高等数学(专升本)

合集下载

《高等数学(二)》专升本考试大纲

《高等数学(二)》专升本考试大纲

高等数学(二)专升本考试大纲一、考试内容本次高等数学(二)专升本考试内容主要包括以下几个方面:1.函数的连续性与一致连续性2.曲线的切线与法线3.微分学的应用4.不定积分5.定积分与应用6.微分方程二、考试要求1.掌握函数的连续性与一致连续性的判定方法,并能灵活应用于解题过程中。

2.理解曲线的切线与法线的概念,并能运用导数的定义和性质求解切线和法线的方程。

3.了解微分学的基本概念,并能应用微分学知识解决实际问题。

4.掌握不定积分的定义和基本性质,并能进行常见函数的积分运算。

5.熟悉定积分的定义和基本性质,并能运用定积分求解简单的几何问题。

6.理解微分方程的概念,并能根据给定的微分方程解决实际问题。

三、考试形式本次高等数学(二)专升本考试采取闭卷形式,包括选择题和解答题。

1.选择题:共计50道选择题,每题2分,满分100分。

选择题主要测试考生对基本概念和理论的理解程度。

2.解答题:共计3道解答题,每题30分,满分90分。

解答题主要测试考生的问题分析和解决能力。

四、复习重点1.函数的连续性与一致连续性–连续函数的定义–连续函数的性质–一致连续函数的定义和判定方法2.曲线的切线与法线–切线的概念和性质–法线的概念和性质–切线和法线的方程求解方法3.微分学的应用–极值与最值–函数的增减与凹凸性–求解最值和极值问题4.不定积分–不定积分的定义和基本性质–常见函数的积分运算方法–积分表的使用技巧5.定积分与应用–定积分的定义和基本性质–定积分的计算方法–几何应用和物理应用6.微分方程–微分方程的基本概念和分类–解微分方程的一般步骤–常微分方程的应用五、备考建议1.提前制定复习计划,合理安排学习时间。

2.多做习题,加强对知识点的理解和应用。

3.注意整理复习笔记,方便日后的复习和回顾。

4.多参考往年的真题和模拟试卷,了解考试形式和难度。

5.针对考试要求的不同部分,进行有针对性的复习和训练。

六、考前注意事项1.睡眠充足,保持良好的精神状态。

高等数学专升本考试教材

高等数学专升本考试教材

高等数学专升本考试教材高等数学是专升本考试中的一门重要课程,对于考生来说,选择适合的教材是备考过程中不可忽视的一环。

合适的教材能够帮助考生系统地学习各个知识点,掌握解题技巧,提升解题能力。

本文将介绍几本常用的高等数学专升本考试教材,供考生参考选择。

1.《高等数学(下)》《高等数学(下)》是由清华大学出版社出版的教材,适合专升本考试的备考。

该教材内容全面,系统地阐述了高等数学的各个知识点,包括微积分、重积分和无穷级数、常微分方程等内容。

教材注重理论与实际应用的结合,每个知识点都有大量的例题和习题,考生可以通过练习巩固所学知识。

2.《高等数学(上)》《高等数学(上)》是由北京大学出版社出版的教材,也是备考专升本考试的优秀选择。

该教材内容清晰、逻辑性强,注重培养学生的数学思维和解题能力。

教材结合详细的解题步骤和答案解析,帮助考生理解和掌握解题的方法和技巧。

3.《高等数学习题解析与方法讲义》《高等数学习题解析与方法讲义》是由高等教育出版社出版的重点教材,主要针对专升本考试的习题解析和方法讲解。

该教材通过精选的习题,详细解答了每个知识点的典型例题,并给出了解题的思路和技巧。

考生可以通过针对性地练习这些习题,加深对知识点的理解和掌握。

4.《高等数学精解与习题选讲》《高等数学精解与习题选讲》是由高等教育出版社出版的备考教材,主要侧重于重点难点习题的解析和选讲。

该教材通过分析高等数学考试的命题规律,选取了一些典型和难度较高的习题进行解析,并提供了解题思路和方法。

考生可以通过研读这些习题的解析,提高解题能力和应试水平。

总的来说,选择适合的高等数学专升本考试教材对于备考至关重要。

考生可以根据自身的学习习惯和备考需求,选择适合的教材进行学习和练习,同时结合课堂教学和其他参考资料进行综合备考。

通过系统地学习和大量的练习,考生将能够在高等数学专升本考试中取得优异的成绩。

祝各位考生顺利通过考试,实现升本梦想!。

河南高等数学专升本试题

河南高等数学专升本试题

河南高等数学专升本试题班级:________________ 学号:________________ 姓名:______________一、单选题(每题3分)1.设函数(f(x)=x3−3x+2),则该函数在区间([−2,2])上的最大值为:• A. 4• B. 2• C. 6• D. 0_ 答案:A. 4_=a),则常数(a)的取值为:2.若极限(lim x→0sin(ax)x• A. 0• B. 1• C. 2• D. 不存在_ 答案:B. 1_3.设(f(x)=e x−x−1),则对于任意实数(x),函数(f(x))的符号为:• A. 恒正• B. 恒负• C. 先正后负• D. 先负后正_ 答案:A. 恒正 _4. 曲线(y =x 2)与直线(y =4)所围成的图形面积为:• A.(323)• B. 16• C.(163)• D. 8_ 答案:A.(323)_5. 若级数(∑1n p ∞n=1)收敛,则(p )的取值范围是:• A.(p >1)• B.(p <1)• C.(p >0)• D.(p <0) _ 答案:A.(p >1)_ 二、多选题(每题4分)1. 下列函数中哪些是周期函数?• (A)(f (x )=sin (2x ))• (B)(f (x )=x 2)• (C)(f (x )=cos (πx ))• (D)(f (x )=e x )答案: A, C解析: 周期函数是指存在一个非零常数(T),使得对所有定义域内的(x)都有(f(x+T)=f(x))成立。

显然,选项(A)与(C)分别是周期为(π)和2的周期函数,而(B)与(D)不是周期函数。

2.设函数(f(x)=x3−6x2+9x+1),则下列哪些点是它的极值点?•(A)(x=1)•(B)(x=3)•(C)(x=0)•(D)(x=2)答案: A, B解析: 求导得(f′(x)=3x2−12x+9),令其等于0解得(x=1)和(x=3)。

专升本高等数学公式

专升本高等数学公式

专升本高等数学公式高等数学(专升本)是一门重要的学科,其中涉及了许多重要的公式和定理。

下面是一些在这门课程中常见的高等数学公式:一、极限1.基本极限公式:- 常数函数极限:lim(c) = c (c为常数)- 幂函数极限:lim(x^n) = a^n (n为常数)- 三角函数极限:lim(sin x) = sin a (a为常数)- 指数函数极限:lim(a^x) = a^a (a为常数)- 对数函数极限:lim(log_a x) = log_a a (a为常数)- 指数函数、对数函数极限:lim(a^x - 1) = ln a (a为正常数)- 指数函数、对数函数极限:lim(log_a (1 + x)) = ln a (a为正常数)2.无穷小与无穷大的性质:-无穷小的乘除性质-无穷小与有界量的乘除性质-无穷小的常数倍性质-无穷小与有界量的加减性质-无穷大的加减乘除性质-无穷小与无穷大的关系3.极限的运算法则:-四则运算法则-复合函数法则-两个无穷小量乘积的极限二、导数和微分1.基本导数公式:-变量常数的导数:d(c)=0(c为常数)- 幂函数导数:d(x^n) = nx^(n-1) (n为常数)- 三角函数导数:d(sin x) = cos x (d为常数)- 三角函数导数:d(cos x) = -sin x (d为常数)- 指数函数导数:d(a^x) = a^xlna (a为常数)- 对数函数导数:d(log_a x) = 1/(xlna) (a为常数,且x>0) 2.复合函数导数:-链式法则:d(f(g(x)))=f'(g(x))*g'(x)3.导数的法则:- 和差法则:d(u ± v) = du/dx ± dv/dx- 积法则:d(uv) = u * dv/dx + v * du/dx- 商法则:d(u/v) = (v * du/dx - u * dv/dx) / v^2三、不定积分1.基本积分公式:- 幂函数积分:∫(x^n)dx = (x^(n+1))/(n+1) + C (n不等于-1) - 指数函数积分:∫(a^x)dx = (a^x)/(lna) + C (a不等于1) - 三角函数积分:∫sin x dx = -cos x + C- 三角函数积分:∫cos x dx = sin x + C- 三角函数积分:∫sec^2 x dx = tan x + C- 三角函数积分:∫csc^2 x dx = -cot x + C- 对数函数积分:∫(1/x)dx = ln,x, + C2.基本积分性质:-积分的线性性质-积分的分部积分法-积分的换元法-积分的替换法四、微分方程1.常微分方程:- 一阶线性齐次方程:dy/dx + p(x)y = 0- 一阶线性非齐次方程:dy/dx + p(x)y = f(x)-二阶齐次方程:y''+p(x)y'+q(x)y=0-二阶非齐次方程:y''+p(x)y'+q(x)y=f(x)2.常微分方程的解法:-变量分离法-齐次方程的解法-一阶线性非齐次方程的解法-二阶齐次方程的解法-二阶非齐次方程的解法这些公式和定理是高等数学(专升本)中的一部分,掌握了这些公式对于学习和理解高等数学非常重要。

《高等数学》专升本教学大纲

《高等数学》专升本教学大纲

专升本《高等数学》课程教学大纲一、适用对象适用于网络教育、成人教育学生二、课程性质高等数学是大学各专业的公共基础课,在培养高素质人才中具有独特的、不可替代的重要作用。

通过本门课程的学习,要使学生获得高等数学的基本理论、基本方法和基本运算技能,为学习后续课程和进一步获得数学知识奠定基础。

前序课程:初等数学、高等数学前三章三、教学目的通过各个教学环节逐步培养学生具有抽象概括问题的能力、逻辑推理能力、空间想象能力、创造性思维能力和自学能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学数学知识分析问题和解决问题的能力。

四、教材及学时安排教材:《高等数学》电子科技大学出版社,2014年学时安排:五、教学要求第四章不定积分教学要求:1、理解原函数与不定积分的概念;2、了解不定积分的性质;3、灵活运用基本积分公式及方法;4、灵活运用换元积分法、分部积分法求不定积分;5、掌握简单的有理函数的积分法。

内容要点:4.1:原函数与不定积分的概念4.2:不定积分的性质和基本积分公式4.3:换元积分法4.4:分部积分法第五章定积分及其应用教学要求:1、理解定积分概念与性质;2、掌握积分上限函数及其导数,掌握牛顿-莱布尼兹公式;3、灵活运用换元积分法、分部积分法求定积分;4、掌握定积分的几何应用。

内容要点:5.1:定积分概念与性质5.2:微积分基本公式5.3:定积分的换元法与分部积分法5.5:定积分的应用第六章常微分方程教学要求:1、了解常微分方程及其解、通解、初始条件和特解等概念;2、掌握可分离变量方程及一阶线性方程的解法;内容要点:6.1:微分方程的基本概念6.2:一阶微分方程。

《高等数学》(专升本)试题及参考答案

《高等数学》(专升本)试题及参考答案

《高等数学》(专升本)习题答案一、单选题1、若无穷级数收敛,而发散,则称称无穷级数(C)A发散 B收敛 C条件收敛 D绝对收敛2、点x=0是函数y=x^4的(D)A驻点但非极值点 B拐点 C驻点且是拐点 D驻点且是极值点3、极限(B)A B C1 D04、函数f(x)在点x0极限存在是函数在该点连续的(A)A必要条件 B充分条件 C充要条件 D无关条件5、(C)A B C0 D16、曲线y=1/∣x∣的渐近线情况是(C)A只有水平渐近线 B只有垂直渐近线C既有水平渐近线又有垂直渐近线 D既无水平渐近线又无垂直渐近线7、函数的定义域为(D)A B C D8、y=x/(x^2-1)的垂直渐近线有(B)条A1 B2 C3 D49、向量、垂直,则条件:向量、的数量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件D既非充分又非必要条件10、当x→0时,下列函数不是无穷小量的是(D)Ay=x By=0 Cy=ln(x+1) Dy=e^x11、,则(D)A BC D12、设f(x)=2^x-1,则当x→0时,f(x)是x的(D)A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无穷13、(A)A0 B C D14、若f(x)在x=x0处可导,则∣f(x)∣在处(C)A可导 B不可导 C连续但未必可导 D不连续15、直线上的一个方向向量,直线上的一个方向向量,若与平行,则(B)A BC D16、设函数y=f(x)在点x0处可导,且f′(x)>0, 曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为{C}A0 B∏/2 C锐角 D钝角17、设,则(A)A B C D18、函数y=x^2*e^(-x)及图象在(1,2)内是(B)A单调减少且是凸的 B单调增加且是凸的C单调减少且是凹的 D单调增加且是凹的19、和在点连续是在点可微分的(A)A充分条件 B必要条件 C充要条件 D无关条件20、以下结论正确的是(C )A 若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.21、无穷大量减去无穷小量是(D)A无穷小量 B零 C常量 D未定式22、下列各微分式正确的是(C)Axdx=d(x^2) Bcos2x=d(sin2x) Cdx=-d(5-x) Dd(x^2)=(dx^2)23、已知向量两两相互垂直,且,求(C)A1 B2 C4 D824、函数y=ln(1+x^2)在区间[-1,-2]上的最大值为(D)A4 B0 C1 Dln525、在面上求一个垂直于向量,且与等长的向量(D)A B C D26、曲线y=xlnx的平行于直线x-y+1=0的切线方程是(C)Ay=x By=(lnx-1)(x-1) Cy=x-1 Dy=-(x-1)27、向量与向量平行,则条件:其向量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件 D既非充分又非必要条件28、曲线y=e^x-e^-x的凹区间是(B)A(-∞,0) B(0,+∞) C(-∞,1) D(-∞,+∞)29函数在区间上极小值是(D)A-1 B1 C2 D030函数y=3x^2-x^3在区间[1,3]上的最大值为(A)A4 B0 C1 D331、若,则(A)A4 B0 C2 D32、已知y=xsin3x ,则dy=(B)A(-cos3x+3sin3x)dx B(3xcos3x+sin3x)dxC(cos3x+3sin3x)dx D(xcos3x+sin3x)dx33、二重极限(D)A等于0 B等于1 C等于 D不存在34、曲线 y=x^3+x-2 在点(1,0)处的切线方程是(B)Ay=2(x-1) By=4(x-1) Cy=4x-1 Dy=3(x-1)35、设,则(C)A BC D36、曲线y=2+lnx在点x=1处的切线方程是(B)Ay=x-1 By=x+1 Cy=x Dy=-x37、向量与轴与轴构成等角,与轴夹角是前者的2倍,下面哪一个代表的是的方向(C)A BC D38、半径R为的金属圆片,加热后伸长了R,则面积S的微分dS是(B)A∏RdR B2∏RdR C∏dR D2∏dR39、设在处间断,则有(D)A在处一定没有意义;B;(即);C不存在,或;D若在处有定义,则时,不是无穷小40、曲线y=x/(x+2)的渐进线为(D)Ax=-2 By=1 Cx=0 Dx=-2,y=141、若无穷级数收敛,且收敛,则称称无穷级数(D)A发散 B收敛 C条件收敛 D绝对收敛42、函数y=(x^2-1)^3的驻点个数为(B)A4 B3 C1 D243、曲线在点处的切线斜率是(A)A B C2 D44、M1(2,3,1)到点M2(2,7,4)的距离∣M1M2∣=(C)A3 B4 C5 D645、利用变量替换,一定可以把方程化为新的方程表达式(A)A B C D46、两个向量a与b垂直的充要条件是(A)Aab=0 Ba*b=0 Ca-b=0 Da+b=047、已知向量,求向量在轴上的投影及在轴上的分量(A)A27,51 B25,27 C25,51 D27,25 48、求抛物线 y=x^2与y=2-x^2 所围成的平面图形的面积(B)A1 B8/3 C3 D249、若,为无穷间断点,为可去间断点,则(C)A B C D50、要用铁板做一个体积为2m^3的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?(A)A均为³√2m时,用料最省. B均为³√3m时,用料最省.C均为√3m时,用料最省. D均为√2m时,用料最省.二、判断题1、设,则(错)2、已知曲线y=f(x)在x=2处的切线的倾斜角为5/6∏,则f′(2)=-1(错)3、对于无穷积分,有(对)4、定义函数极限的前提是该函数需要在定义处的邻域内有意义(对)5、函数的定义域是(对)6、函数就是映射,映射就是函数(错)7、设,且满足,则(错)8、函数有界,则界是唯一的(错)9、设是曲线与所围成,则,是否正确(错)10、极限存在,则一定唯一(对)11、在处二阶可导,且,若,则为极小值点(对)12、1/x的极限为0(错)13、设,其中,则,是否正确(对)14、1/n-1的极限为0(错)15、,是否正确(对)16、对于函数f(x),若f′(x0)=0,则x0是极值点(错)17、,是否正确(对)18、无界函数与其定义域没有关系(错)19、齐次型微分方程,设,则(对)20、若函数f(x)在x0处连续,则f(x)在x0处极限存在(对)21、函数可微可导,且(对)22、函数f(x)在[a,b]在内连续,且f(a)和f(b)异号,则f(x)=0在(a,b)内至少有一个实数根(对)23、微分方程的通解为,是否正确(对)24、y=e^(-x^2) 在区间(-∞,0)(1,∞)内分别是单调增加,单调增加(错)25、设是由所确定,函数在上连续,那么(对)26、有限个无穷小的和仍然是无穷小(对)27、是齐次线性方程的线性无关的特解,则是方程的通解(对)28、函数在一点的导数就是在一点的微分(错)29、设表示域:,则(错)30、方程x=cos在(0,∏/2)内至少有一实根(错)31、设,则,是否正确(对)32、f〞(x)=0对应的点不一定是曲线的拐点(对)33、设,其中,则(错)34、y=ln(1-x)/(1+x)是奇函数(对)35、设由所确定,则(对)36、方程x=cos在(0,∏/2)内至少有一实根(错)37、设在区间上连续,是的内点,如果曲线经过点时,曲线的凹凸性改变了,则称点为曲线的拐点(对)38、无穷间断点就是函数在该点的极限是无穷(对)39、设是圆周围成的区域,是否正确(对)40、定积分在几何上就是用来计算曲边梯形的面积(对)41、,是否正确(对)42、数列要么收敛,要么发散(对)43、函数在点可导(对)44、函数在一点处极限存在的充要条件是函数在该点的左极限等于右极限(对)45、在的邻域内可导,且,若:当时,;当时,则为极小值点(错)46、定积分在几何上就是用来计算曲边梯形的面积(对)47、二元函数的最小值点是(对)48、任何函数都可以求出定积分(错)49、设为,与为顶点三角形区域,则积分方程(对)50、若被积函数连续,则原函数不一定存在(错)。

高等数学专升本教材目录

高等数学专升本教材目录一、函数与极限1. 实数与数集2. 函数及其表示3. 函数的极限与连续性4. 极限运算与极限的存在准则5. 无穷小与无穷大6. 极限的运算法则二、微分学1. 导数的概念与运算法则2. 高阶导数与隐函数求导法3. 导数的几何应用4. 微分中值定理与导数的应用5. 微分学基本公式6. 泰勒公式与函数的展开三、积分学1. 不定积分与定积分的概念2. 定积分的性质与求法3. 反常积分的概念与判定4. 微积分基本公式与换元积分法5. 积分的几何应用6. 定积分的应用与物理应用四、级数与级数检查法1. 数项级数的概念2. 级数的收敛与发散3. 正项级数的比较判别法4. 正项级数的比值判别法5. 函数项级数的收敛性6. 幂级数与泰勒级数五、常微分方程1. 常微分方程的基本概念2. 可分离变量的常微分方程3. 齐次方程与一阶线性非齐次方程4. 高阶线性齐次方程5. 常系数非齐次线性微分方程6. 常微分方程的应用六、多元函数微分学1. 多元函数的概念与极限2. 偏导数及其几何应用3. 全微分与微分中值定理4. 多元函数的极值与最值5. 隐函数与参数方程的微分6. 多元函数的泰勒公式和极限运算法则七、重积分与曲线积分1. 二重积分的概念与性质2. 二重积分的计算方法3. 三重积分的概念与计算4. 重积分的应用5. 曲线积分的概念与计算6. 曲线积分的应用八、曲面积分与散度定理1. 曲面积分的概念与计算2. 散度的概念与计算3. 散度定理的应用4. Green公式与环流的计算5. 散度、旋度与调和函数6. Stokes公式与积分曲线无关性以上为《高等数学专升本教材》的目录,涵盖了高等数学的主要内容及其应用。

无论是函数与极限、微分学、积分学、级数与级数检查法、常微分方程、多元函数微分学,还是重积分与曲线积分、曲面积分与散度定理等章节都对数学专升本的学生提供了全面的知识体系和解题技巧。

这本教材将帮助学生深入理解高等数学的基本概念和原理,并能应用于实际问题的求解中。

高等数学专升本教材目录及答案

高等数学专升本教材目录及答案一、导数与微分1. 函数的极限与连续2. 导数与微分基本概念3. 导数的计算方法4. 高阶导数与隐函数求导5. 微分中值定理与柯西中值定理二、一元函数微分学1. 函数的单调性与极值2. 函数的凸凹性与拐点3. 函数的图形与曲率4. 泰勒公式与应用5. 函数的极限、连续与导数的关系三、不定积分与定积分1. 不定积分的概念与性质2. 基本不定积分表与常用积分公式3. 定积分的概念与性质4. 定积分的计算方法5. 反常积分与应用四、一元函数积分学1. 牛顿-莱布尼兹公式与基本积分表2. 定积分的应用3. 弧长、曲线面积与旋转体体积4. 广义积分的判敛准则5. 广义积分的计算方法五、常微分方程1. 常微分方程的基本概念2. 齐次线性微分方程3. 非齐次线性微分方程4. 二阶线性常系数微分方程5. 常微分方程的应用六、多元函数微分学1. 多元函数的极限与连续2. 多元函数的偏导数与全微分3. 隐函数与参数方程求导4. 方向导数与梯度5. 多元函数的极值与条件极值七、多元函数积分学1. 重积分的概念与性质2. 二重积分的计算方法3. 三重积分的计算方法4. 牛顿公式与应用5. 曲线积分与曲面积分八、常微分方程与偏微分方程1. 线性常微分方程2. 高阶线性常微分方程3. 偏微分方程基本概念与分类4. 常见偏微分方程及其求解方法5. 偏微分方程的应用九、级数与幂级数1. 数项级数的收敛性与发散性2. 收敛级数的性质与判定法3. 幂级数的收敛半径与区间4. 幂级数的性质与求和5. 函数展开与傅里叶级数十、向量代数与空间解析几何1. 空间向量的基本概念与运算2. 空间直线与平面的方程3. 空间曲线与曲面的方程4. 空间解析几何中的重要定理5. 空间向量与几何应用本教材目录包含了高等数学专升本课程的各个重要章节,涵盖了导数与微分、一元函数微分学、不定积分与定积分、一元函数积分学、常微分方程、多元函数微分学、多元函数积分学、常微分方程与偏微分方程、级数与幂级数以及向量代数与空间解析几何等内容。

专升本高等数学复习资料

专升本高等数学复习资料引言高等数学是专升本考试中的重要科目之一,也是很多考生普遍认为较为困难的科目。

为了帮助考生更好地复习高等数学,本文整理了一些复习资料,并提供了一些复习建议和学习方法,以便考生有效提高复习的效果。

知识点梳理1.集合与函数2.极限与连续3.导数与微分4.积分与不定积分5.一元函数微分学应用6.函数积分学应用7.无穷级数8.空间解析几何与向量代数9.多元函数微分学10.重积分11.曲线与曲面积分12.常微分方程复习建议1.制定合理的学习计划:根据自己的实际情况和时间安排,合理分配每天的学习时间,将高等数学的复习安排在日程中。

2.理解概念,掌握基础知识:高等数学是建立在基础知识上的,要牢固掌握集合与函数、极限与连续、导数与微分等基本概念。

3.多进行例题训练:通过做大量的例题,不仅可以巩固基本知识,还能提高解题能力和应对考试的信心。

4.多与他人讨论、交流:在学习过程中,可以与同学或老师进行讨论,互相交流,共同进步。

5.制作思维导图或总结笔记:通过制作思维导图和总结笔记,可以将知识点整理归纳,增强记忆效果。

学习方法制作复习大纲在开始高等数学的复习前,可以先制作一个复习大纲,列出每个章节的主要内容和重点,有助于将知识点整理清楚并有条理地复习。

划分优先级根据复习进度和自己的掌握情况,将知识点划分为重点、难点和易点,并根据优先级合理安排时间。

对于重点和难点的内容,可以多花时间和精力进行深入学习和理解。

多做例题做例题是巩固知识和提高解题能力的有效方法。

可以选择一些习题集进行练习,挑选出一些典型的例题进行反复训练,掌握解题方法和思路。

参考教辅资料在复习过程中,可以选择一些高等数学的教辅资料作为参考,学习其中的例题和解题技巧。

同时,可以寻找一些经典的教材和参考书籍进行参考阅读,扩充知识面。

讨论交流在学习过程中,可以与同学或老师进行讨论和交流。

通过讨论和交流,可以互相答疑解惑,发现自己的不足之处,相互学习和进步。

完整版专升本高等数学知识点汇总

完整版专升本高等数学知识点汇总高等数学是专升本考试的重点科目之一,其课程内容包括微积分、数学分析、线性代数、概率论、数值计算等多方面的知识。

以下就是完整版的专升本高等数学知识点汇总:一、微积分(一)函数的极限和连续性1. 函数极限的定义和计算方法2. 充分条件和必要条件等述和运用3. 连续函数的概念和性质4. 零点定理、介值定理、最大值最小值定理5. 导数和微分6. 黎曼和与积分(二)微分方程1. 基本概念和解的存在唯一性定理2. 分离变量法、齐次方程、线性方程和二阶线性齐次方程3. 变量分离法、常系数齐次线性微分方程和欧拉公式(三)多元函数微积分1. 偏导数、全微分、隐函数定理和函数极值2. 二元函数定积分和变量替换法3. 重积分、累次积分和极坐标下的重积分(四)级数1. 序列极限、级数部分和的极限和级数收敛的定义2. 正项级数收敛判别法和比较判别法3. 极限比值法、根值法、阿贝尔定理和绝对收敛二、线性代数(一)行列式1. 行列式的定义、性质和元素和运算2. 克拉默法则和余子式、代数余子式的定义3. 行列式的计算和逆阵的求法(二)矩阵1. 矩阵的定义和性质2. 矩阵的运算:加法、数乘、乘法3. 矩阵的逆和伴随矩阵4. 线性方程组的解法:高斯消元法、初等变换法、矩阵法(三)向量空间1. 向量空间的定义和性质2. 线性无关、线性相关、秩和基础矩阵3. 子空间、直和空间、坐标系(四)特征值和特征向量1. 特征值的定义、性质和计算2. 特征向量的定义和寻找3. 对角矩阵和相似变换三、概率论(一)随机事件和随机变量1. 随机事件和概率的定义和性质2. 条件概率和乘法公式3. 随机变量的定义、分布函数和密度函数(二)随机变量的分布1. 常见离散型分布:伯努利分布、二项分布、泊松分布等2. 常见连续型分布:均匀分布、正态分布、指数分布等(三)随机变量的数字特征1. 数理期望和方差2. 协方差和相关系数3. 大数定律和中心极限定理四、数学分析(一)无穷级数1. 函数项级数、幂级数和几何级数2. Abel定理和Dirichlet定理(二)函数的连续性和可导性1. 极限的闭合性和连续函数的性质2. 可导函数的定义、求导公式和求导法则3. 微分中值定理和泰勒公式(三)广义积分1. 广义积分的概念、性质和判别法2. 常见的特殊函数与收敛性讨论五、数值计算(一)插值法1. 拉格朗日插值、牛顿插值与分段线性插值2. 多项式插值误差和插值余项(二)数值微积分1. 求积公式的概念和性质2. Newton-Cotes公式和Gauss-Legendre公式3. 自适应辛普森公式和数值微分公式以上便是专升本高等数学知识点的完整汇总,考生通过此份知识点汇总可做到有的放矢,聚焦重点,帮助他们更好地备战考试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

郑州工商学院
期末考试
1. (单项选择) (本题2分)
A.
B.
C.
D.
答案: C
解析: 无
2. (单项选择) (本题2分)
A. 正确
B. 错误
答案: A
解析: 无
3. (单项选择) (本题2分)
A. 正确
B. 错误
答案: A
解析: 无
4. (单项选择)如果一个行列式为零,则此行列式()。

(本题2分)
A. 必有两行(或列)元素对应相等
B. 必有两行(或列)元素对应成比例
C. 必有一行(或列)元素全为零
D. 以上说法都不一定成立
答案: D
解析: 无
5. (单项选择) (本题2分)
A.
B.
C.
D.
答案: C
解析: 无
6. (单项选择) (本题2分)
A.
B.
C.
D.
答案: D
解析: 无
7. (单项选择) (本题2分)
A.
B.
C.
D.
答案: B
解析: 无
8. (单项选择) (本题2分)
A.
B.
C.
D.
答案: D
解析: 无
9. (单项选择)()。

(本题2分)
A. m-1
B. m
C. m+1
D. m/2
答案: B
解析: 无
10. (单项选择) (本题2分)
A.
B.
C.
D.
答案: A
解析: 无
11. (单项选择)事件A与B相互独立的充分必要条件是()。

(本题2分)
A.
B.
C.
D.
答案: D
解析: 无
12. (单项选择) (本题2分)
A. 正确
B. 错误
答案: B
解析: 无
13. (单项选择) (本题2分)
A.
B.
C.
D.
答案: A
解析: 无
14. (单项选择)
(本题2分)
A. 正确
B. 错误
答案: A
解析: 无
15. (单项选择) (本题2分)
A. 正确
B. 错误
答案: A
解析: 无
16. (单项选择)回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。

运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

(本题2分)
A. 正确
B. 错误
答案: A
解析: 无
17. (单项选择)下列各对函数中,()中的两个函数相等。

(本题2分)
A.
B.
C.
D.
答案: D
解析: 无
18. (单项选择) (本题2分)
A. 充分必要条件
B. 充分但非必要条件
C. 必要但非充分条件
D. 无关条件
答案: C
解析: 无
19. (单项选择) (本题2分)
A. 1
B. -1
C. 不存在
答案: C
解析: 无
20. (单项选择)在单个正态总体的假设检验中,当均值未知时,对于方差的检验可采用()。

(本题2分)
A. U检验法
B. t检验法
C. x2检验法
D. 以上三种均可
答案: C
解析: 无
21. (单项选择) (本题2分)
A.
B.
C.
D.
答案: A
解析: 无
22. (单项选择) (本题2分)
A. 正确
B. 错误
答案: B
解析: 无
23. (单项选择)
(本题2分) A.
B.
C.
D.
答案: A
解析: 无
24. (单项选择)()。

(本题2分)
A. 20
B. 15
C. 10
D. -20
答案: A
解析: 无
25. (单项选择) (本题2分)
A.
B.
C.
D.
答案: B
解析: 无
26. (单项选择)在抽样研究中,由于样本所来自的总体其参数是未知的,只能根据样本统计量对其所来自总体的参数进行估计,如果要比较两个或几个总体的参数是否相同,也只能分别从这些总体中抽取样本,根据这些样本的统计量作出统计推断,籍此比较总体参数是否相同。

由于存在抽样误差,总体参数与样本统计量并不恰好相同,因此判断两个或多个总体参数是否相同是一件很困难的事情。

(本题2分)
A. 正确
B. 错误
答案: A
解析: 无
27. (单项选择)五阶行列式的代数余子式带负号的有()项。

(本题2分)
A. 12
B. 14
C. 13
D. 11
答案: A
解析: 无
28. (单项选择) (本题2分)
A. 0
B. a
C. c
D. b
答案: C
解析: 无
29. (单项选择)方差分析是用于两个及两个以上样本均数差别的显著性检验。

由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。

(本题2分)
A. 正确
B. 错误
答案: A
解析: 无
30. (单项选择)若奇函数f(x)在[2,5]上是增函数,且最小值为3,则f(x)在[-5,-2]上是()。

(本题2分)
A. 增函数且最小值为-3
B. 增函数且最大值为-3
C. 减函数且最小值为-3
D. 减函数且最大值为-3
答案: B
解析: 无
31. (填空题)5若,则__. (本题2分)
答案:
解析: 无
32. (填空题)__. (本题2分)
答案: 2
解析: 无
33. (填空题)函数的定义域是__. (本题2分)
答案:
解析: 无
34. (填空题)设,则__. (本题2分) 答案: 1
解析: 无
35. (填空题)
___________
(本题2分)
答案: 0
解析: 无
36. (简答题)
求下列函数的导数
,求
(本题15分)
答案:
解析: 无
37. (简答题)求下列函数的导数
,求
(本题15分)
答案:
解析: 无。

相关文档
最新文档