在△GHS 中,设正方体边长为a 。
GH=46a (作直线GQ//BC 交BB 1于点Q , B A CD FEB 1 A 1 D 1C 1G HSRPQ仅供学习与交流,如有侵权请联系网站删除 谢谢3连QH ,可知△GQH 为直角三角形),HS=26a (连A 1S ,可知△HA 1S 为直角三角形), GS=426a (作直线GP 交BC 于点P ,连PD ,可知四边形GPDS 为直角梯形)。
∴Cos ∠GHS=61。
所以直线A 1E 与直线B 1F解法二:(向量法)分析:因为给出的立体图形是一个正方体, 所以可以在空间建立直角坐标系,从而可以利用 点的坐标表示出空间中每一个向量,从而可以用 向量的方法来求出两条直线间的夹角。
以B 为原点,BC 为x 轴,BA 为y 轴,BB 1为z 轴,设BC 长度为2。
异面直线所成角的三种经典求法

直 线 所成 角 的通 法 , 常见 是 “ 一 静 一
动” :将 另 一 直 线 平移 至 已知 点 , 通
D + D c 。 一 E c 2 +( 2 、 /2) 一 2
2 D E・ DC 2. 2. 2 、 /
过 求 解 三 角形 来 解 决 异 面 直 线所 成
2 定 理 可得 c 。 s D 剧 — DE %E F DF2
-
方 法 归 纳 2: 补 形 法 的 实 质 是 将 直 线往 更 多的 “ 地 方” 平移 , 其 目 的 也 是将 异 面 直线 所成 的 角平 面化.
—
:
方法 四 : 建 立 空 间 直 角 坐标 系 ,
盟
图1
可 .不 过 这 里 要 注 意 向 量 夹 角 与 异
± 皇 : 二 : :
2 。 4 1・曰
A B
.
所 以
2
加 41 = .
图2
面 直 线 所 成 的 角 的 取 值 范 围 不 一
样. 雹
A B = 2 V , A D
1 = 2 , 求 异 面 直 线
A D =X / — D D ] + — A D z = 、
D
,.
- 2 、 / ,
图4
DE与AB 所 成 的 角.
ADl =
.在 R t AD D ̄ B中 ,
D E = 肋 = 2 .& AD E F  ̄ , 由余 弦
, 1 ) , = ( 0 , 2 、 / , 0 ) .
、 / 可
= V2 2 + ( 2 、 / ) 2 + 2 = 4 .
二
设 异 面 直 线D E与AB所 成 的 角 为 ,
异面直线所成的角求法课件

答案解析
答案一解析
首先,由于AB和CD为异面直线,且AB ⟂ CD,我们可以知道异面直线AB与CD所成的 角为∠BAC。因为∠BAC = 60°,所以异面直线AB与CD所成的角也为60°。
答案二解析
首先,找到与AB和AD₁都平行的平面或线段。在长方体中,这样的平面或线段是A₁D和 A₁B₁。然后,利用平移将异面直线AB和AD₁平移到同一个起点,例如点A。最后,利用 余弦公式计算异面直线AB与AD₁所成角的余弦值。具体计算过程涉及长方体的边长和
常见误区
列举了在求解过程中可能出现 的常见错误和误区,并给出了
正确的解释和纠正方法。
展望
01
02
03
04
进一步研究
鼓励学习者在掌握基本方法的 基础上,深入研究异面直线所 成的角的更多性质和应用。
与其他知识的结合
提倡将异面直线所成的角与其 他几何知识进行结合,形成更
完整的知识体系。
实际应用拓展
强调将所学知识应用于实际问 题解决中,培养解决实际问题
在空间向量中的应用
异面直线所成的角在空间向量中也有着重要的应用。向量 的数量积、向量的模长以及向量的夹角都可以通过异面直 线所成的角来表示。
在解决空间向量的加法、数乘以及向量的模长和夹角等问 题时,常常需要利用异面直线所成的角来建立向量关系, 从而得到向量的具体表示和运算结果。
在物理问题中的应用
成的角的余弦值等于 $frac{overset{longrightarrow}{a} cdot overset{longrightarrow}{b}}{|overset{lon
grightarrow}{a}| cdot
利用向量的夹角公式求异面直线所成的角
要点一
异面直线成角求法

求异面直线所成的角求异面直线所成的角,一般有两种方法,一种是几何法,这是高二数学人教版(A )版本倡导的传统的方法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求。
还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解,这是高二数学人教版(B )倡导的方法,下面举例说明两种方法的应用。
例:长方体ABCD -A 1B 1C 1D 1中,AB=AA 1=2cm ,AD=1cm ,求异面直线A 1C 1与BD 1所成的角。
解法1:平移法设A 1C 1与B 1D 1交于O ,取B 1B 中点E ,连接OE ,因为OE//D 1B ,所以∠C 1OE 或其补角就是异面直线A 1C 1与BD 1所成的角△C 1OE 中211E B C B E C 2312221BD 21OE 25C A 21OC 22212111221111=+=+==++⋅====()552325222325OEOC 2E C OE OC OE C cos 2221212211=⨯⨯-⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⋅-+=∠所以55a r c c o sOE C 1=∠所以 所以异面直线111BD C A 与所成的角为55arccos图1解法2:补形法在长方体ABCD —A 1B 1C 1D 1的面BC 1上补上一个同样大小的长方体,将AC 平移到BE ,则∠D 1BE 或其补角就是异面直线A 1C 1与BD 1所成的角,在△BD 1E 中,BD 1=3,5BE =,5224E D 221=+=()()555325253BE BD 2E D BE BD BE D cos 2221212211-=⨯⨯-+=⋅-+=∠所以异面直线A 1C 1与BD 1所成的角为55arccos图2解法3:利用公式21cos cos cos θθθ⋅=设OA 是平面α的一条斜线,OB 是OA 在α内的射影,OC 是平面α内过O 的任意一条直线,设OA 与OC 、OA 与OB 、OB 与OC 所成的角分别是θ、θ1、θ2,则21cos cos cos θθθ⋅=(注:在上述题设条件中,把平面α内的OC 换成平面α内不经过O 点的任意一条直线,则上述结论同样成立)D 1B 在平面ABCD 内射影是BD ,AC 看作是底面ABCD 内不经过B 点的一条直线,BD 与AC 所成的角为∠AOD ,D 1B 与BD 所成角为∠D 1BD ,设D 1B 与AC 所成角为θ,AOD cos BD D cos cos 1∠⋅∠=θ,55BD BD BD D cos 11==∠。
异面直线所成角的几种求法

D。求异面直线 AE 与 CD 所成的角的大小。
P
解:过 E 作的平行线 EF 交 AD 于 F,
E
由 PA⊥底面 ABCD 可知,直线 AE 在平面
ABCD 内的射影为 AD,
D
直线 AE 与平面 ABCD 所成的角为∠DAE,其大小为 60°,
A
F
射影 AD 与直线 CD 所成的角为∠CDA,其大小为 45°,
所以 cosθ= cosθ1·cosθ2。
A
b B
α O
这一问题中,直线 a 和 b 可以是相交直线,也可以是异面直线。我们不妨把 θ1 叫 做线面角,θ 叫做线线角,θ2 叫做线影角。很明显,线线角是这三个角中最大的一个 角。我们可以利用这个模型来求两条异面直线 a 和 b 所成的角,即引理中的角 θ。从引 理中可以看出,我们需要过 a 的一个平面 α,以及该平面的一条斜线 b 以及 b 在 α 内 的射影。
个向量两两之间的夹角是已知的),空间中任何一个向量都可以用这三个向量的线性组合
表示出来,因而也可以运用向量的数乘来求出空间中任意二个向量间的夹角。
例 2:已知空间四边形 ABCD 中,AB=BC=CD=DA=AC=BD=a,M、N 分别为 BC
和 AD 的中点,设 AM 和 CN 所成的角为 α,求 cosα 的值。
异面直线所成角的几种求法
异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角) 来定义的。因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角, 然后在某个三角形中求出角的方法来得到异面直线所成角的大小。在这一方法中,平移 直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力。
解:取 AC 上点 G,使 AG:GC=1:2。连结 EG、FG,
异面直线所成角的求解方法

异面直线所成角的求解方法
向量相交所产生的两个平面夹角,可以用叉乘来求解,结果可以用两种方式计算:第一种求解方法:
假定两个向量u和v 是两个不同的平面所给定的向量,它们可以表示为:
u= (u1, u2, u3)
叉乘满足:u X v = (u2v3-u3v2, u3v1 - u1v3, u1v2 - u2v1)
使用叉乘向量的结果,可以计算出 u 与 v 的夹角为:
β =arccos[(u X v) / (|u|*|V|)]
其中,|u| 与|v| 分别为u 向量与v 向量的模。
可以利用两个向量的内积来求夹角。
内积的运算公式为:
总的来说,利用叉乘或内积来计算两条直线所成的角度,可以将求解过程简化,并让求解结果更加准确。
最后要注意的是,当实际求解时,应先把两个向量方向向量化,然后用叉乘或内积公式计算夹角,以便得出精确的解决方案。
SXB186高考数学必修_异面直线所成角的求法
异面直线所成角的求法两条异面直线所成的角是每年高考必考内容,要求牢固掌握两异面直线所成的角的定义、范围、作法及其求解,两异面直线所成的角是刻画两异面直线相对位置的量,定义是通过转化两相交直线所成的角来解决的,这也是立体几何的传统解法,我们学习了空间向量后,还可以用向量的方法解决。
一. 传统求法--------找、作、证、求解求两异面直线所成的角,关键是作出此角,传统上一般最常用的方法是平移法---------将其中一条平移到与另一条直线共面且相交,则此夹角就是两异面直线所成的角,用此该法一般可以从多方法,多角度思考,这样对我们解决异面直线所成的角大有裨益。
例1 设空间四边形ABCD ,E 、F 、G 、H 分别是AC 、BC 、DB 、DA 的中点,若AB =122,CD =4 2,且四边形EFGH 的面积为12 3,求AB 和CD 所成的角.解 由三角形中位线的性质知,H G∥AB,HE∥CD,∴ ∠EHG就是异面直线AB 和CD 所成的角.∵ EFGH 是平行四边形,HG =21 AB =62, HE =21 ,CD =23, ∴ S EFGH =HG·HE·sin∠EHG=126 sin∠EHG, ∴ 12 6sin∠EHG=123.∴ s in∠E HG =22,故∠EHG=45°. ∴ AB 和CD 所成的角为45°总结与提高:作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。
最后作答时,这个角的余弦值必须为正。
二. 利用两个向量的夹角公式(<,cos ),可以求空间两条直线所成的角。
1. 建基向量法在已知图形中选定一个基底, 把所求向量转化为基向量来表示并计算数量积与模。
例2. 如图,三棱柱AOB —A 1O 1B 1中,面OBB 1O 1⊥面AOB ,H G F E D C B A∠O 1OB = 600,∠AOB = 900且 OB = OO 1 = 2,OA = 3,求异面直线A 1B 与AO 1所成角的大小. 分析:由条件可得OA ⊥OB , OA ⊥O 1O ,再结合 题干可知共点于O 的三条线段OA 、OB 、OO 1的长度已知, 且两两夹角已知,故可选择以{}1,,OO OB OA 为基底来解决 异面直线A 1B 与AO 1所成角的大小,关键是把所求异面直线上的两个方向向量B A 1,1AO 都表示成基向量的形式. 解: ∵ 面OBB 1O 1⊥面AOB ,OA ⊂面AOB ,面OBB 1O 1∩面AOB=OB ,且OA ⊥OB , ∴ OA⊥面OBB 1O 1 , ∴ OA ⊥OO 1 ,即∠AOB = 900,∠AOO 1= 900,因此,选择一组基向量{}1,,OO OB OA ,则 OA OO AO -=11, 11OO OA OB B A --=, ∴ 790cos 322342012211=⨯⨯-+=•-+=OA OO OA OO AO ,同理 72221121221=•+•-•-++=OO OA OA OB OB OO OO OA OB B A ,又 12211111OO OA OA OB OA OO OA OO OB OO B A AO •++•--•-•=• 190cos 23390cos 23490cos 3260cos 220000=⨯++⨯--⨯-⨯=设异面直线A 1B 与AO 1所成的角为θ,则71,cos cos 111111=••=><=B A AO BA AOB A AO θ, 所以 71arccos =θ 总结与提高:关键是要找到一组能确定基向量夹角和模的基底。
高中数学:异面直线所成的角求法(汇总大全)
异面直线所成的角一、平移法:常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。
直角平移法:1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,求AD 、BC 所成角的大小.解:设BD 的中点G ,连接FG ,EG 。
在△EFG 中 EF =3FG =EG =1∴∠EGF =120° ∴AD 与BC 成60°的角。
2.正∆ABC 的边长为a ,S 为∆ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC和AB 的中点.求异面直线SA 和EF 所成角. 正确答案:45°3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA=2π,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN ,则QN ∥SM∴∠QNB 是SM 与BN 所成的角或其补角 连结BQ ,设SC =a ,在△BQN 中 BN =a 25 NQ =21SM =42a BQ =a 414∴COS ∠QNB =5102222=⋅-+NQ BN BQ NQ BN4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M 、N 分别是A 1B 1和A 1C 1的中点,若BC =CA =CC 1,求BM 与AN 所成的角.解:连接MN ,作NG ∥BM 交BC 于G ,连接AG , 易证∠GNA 是BM 与AN 所成的角.设:BC =CA =CC 1=2,则AG =AN =5,GN =BM =6, cos ∠GNA =1030562556=⨯⨯-+。
如何求异面直线所成的角
如何求异面直线所成的角立体几何在中学数学中有着重要的地位,求异面直线所成的角是其中重的内容之一,也是高考的热点,求异面直线所成的角常分为三个步骤:作→证→求。
其中“作”是关键,那么如何作两条异面直线所成的角呢本文就如何求异面直线所成的角提出了最常见的几种处理方法。
Ⅰ、用平移法作两条异面直线所成的角一、端点平移法例1、在直三棱柱111C B A ABC -中,090CBA ∠=,点D ,F 分别是11A C ,11A B 的中点,若1AB BC CC ==,求CD 与AF 所成的角的余弦值。
解:取BC 的中点E ,连结EF ,DF ,//DF EC 且DF EC =∴四边形DFEC 为平行四边形//EF DC ∴EFA ∴∠(或它的补角)为CD 与AF 所成的角。
设2AB =,则EF =AF =EA =故2222EF FA EA EFA EF FA +-∠==arccos10EFA ∴∠=二、中点平移法例2、在正四面体ABCD 中, M ,N 分别是BC ,AD 的中点,求AM 与CN 所成的角的余弦值。
解:连结MD ,取MD 的中点O ,连结NO ,1O 、N 分别MD 、AD 为的中点,∴NO 为DAM ∆的中位线, ∴//NO AM ,ONC ∴∠(或它的补角)为AM 与CN 所成的角。
设正四面体ABCD 的棱长为2,则有2NO =,CN =2CO =, 故2222cos 23NO CN CO ONC NO CN +-∠== 2arccos 3ONC ∴∠=三、特殊点平移法例3、如图,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知4AB =,20CD =,7EF =,13AF BE FD EC ==,求异面直线AB 与CD 所成的角。
解:在BD 上取一点G ,使得13BG GD =,连结EG FG 、,在BCD ∆中,13BE BG EC GD ==,故//EG CD ,同理可证://FG ABFGE ∴∠(或它的补角)为AB 与CD 所成的角。
异面直线所成角求解方法:平面投影与夹角计算
异面直线所成角求解方法:平面投影与夹角计算
在立体几何中,求解异面直线所成的角,可以采用以下步骤:
1.确定两条异面直线,并选择其中一条作为基准。
2.在这条基准直线上选择一个点,作为求解异面直线所成角的起点。
3.分别过这条基准直线上的点和另一条异面直线作平面,这两个平面会相交
于一条直线。
4.计算这条交线与基准直线的夹角,即为异面直线所成的角。
具体来说,假设两条异面直线分别为$l_1$和$l_2$,其中$l_1$为基准直线,点$P$在$l_1$上,过点$P$和$l_2$作平面$\alpha$和$\beta$,两平面相交于直线$m$。
由于$m$与$l_1$的夹角是异面直线$l_1$和$l_2$所成的角,记作$\angle l_1 m l_2$。
为了求解$\angle l_1 m l_2$,可以在平面$\alpha$上过点$P$作直线$n \parallel l_2$,交直线$m$于点$Q$。
由于$\angle l_1 PQ$是两平面$\alpha$和$\beta$的夹角,也是直线$l_1$和直线$m$的夹角,记作$\angle l_1 m l_2'$。
因此,异面直线所成的角$\angle l_1 m l_2 = \angle l_1 m l_2'$。
通过以上步骤,我们可以求解出异面直线所成的角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异面直线所成的角的求法
法一:平移法
例1:在正方体1111ABCD A B C D -中,求下列各对异面直线所成的角。
(1)1AA 与BC ; (2)1DD 与1A B ; (3)1A B 与AC 。
法二:中位线
例2:在空间四边形ABCD 中,AB =CD ,且AB ⊥CD ,点M 、N 分别为BC 、AD 的中点,求直线AB 与MN 所成的角。
变式:在空间四边形ABCD 中,点M 、N 分别为BC 、AD 的中点,AB =CD =2,且MN =
,求直线AB 与CD 所成的角。
习题1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,
求AD 、BC 所成角的大小.
2.正∆ABC 的边长为a ,S 为∆ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别
是SC 和AB 的中点.求异面直线SA 和EF 所成角.
3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =
∠CSA =
2
π,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值.
4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M 、N 分别是A 1B 1和A 1C 1的中点,若BC =CA =CC 1,求BM 与AN 所成的角.
5.如图1—28的正方体中,E 是A′D′的中点
(1)图中哪些棱所在的直线与直线BA′成异面直线?
(2)求直线BA′和CC′所成的角的大小;
(3)求直线AE 和CC′所成的角的正切值;
(4)求直线AE 和BA′所成的角的余弦值
B M A N
C S B ' (图1-28) A ' A B C '
D ' C D F E
法三:补形法
例3:如图,PA ⊥平面ABC ,∠ACB=90°且PA=AC=BC ,求下列各
对异面直线所成的角的正切值.(1)PB 与AC ;(2)AB 与PC 。
法四:空间向量法
例4:在正方体1111ABCD A B C D -中,E 、F 分别是1,BB CD 的中点,求证:1AE D F ⊥
变式1. 如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是相邻两侧面BCC 1B 1及CDD 1C 1的中心。
求A 1E 和B 1F 所成的角的余弦值。
2.已知空间四边形ABCD 中,AB=BC=CD=DA=AC=BD=a ,M 、N 分别为BC 和AD 的中点,设AM 和CN 所成的角为α,求cosα的值。
B A
C
D F
E B A D C
3. 已知空间四边形ABCD 中,AB=CD=3,E 、F 分别是BC 、AD 上的点,且BE :EC=AF :FD=1:2,EF=7,求AB 和CD 所成的角的大小。
法五:证明垂直法
例5:在正方体1111ABCD A B C D -中,E 、F 分别是1,BB CD 的中点,求1AE D F 与所成的角。
变式:在长方体1111ABCD A B C D -中,E 是1BB
的中点,12,AA AB BC ===,求1AE D C 与所成的角。
利用模型求异面直线所成的角
模型:引理:已知平面α的一条斜线a 与平面α所成的角为θ1,平面α内的一条直线b 与斜线
a 所成的角为θ,与它的射影a′所成的角为θ2。
求证:cosθ= cosθ1·cosθ2。
A B C
D E F G
1.如图,MA ⊥平面ABCD ,四边形ABCD 是正方形,且MA=AB=a ,试求异面直线MB 与AC 所成的角。
2 已知三棱柱111ABC A B C 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )
(A )34 (B )54 (C )74
(D) 34
3. 如图,在立体图形P-ABCD 中,底面ABCD 是一个直角梯形,∠BAD=90°,AD//BC ,AB=BC=a ,AD=2a ,且PA ⊥底面ABCD ,PD 与底面成30°角,AE ⊥PD 于D 。
求异面直线AE 与CD 所成的角的余弦值。
P
E
D F A
B
C B C B C A 111D
A B C D M
练习题:
1.在正四面体ABCD 中,点M 、N 分别为BC 、AD 的中点,则直线AB 与MN 所成的角为_______。
2.长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角为_______
3.直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于________________.
4. 已知正四棱柱1111ABCD A B C D -中,12AA AB =,E 为1AA 中点,
则异面直线BE 与1CD 所成的角的余弦值为________________.
5.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为________________.
6.如图1,P 是正方形ABCD 所在平面外一点,PD ⊥平面ABCD ,PD AD =,则PA 与BD 所成的角的度数为________________.
7。
设空间四边形ABCD ,E 、F 、G 、H 分别是AC 、BC 、DB 、DA 的中
点,若AB =122,CD =4 2,且四边形EFGH 的面积为12 3,
则AB 和CD 所成的角为_______.
8.如图⊥PA 平面ABCD,ABCD 为正方形,且PA=AB,M 、N 分别
为PB 、CD 的中点,求 (1)PA 与CD 所成的角;
(2)PD 与BC 所成的角;
(3)PD 与AC 所成的角;
(4)MN 与PA 所成角的余弦值;
(5)MN 与BC 所成角的余弦值;
(6)MN 与BD 所成角的余弦值; H G
F E D C B A。