第3章 空间向量与立体几何 §3.2 立体几何中的向量方法

合集下载

高中数学人教A版选修1-1第3章3-2立体几何中的向量方法教案

高中数学人教A版选修1-1第3章3-2立体几何中的向量方法教案

即 a2 = 3x2 + 2(3x2 cos )
x=
1a
3 + 6 cos
∴ 这个四棱柱的对角线的长可以确定棱长。
(3)本题的晶体中相对的两个平面之间的距离是多少?(提示:求
两个平行平面的距离,通常归结为求两点间的距离)
分析:面面距离 点面距离 向量的模 回归图形
解: 过 A1点作 A1H ⊥ 平面 AC 于点 H.
解:
设平面 AEF 的法向量为
则有
6,如图所示建立坐标系,有
为平面 AEF 的单位法向量。
分别求平面 SAB 与平面 SDC 的法向量,并求出它们夹角的余弦。 解:因为 y 轴 平面 SAB,所以平面 SAB 的法向量为 设平面 SDC 的法向量为, 由
§3.2.2 空间角与距离的计算举例
【学情分析】:
空间中的几何元素
如图,在空间中,我们取一点 O 作为基点,那么空间中任意一点 P 点、直线、平面的
的位置就可以用向量 OP 来表示.称向量 OP 为点的位置向量。
位置的向量表示方 法。
●P
基点 O●
2. 思考:在空间中给定一个定点 A 和一个定方向(向量),能确定一条直
线在空间的位置吗? l
a
P
A
AP = a( R)
∴ sin BAD = 1− 9 = 32 , 105 35
五、小结 六、作业
∴ S ABCD =| AB | | AD | sin BAD = 8 6 .
1. 点、直线、平面的位置的向量表示。 2. 线线、线面、面面间的平行与垂直关系的向量表示。 A,预习课本 105~110 的例题。 B,书面作业:
(1)求证: AP 是平面 ABCD 的法向量; (2)求平行四边形 ABCD 的面积.

第3章 空间向量与立体几何 §3.2 立体几何中的向量方法 (三)—— 利用向量方法求距离

第3章  空间向量与立体几何   §3.2 立体几何中的向量方法  (三)—— 利用向量方法求距离

§3.2 立体几何中的向量方法(三)—— 利用向量方法求距离知识点一 求两点间的距离已知矩形ABCD 中, AB =4, AD =3, 沿对角线AC 折叠, 使面ABC 与面ADC垂直, 求BD 间的距离.解 方法一过D 和B 分别作DE ⊥AC 于E, BF ⊥AC 于F, 则由已知条件可知AC =5, ∴DE =3×45=125, BF =3×45=125.∵AE =AD 2AC =95=CF,∴EF =5-2×95=75,∴DB u u u r =DE →+EF u u u r +FB →.|DB u u u r |2= (DE →+B 1E →+FB →)2=DE →2+EF u u u r 2+FB →2+2DE →·EF u u u r +2DE →·FB →+2EF u u u r ·FB →. ∵面ADC ⊥面ABC, 而DE ⊥AC, ∴DE ⊥面ABC, ∴ DE ⊥BF, DE → ⊥FB →,|DB u u u r |2=DE →2+B 1E →2+FB →2=14425+4925+14425=33725,∴|DB u u u r |=3375.故B 、D 间距离是3375. 方法二同方法一.过E 作FB 的平行线EP, 以E 为坐标原点, 以EP, EC, ED 所在直线分别为x 、y 、z 轴建立空间直角坐标系如图.则由方法一知DE =FB =125, EF =75, ∴D ⎝⎛⎭⎫0,0,125, B ⎝⎛⎭⎫125,75,0, ∴BD u u u r =⎝⎛⎭⎫125,75,-125, | BD u u u r|=⎝⎛⎭⎫1252+⎝⎛⎭⎫752+⎝⎛⎭⎫-1252=3375. 【反思感悟】 求两点间的距离或某线段的长度的方法: (1)把此线段用向量表示, 然后用|a |2=a·a 通过向量运算去求|a |.(2)建立空间坐标系, 利用空间两点间的距离公式d =(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2求解.如图所示, 正方形ABCD, ABEF 的边长都是1, 而且平面ABCD ⊥平面ABEF, 点M 在AC 上移动, 点N 在BF 上移动, 若CM =BN =a(0<a < 2).(1)求MN 的长;(2)当a 为何值时, MN 的长最小. 解 (1)建立如图所示的空间直角坐标系, 则A(1,0,0), F(1,1,0), C(0,0,1) ∵CM =BN =a(0<a<2),且四边形ABCD 、ABEF 为正方形, ∴M(22a,0,1-22a), N(22a, 22a,0), ∴|MN →=(0, 22a, 22a -1), ∴|MN →|=a 2-2a +1.(2)由(1)知MN =(a -22)2+12,所以, 当a=22时, MN =22. 即M 、N 分别移到AC 、BF 的中点时, MN 的长最小, 最小值为22. 知识点二 求异面直线间的距离如图所示, 在三棱柱ABC —A 1B 1C 1中, AB ⊥侧面BB 1C 1C, E 为棱CC 1上异于C 、C 1的一点, EA ⊥EB 1, 已知AB =2, BB 1=2, BC =1, ∠BCC 1=π3, 求异面直线AB 与EB 1的距离.解.以B 为原点, BA →、BA →所在直线分别为y 、z 轴, 如图建立空间直角坐标系. 由于BC =1, BB 1=2, AB =2, ∠BCC 1=π3,在三棱柱ABC —A 1B 1C 1中有B(0,0,0), A(0,0, 2), B 1(0,2,0),设 E (3,,02a ), 由EA ⊥EB 1, 得EA u u u r ·1EB u u u r=0,即⎝⎛⎭⎫-32,-a ,2·⎝⎛⎭⎫-32,2-a ,0=0, 得⎝⎛⎭⎫a -12⎝⎛⎭⎫a -32=0, 即a =12或a =32(舍去), 故E ⎝⎛⎭⎫32,12,0.设n 为异面直线AB 与EB 1公垂线的方向向量, 由题意可设n =(x, y,0),则有n ·1EB u u u r=0.易得n =(3, 1,0), ∴两异面直线的距离d =BE n n⋅u u u r=⎪⎪⎪⎪⎝⎛⎭⎫32,12,0·(3,1,0)3+1=1.【反思感悟】 求异面直线的距离, 一般不要求作公垂线, 若公垂线存在, 则直接求解即可;若不存在, 可利用两异面直线的法向量求解.如图所示, 在长方体ABCD —A 1B 1C 1D 1中, AB =4, AD =3, AA 1=2, M 、N 分别为DC 、BB 1的中点, 求异面直线MN 与A 1B 的距离.解 以A 为原点, AD 、AB 、AA 1所在直线分别为x, y, z 轴建立空间直角坐标系, 则A 1(0,0,2), B(0,4,0), M(3,2,0), N(0,4,1).∴|MN →=(-3,2,1), 1A B u u u u r =(0,4, -2).设MN 、A 1B 公垂线的方向向量为 n =(x, y, z),则10,0,n MN n A B ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u u r即⎩⎪⎨⎪⎧-3x +2y +z =04y -2z =0.令y =1, 则z =2, x =43,即n =⎝⎛⎭⎫43,1,2, |n |=613. 1MA u u u u r=(-3,-2,2)在n 上的射影的长度为d =1MA nn⋅u u u u r ,故异面直线MN 与A 1B 的距离为66161.知识点三 求点到平面的距离在三棱锥B —ACD 中, 平面ABD ⊥平面ACD, 若棱长AC =CD =AD =AB =1, 且∠BAD =30°, 求点D 到平面ABC 的距离.解如图所示, 以AD 的中点O 为原点, 以OD 、OC 所在直线为x 轴、y 轴, 过O 作OM ⊥面ACD 交AB 于M, 以直线OM 为z 轴建立空间直角坐标系,则A ⎝⎛⎭⎫-12,0,0, B ⎝ ⎛⎭⎪⎫3-12,0,12, C ⎝⎛⎭⎫0,32,0, D ⎝⎛⎭⎫12,0,0, ∴AC u u u r =⎝⎛⎭⎫12,32,0,AB u u u r =⎝⎛⎭⎫32,0,12, DC u u u r =⎝⎛⎭⎫-12,32,0,设n =(x, y, z)为平面ABC 的一个法向量,则31·0,2213·0,22AB x z AC x y ⎧⎫=+=⎪⎪⎪⎪⎨⎪⎪=+=⎪⎪⎩⎭n n u u u r u u u r , ∴y =-33x, z =-3x, 可取n =(-3, 1,3), 代入d =DC n n⋅u u u r , 得d =32+3213=3913,即点D 到平面ABC 的距离是3913. 【反思感悟】 利用向量法求点面距, 只需求出平面的一个法向量和该点与平面内任一点连线表示的向量, 代入公式求解即可.正方体ABCD —A 1B 1C 1D 1的棱长为4, M 、N 、E 、F 分别为A 1D 1、A 1B 1、C 1D 1、B 1C 1的中点, 求平面AMN 平面与EFBD 间的距离.解 如图所示, 建立空间直角坐标系D —xyz, 则A(4,0,0), M(2,0,4), D(0,0,0), B(4,4,0), E(0,2,4), F(2,4,4), N(4,2,4),从而EF u u u r =(2,2,0), MN →=(2,2,0),AM u u u u r =(-2,0,4), BF →=(-2,0,4), ∴EF u u u r =MN →, AM u u u u r =BF →,∴EF ∥MN, AM ∥BF, ∴平面AMN ∥平面EFBD.设n =(x, y, z)是平面AMN 的法向量,从而·220,·240,MN x y AM x z ⎧⎫=+=⎪⎪⎨⎪=-+=⎪⎩⎭n n u u u u r u u u u r解得⎩⎪⎨⎪⎧x =2z y =-2z .取z =1, 得n =(2, -2,1),由于AB u u u r在n 上的投影为n AB n⋅u u u r =-84+4+1=-83.∴两平行平面间的距离d =n ABn⋅u u u r=83. 课堂小结:1.求空间中两点A, B 的距离时, 当不好建系时利用|AB|=|AB u u u r|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2来求.2.两异面直线距离的求法.如图(1), n 为l 1与l 2的公垂线AB 的方向向量, d =|AB u u u r |=|CD →·n ||n |.3点B 到平面α的距离:|BO uuu r |=AB n n⋅u u u r .(如图(2)所示)4.面与面的距离可转化为点到面的距离.一、选择题 1.若O 为坐标原点,OA u u u r=(1, 1, -2), OB uuu r=(3, 2, 8),OC u u u r=(0, 1, 0), 则线段AB 的中点P 到点C 的距离为( ) A.1652B .214C.53D.532答案 D解析 由题意OP uuu r =(1-t )OA →=12(OA →+OB →)=(2, 32, 3),PC →=OC →-OP uuu r =(1-t )OA →=(-2, -12, -3), PC =|PC →|= 4+14+9=532.2.如图, 正方体ABCD -A 1B 1C 1D 1的棱长为1, O 是底面A 1B 1C 1D 1的中心, 则O 到平面ABC 1D 1的距离是( )A .12B.24C.22 D.32 答案 B解析 以D 为坐标原点, 以DA, DC, DD 1所在直线分别为x,y,z 轴建立空间直角坐标系, 则有D 1(0, 0, 1), D (0, 0, 0), A (1, 0, 0), B (1, 1, 0), A 1(1, 0, 1), C 1(0, 1, 1).因O为A 1C 1的中点, 所以O (12, 12,1), 1C O u u u u r =(12, -12, 0), 设平面ABC 1D 1的法向量为 n=(x,y,z ), 则有10,0,n AD n AB ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r即0,0,x z y -+=⎧⎨=⎩ 则 n = (1, 0, 1), ∴O 到平面ABC 1D 1的距离为:1C O nd n⋅=u u u u r ,.3.在直角坐标系中, 设A (-2,3), B (3, -2), 沿x 轴把直角坐标平面折成120°的二面角后, 则A 、B 两点间的距离为( )A .211 B.11 C.22 D .311 答案 A解析 AB AE EF =+u u u r u u u r u u u r +FB →AB u u u r 2=AE u u u r 2+EF u u u r 2+FB →2+2AE u u u r ·EF u u u r +2AE u u u r ·FB →+2EF u u u r ·FB → =9+25+4+2×3×2×12=44.∴|AB u u u r|=211.4.已知正方体ABCD —A 1B 1C 1D 1的棱长为2, 点E 是A 1B 1的中点, 则点A 到直线BE 的距离是( )A.655B.455C.255D.55 答案 B解析 如图所示,BA u u u r=(2, 0, 0),BE u u u r=(1, 0, 2),∴cos θ= BA BEBA BE⋅u u u r u u u r u u u r u u u r=225=55, ∴sin θ=1-cos 2θ=255, 455.A 到直线BE 的距离d =|-*6]·OC →|sin θ=2×255=二、填空题5.已知A (2,3,1), B (4,1,2), C (6,3,7), D (-5, -4,8), 则点D 到平面ABC 的距离为________.答案 491717解析 设平面ABC 的法向量为n =(x , y , z ),则0,0,n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r 即⎩⎪⎨⎪⎧(x ,y ,z )·(2,-2,1)=0,(x ,y ,z )·(4,0,6)=0. ∴n =⎝⎛⎭⎫-32,-1,1, 又AD u u u r=(-7, -7, 7).∴点D 到平面ABC 的距离d = AD n n⋅u u u r=491717. 6.在正方体ABCD —A 1B 1C 1D 1中, 棱长为2, E 为A 1B 1的中点, 则异面直线D 1E 和BC 1间的距离是________.答案 263解析 如图所示建立空间直角坐标系,设n 为异面直线D1E 与BC1公垂线的方向向量,并设n =(x,y,z),则有110,0,n BC n D E ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u u r易求得n =(1, -2, 1),∴d=11D C nn⋅u u u u u r =|(0,2,0)·(1,-2,1)|1+4+1=46=263.7.在棱长为a 的正方体ABCD —A 1B 1C 1D 1中, 点A 到平面A 1BD 的距离为________.答案 33a解析 以D 为空间直角坐标原点, 以DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立坐标系,则D (0,0,0), A (a,0,0), B (a , a,0), A 1(a,0, a ). 设n =(x , y , z )为平面A 1BD 的法向量,则有10,0,n DA n DB ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r, 即⎩⎪⎨⎪⎧(x ,y ,z )(a ,0,a )=0,(x ,y ,z )(a ,a ,0)=0. ∴⎩⎪⎨⎪⎧x +z =0,x +y =0,令x =1, ∴n =(1, -1, -1).∴点A 到平面A 1BD 的距离d =DA n n⋅u u u r =a 3=33a . 三、解答题8.如图所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截而得到的, 其中AB =4, BC =2, CC 1=3, BE =1.(1)求BF 的长;(2)求点C 到平面AEC 1F 的距离.解 (1)建立如图所示的空间直角坐标系,则D (0,0,0), B (2,4,0), A (2,0,0), C (0,4,0), E (2,4,1), C 1(0,4,3).设F (0,0, z ).∵四边形AEC 1F 为平行四边形,∴由1AF EC =u u u r u u u u r得(-2, 0, z )=(-2, 0, 2), ∴z=2.∴F (0, 0, 2).∴BF u u u r=(-2, -4, 2).于是|BF u u u r|=26 (2)设n 1为平面AEC 1F 的一个法向量,显然n 1不垂直于平面ADF, 故可设n 1=(x, y, 1),由0,0,n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r 得 0410,2020,x y x y ⨯+⨯+=⎧⎨-⨯+⨯+=⎩即410,220,yx+=⎧⎨-+=⎩∴1,1,4xy=⎧⎪⎨=-⎪⎩∴n1=(1,14-,1).又1CCu u u u r=(0,0,3),设1CCu u u u r与n1的夹角为α,则cosα= 1111CC nCC n⋅u u u u ru u u u r343313331116==⋅++∴C到平面AEC1F的距离为d=|1CCu u u u r|cosα=3×4333343311=9.已知:正四棱柱ABCD—A1B1C1D1中, 底面边长为22, 侧棱长为4, E、F分别为棱AB、BC的中点.(1)求证:平面B1EF⊥平面BDD1B1;(2)求点D1到平面B1EF的距离.(1)证明建立如右图所示的空间直角坐标系, 则D(0,0,0),B(22, 22, 0), E(22, 2, 0),F(2, 22, 0), D1(0,0,4),B1(22, 22, 4).EFu u u r=(-2, 2, 0), DB→=(22, 22, 0), 1DDu u u u r=(0,0,4),EFu u u r·DB→=0.∴EF⊥DB, EF⊥DD1, DD1∩BD=D,∴EF⊥平面BDD1B1.又EF⊂平面B1EF, ∴平面B1EF⊥平面BDD1B1.(2)解由(1)知11D Bu u u u r=)(22,22,0EFu u u r=)(2,2,0-, 1B Eu u u u r=)(0,2,4--,设平面B1EF的法向量为n,且n = (x,y,z),则n⊥EFu u u r,n⊥1B Eu u u u r,即n·EFu u u r=(x, y, z)·)(2,2,0=-2x+2y=0,n ·1B E u u u u r =(x, y, z)·(0,-2, -4)=-2y -4z =0. 令x =1, 则y =1, z =-24, ∴n =⎝⎛⎭⎫1,1,-24. ∴D 1到平面B 1EF 的距离11D B nd n ⋅=u u u u r =|22+22|12+12+⎝⎛⎭⎫-242=16171710.直四棱柱ABCD -A 1B 1C 1D 1的高为3, 底面是边长为4且∠DAB =60°的菱形, AC ∩BD =O , A 1C 1∩B 1D 1=O 1, E 是O 1A 的中点.(1)求二面角O 1—BC -D 的大小;(2)求点E 到平面O 1BC 的距离.解 (1)∵OO 1⊥平面AC ,∴OO 1⊥OA , OO 1⊥OB , 又OA ⊥OB ,建立如图所示的空间直角坐标系,∵底面ABCD 是边长为4, ∠DAB=60°的菱形, ∴OA=23, OB=2,则A(23,0,0), B(0,2,0), C(-23,0,0), O 1(0,0,3) 设平面O 1BC 的法向量为n 1=(x,y,z ), 则n 1⊥1O B u u u u r , n 1⊥1O C u u u u r , ∴⎩⎨⎧ 2y -3z =0-23x -3z =0, 若z =2, 则x =-3, y =3, ∴n 1=(-3, 3,2), 而平面AC 的法向量n 2=(0,0,3)∴cos 〈n 1, n 2〉=n 1·n 2|n 1|·|n 2|=63×4=12, 设O 1-BC -D 的平面角为α, ∴cos α=12, ∴α=60°.故二面角O 1-BC -D 为60°.(2)设点E 到平面O 1BC 的距离为d , ∵E 是O 1A 的中点, ∴1EO u u u u r =(-3, 0, 32), 则d=111EO n n ⋅u u u u r =|(-3,0,32)·(-3,3,2)|(-3)2+32+22=32 ∴点E 到面O 1BC 的距离等于32.。

2021_2022高中数学第三章空间向量与立体几何2立体几何中的向量方法1教案新人教A版选修2_

2021_2022高中数学第三章空间向量与立体几何2立体几何中的向量方法1教案新人教A版选修2_

立体几何中的向量方法【教学目标】1. 向量运算在几何证明与计算中的应用;2. 掌握利用向量运算解几何题的方法,并能解简单的立体几何问题。

【导入新课】 复习引入1. 用向量解决立体几何中的一些典型问题的基本思考方法是:⑴如何把已知的几何条件(如线段、角度等)转化为向量表示; ⑵考虑一些未知的向量能否用基向量或其他已知向量表式; ⑶如何对已经表示出来的向量进行运算,才能获得需要的结论?2. 通法分析:利用两个向量的数量积的定义及其性质可以解决哪些问题呢?⑴利用定义a ·b =|a ||b |cos <a ,b >或cos <a ,b >=a ba b⋅⋅,可求两个向量的数量积或夹角问题;⑵利用性质a ⊥b ⇔a ·b =0可以解决线段或直线的垂直问题; ⑶利用性质a ·a =|a |2,可以解决线段的长或两点间的距离问题。

新授课阶段例1:已知空间四边形OABC 中,OA BC ⊥,OB AC ⊥.求证:OC AB ⊥。

证明:·OC AB =·()OC OB OA - =·OC OB -。

∵OA BC ⊥,OB AC ⊥, ∴·0OA BC =,·0OB AC =, ·()0OA OC OB -=,·()0OB OC OA -=. ∴··OA OC OA OB =,··OB OC OB OA =。

∴·OC OB =·OC OA ,·OC AB =0. ∴OC AB ⊥ 例2:如图,已知线段AB 在平面α内,线段AC α⊥,线段BD ⊥AB ,线段'DD α⊥,'30DBD ∠=,如果AB =a ,AC =BD =b ,求C 、D间的距离。

解:由AC α⊥,可知AC AB ⊥。

由'30DBD ∠=可知,<,CA BD >=120,∴2||CD =2()CA AB BD ++=2||CA +2||AB +2||BD +2(·CA AB +·CA BD +·AB BD )=22222cos120b a b b +++=22a b +。

2021年人教A版高中数学教材目录(全)

2021年人教A版高中数学教材目录(全)

必修1欧阳光明(2021.03.07)第一章集合与函数概念1.1 集合1.2 函数及其表示 1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体 1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质 2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n 项和2.4等比数列2.5等比数列的前n 项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式 3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数 3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。

数学选修2-1苏教版:第3章 空间向量与立体几何 3.2.1-3.2.2

数学选修2-1苏教版:第3章 空间向量与立体几何 3.2.1-3.2.2

§3.2 空间向量的应用3.2.1 直线的方向向量与平面的法向量 3.2.2 空间线面关系的判定(一)——平行关系学习目标 1.掌握空间点、线、面的向量表示.2.理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.3.能用向量法证明直线与直线、直线与平面、平面与平面的平行问题.知识点一 直线的方向向量与平面的法向量思考 怎样用向量来表示点、直线、平面在空间中的位置?答案 (1)点:在空间中,我们取一定点O 作为基点,那么空间中任意一点P 的位置就可以用向量OP →来表示.我们把向量OP →称为点P 的位置向量.(2)直线:①直线的方向向量:和这条直线平行或共线的非零向量.②对于直线l 上的任一点P ,在直线上取AB →=a ,则存在实数t ,使得AP →=tAB →.(3)平面:①空间中平面α的位置可以由α内两条相交直线来确定.对于平面α上的任一点P ,a ,b 是平面α内两个不共线向量,则存在有序实数对(x ,y ),使得OP →=x a +y b . ②空间中平面α的位置还可以用垂直于平面的直线的方向向量表示. 梳理 (1)用向量表示直线的位置:(2)用向量表示平面的位置:①通过平面α上的一个定点O和两个向量a和b来确定:②通过平面α上的一个定点A和法向量来确定:(3)直线的方向向量和平面的法向量:知识点二利用空间向量处理平行问题思考(1)设v1=(a1,b1,c1),v2=(a2,b2,c2)分别是直线l1,l2的方向向量.若直线l1∥l2,则向量v1,v2应满足什么关系.(2)若已知平面外一直线的方向向量和平面的法向量,则这两向量满足哪些条件可说明直线与平面平行?(3)用向量法处理空间中两平面平行的关键是什么?答案(1)由直线方向向量的定义知若直线l1∥l2,则直线l1,l2的方向向量共线,即l1∥l2⇔v1∥v2⇔v1=λv2(λ∈R).(2)可探究直线的方向向量与平面的法向量是否垂直,进而确定线面是否平行.(3)关键是找到两个平面的法向量,利用法向量平行来说明两平面平行.梳理(1)空间中平行关系的向量表示:的法向量分别为μ,v,则设直线l,m的方向向量分别为a,b,平面α,β(2)利用空间向量解决平行问题时,第一,建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;第二,通过向量的运算,研究平行问题;第三,把向量问题再转化成相应的立体几何问题,从而得出结论.1.若两条直线平行,则它们的方向向量方向相同或相反.(√)2.平面α的法向量是唯一的,即一个平面不可能存在两个不同的法向量.(×) 3.两直线的方向向量平行,则两直线平行.(×)4.直线的方向向量与平面的法向量的方向相同或相反时,直线与平面垂直.(√)类型一 求直线的方向向量、平面的法向量例1 如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点.AB =AP =1,AD =3,试建立恰当的空间直角坐标系,求平面ACE 的一个法向量.解 因为P A ⊥平面ABCD ,底面ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →,AD →,AP →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系A -xyz ,则D (0,3,0),E ⎝⎛⎭⎫0,32,12,B (1,0,0),C (1,3,0),于是AE →=⎝⎛⎭⎫0,32,12,AC →=(1,3,0).设n =(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +3y =0,32y +12z =0,所以⎩⎨⎧x =-3y ,z =-3y ,令y =-1,则x =z = 3.所以平面ACE 的一个法向量为n =(3,-1,3). 引申探究若本例条件不变,试求直线PC 的一个方向向量和平面PCD 的一个法向量. 解 由例1解析图可知,P (0,0,1),C (1,3,0), 所以PC →=(1,3,-1), 即为直线PC 的一个方向向量. 设平面PCD 的法向量为 n =(x ,y ,z ).因为D (0,3,0),所以PD →=(0,3,-1). 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎨⎧x +3y -z =0,3y -z =0,所以⎩⎨⎧x =0,z =3y ,令y =1,则z = 3.所以平面PCD 的一个法向量为n =(0,1,3). 反思与感悟 利用待定系数法求平面法向量的步骤 (1)设向量:设平面的法向量为n =(x ,y ,z ). (2)选向量:在平面内选取两个不共线向量AB →,AC →. (3)列方程组:由⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,列出方程组.(4)解方程组:⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0.(5)赋非零值:取其中一个为非零值(常取±1).(6)得结论:得到平面的一个法向量.跟踪训练1 如图所示,在四棱锥S -ABCD 中,底面是直角梯形,∠ABC =90°,SA ⊥底面ABCD ,且SA =AB =BC =1,AD =12,建立适当的空间直角坐标系,求平面SCD 与平面SBA的一个法向量.解 如图,以A 为坐标原点,以AD →,AB →,AS →分别为x ,y ,z 轴的正方向建立空间直角坐标系A -xyz ,则A (0,0,0),D ⎝⎛⎭⎫12,0,0, C (1,1,0),S (0,0,1), 则DC →=⎝⎛⎭⎫12,1,0, DS →=⎝⎛⎭⎫-12,0,1. 易知向量AD →=⎝⎛⎭⎫12,0,0是平面SAB 的一个法向量. 设n =(x ,y ,z )为平面SDC 的法向量, 则⎩⎨⎧n ·DC →=12x +y =0,n ·DS →=-12x +z =0,即⎩⎨⎧y =-12x ,z =12x .取x =2,则y =-1,z =1,∴平面SDC 的一个法向量为(2,-1,1). 类型二 证明线线平行问题例2 已知直线l 1与l 2的方向向量分别是a =(2,3,-1),b =(-6,-9,3). 证明:l 1∥l 2.证明 ∵a =(2,3,-1),b =(-6,-9,3),∴a =-13b ,∴a ∥b ,即l 1∥l 2.反思与感悟 两直线的方向向量共线时,两直线平行;否则两直线相交或异面.跟踪训练2 已知在四面体ABCD 中,G ,H 分别是△ABC 和△ACD 的重心,则GH 与BD 的位置关系是________. 答案 平行解析 设E ,F 分别为BC 和CD 的中点,则GH →=GA →+AH →=23(EA →+AF →)=23EF →,所以GH ∥EF ,所以GH ∥BD .类型三 利用空间向量证明线面、面面平行问题例3 已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .证明 (1)以D 为坐标原点,以DA →,DC →,DD 1—→的方向为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2),所以FC 1—→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1). 设n 1=(x 1,y 1,z 1)是平面ADE 的法向量, 则n 1⊥DA →,n 1⊥AE →,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1—→·n 1=-2+2=0,所以FC 1—→⊥n 1. 又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .(2)因为C 1B 1—→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量.由n 2⊥FC 1—→,n 2⊥C 1B 1—→,得⎩⎪⎨⎪⎧n 2·FC 1—→=2y 2+z 2=0,n 2·C 1B 1—→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .反思与感悟 利用向量证明平行问题,可以先建立空间直角坐标系,求出直线的方向向量和平面的法向量,然后根据向量之间的关系证明平行问题.跟踪训练3 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,PB 与底面所成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,P A =BC =12AD =1,问在棱PD 上是否存在一点E ,使CE ∥平面P AB ?若存在,求出E 点的位置;若不存在,请说明理由.解 以A 为坐标原点.分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系A -xyz ,如图所示.∴P (0,0,1),C (1,1,0),D (0,2,0), 设存在满足题意的点E (0,y ,z ), 则PE →=(0,y ,z -1), PD →=(0,2,-1), ∵PE →∥PD →,∴y ×(-1)-2(z -1)=0,①∵AD →=(0,2,0)是平面P AB 的法向量, 又CE →=(-1,y -1,z ),CE ∥平面P AB , ∴CE →⊥AD →,∴(-1,y -1,z )·(0,2,0)=0.∴y =1,代入①得z =12,∴E 是PD 的中点,∴存在点E ,当点E 为PD 中点时,CE ∥平面P AB .1.若点A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量的坐标可以是________.(填序号)①(-1,0,1);②(1,4,7);③(2,4,6). 答案 ③解析 显然AB →=(2,4,6)可以作为直线l 的一个方向向量.2.已知a =(2,4,5),b =(3,x ,y )分别是直线l 1,l 2的方向向量.若l 1∥l 2,则x =________,y =________. 答案 6152解析 由l 1∥l 2得,23=4x =5y ,解得x =6,y =152.3.已知向量n =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是________.(填序号)①n 1=(0,-3,1);②n 2=(-2,0,4); ③n 3=(-2,-3,1);④n 4=(-2,3,-1). 答案 ④解析 由题可知只有④可以作为α的法向量.4.已知向量n =(-1,3,1)为平面α的法向量,点M (0,1,1)为平面内一定点.P (x ,y ,z )为平面内任一点,则x ,y ,z 满足的关系式是________. 答案 x -3y -z +4=0解析 由题可知MP →=(x ,y -1,z -1). 又因为n ·MP →=0,故-x +3(y -1)+(z -1)=0,化简, 得x -3y -z +4=0.5.若直线l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝⎛⎭⎫1,12,2,则m 为________. 答案 -8解析 ∵l ∥α,平面α的法向量为⎝⎛⎭⎫1,12,2, ∴(2,m,1)·⎝⎛⎭⎫1,12,2=0, ∴2+12m +2=0,∴m =-8.1.应用向量法证明线面平行问题的方法: (1)证明直线的方向向量与平面的法向量垂直.(2)证明直线的方向向量与平面内的某一直线的方向向量共线.(3)证明直线的方向向量可用平面内的任意两个不共线的向量表示.即用平面向量基本定理证明线面平行.2.证明面面平行的方法:设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).一、填空题1.已知l 1的方向向量为v 1=(1,2,3),l 2的方向向量为v 2=(λ,4,6),若l 1∥l 2,则λ=________. 答案 2解析 ∵l 1∥l 2,∴v 1∥v 2,则1λ=24,∴λ=2.2.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则μ的值为________. 答案 12解析 因为a ∥b ,故2μ-1=0,即μ=12.3.直线l 的方向向量s =(-1,1,1),平面α的一个法向量为n =(2,x 2+x ,-x ),若直线l ∥α,则x 的值为________. 答案 ±2解析 易知-1×2+1×(x 2+x )+1×(-x )=0, 解得x =±2.4.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 的值为________. 答案 4解析 因为α∥β,所以平面α与平面β的法向量共线, 所以(-2,-4,k )=λ(1,2,-2), 所以⎩⎪⎨⎪⎧-2=λ,-4=2λ,k =-2λ,解得⎩⎪⎨⎪⎧λ=-2,k =4.所以k 的值是4.5.已知平面α内两向量a =(1,1,1),b =(0,2,-1)且c =m a +n b +(4,-4,1).若c 为平面α的法向量,则m ,n 的值分别为________. 答案 -1,2解析 c =m a +n b +(4,-4,1)=(m ,m ,m )+(0,2n ,-n )+(4,-4,1)=(m +4,m +2n -4,m -n +1),由c 为平面α的法向量,得⎩⎪⎨⎪⎧ c ·a =0,c ·b =0,得⎩⎪⎨⎪⎧m =-1,n =2.6.已知A (4,1,3),B (2,3,1),C (3,7,-5),点P (x ,-1,3)在平面ABC 内,则x 的值为________. 答案 11解析 ∵点P 在平面ABC 内, ∴存在实数k 1,k 2, 使AP →=k 1AB →+k 2AC →,即(x -4,-2,0)=k 1(-2,2,-2)+k 2(-1,6,-8),∴⎩⎪⎨⎪⎧ 2k 1+6k 2=-2,k 1+4k 2=0,解得⎩⎪⎨⎪⎧k 1=-4,k 2=1.∴x -4=-2k 1-k 2=8-1=7, 即x =11.7.已知l ∥α,且l 的方向向量为m =(2,-8,1),平面α的法向量为n =(1,y,2),则y =________.答案 12解析 ∵l ∥α,∴l 的方向向量m =(2,-8,1)与平面α的法向量n =(1,y,2)垂直,∴2×1-8×y +2=0,∴y =12. 8.若平面α的一个法向量为u 1=(-3,y,2),平面β的一个法向量为u 2=(6,-2,z ),且α∥β,则y +z =________.答案 -3解析 ∵α∥β,∴u 1∥u 2,∴-36=y -2=2z. ∴y =1,z =-4.∴y +z =-3.9.已知平面α与平面β平行,若平面α与平面β的法向量分别为μ=(5,25,5),v =(t,5,1),则t 的值为________.答案 1解析 ∵平面α与平面β平行,∴平面α的法向量μ与平面β的法向量v 平行,∴5t =255=51,解得t =1. 10.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量为n =(-1,-1,-1),且β与α不重合,则β与α的位置关系是________.答案 α∥β解析 AB →=(0,1,-1),AC →=(1,0,-1),n ·AB →=(-1,-1,-1)·(0,1,-1)=-1×0+(-1)×1+(-1)×(-1)=0,n ·AC →=(-1,-1,-1)·(1,0,-1)=-1×1+0+(-1)·(-1)=0,∴n ⊥AB →,n ⊥AC →.∴n 也为α的一个法向量.又α与β不重合,∴α∥β.11.若平面α的一个法向量为u 1=(m,2,-4),平面β的一个法向量为u 2=(6,-4,n ),且α∥β,则m +n =________.答案 5解析 ∵α∥β,∴u 1∥u 2.∴m 6=2-4=-4n∴m =-3,n =8.∴m +n =5.二、解答题12.如图,在正方体ABCD -A 1B 1C 1D 1中,求证:AC 1—→是平面B 1D 1C 的法向量.证明 如图,以D 为坐标原点,DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D 1(0,0,1),A (1,0,0),C (0,1,0),B 1(1,1,1),C 1(0,1,1).所以AC 1—→=(-1,1,1),D 1B 1—→=(1,1,0),CB 1—→=(1,0,1),所以AC 1—→·D 1B 1—→=(-1,1,1)·(1,1,0)=0,AC 1—→·CB 1—→=(-1,1,1)·(1,0,1)=0,所以AC 1—→⊥D 1B 1—→,AC 1—→⊥CB 1→,又B 1D 1∩CB 1=B 1,且B 1D 1,CB 1⊂平面B 1D 1C ,所以AC 1⊥平面B 1D 1C ,AC 1—→是平面B 1D 1C 的法向量.13.已知A ⎝⎛⎭⎫0,2,198,B ⎝⎛⎭⎫1,-1,58,C ⎝⎛⎭⎫-2,1,58是平面α内的三点,设平面α的法向量a =(x ,y ,z ),求x ∶y ∶z 的值.解 AB →=⎝⎛⎭⎫1,-3,-74,AC →=⎝⎛⎭⎫-2,-1,-74, 由⎩⎪⎨⎪⎧ a ·AB →=0,a ·AC →=0,得⎩⎨⎧ x -3y -74z =0,-2x -y -74z =0, 解得⎩⎨⎧x =23y ,z =-43y , 则x ∶y ∶z =23y ∶y ∶⎝⎛⎭⎫-43y =2∶3∶(-4). 三、探究与拓展14.已知O ,A ,B ,C ,D ,E ,F ,G ,H 为空间的9个点(如图所示),并且OE →=kOA →,OF →=kOB →,OH →=kOD →,AC →=AD →+mAB →,EG →=EH →+mEF →.求证:(1)A ,B ,C ,D 四点共面,E ,F ,G ,H 四点共面;(2)AC →∥EG →.证明 (1)由AC →=AD →+mAB →,EG →=EH →+mEF →,知A ,B ,C ,D 四点共面,E ,F ,G ,H 四点共面.(2)∵EG →=EH →+mEF →=OH →-OE →+m (OF →-OE →)=k (OD →-OA →)+km (OB →-OA →)=kAD →+kmAB →=k (AD →+mAB →)=kAC →,∴AC →∥EG →.15.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面P AO?解 如图所示,以点D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立空间直角坐标系,在CC 1上任取一点Q ,连结BQ ,D 1Q .设正方体的棱长为1,则O ⎝⎛⎭⎫12,12,0,P ⎝⎛⎭⎫0,0,12, A (1,0,0),B (1,1,0),D 1(0,0,1),则Q (0,1,z ),则OP →=⎝⎛⎭⎫-12,-12,12, BD 1→=(-1,-1,1),∴OP →∥BD 1—→,∴OP ∥BD 1.AP →=⎝⎛⎭⎫-1,0,12,BQ →=(-1,0,z ), 当z =12时,AP →=BQ →, 即当AP ∥BQ 时,有平面P AO ∥平面D 1BQ , ∴当Q 为CC 1的中点时,平面D 1BQ ∥平面P AO .。

人教版高中数学选修2-1学案:第3章 空间向量与立体几何 §3.2 立体几何中的向量方法

人教版高中数学选修2-1学案:第3章  空间向量与立体几何   §3.2 立体几何中的向量方法

§3.2 立体几何中的向量方法知识点一用向量方法判定线面位置关系(1)设a、b分别是l1、l2的方向向量,判断l1、l2的位置关系:①a=(2,3,-1),b=(-6,-9,3).②a=(5,0,2),b=(0,4,0).(2)设u、v分别是平面α、β的法向量,判断α、β的位置关系:①u=(1,-1,2),v=(3,2,12 -).②u=(0,3,0),v=(0,-5,0).(3)设u是平面α的法向量,a是直线l的方向向量,判断直线l与α的位置关系.①u=(2,2,-1),a=(-3,4,2).②u=(0,2,-3),a=(0,-8,12).解(1)①∵a=(2,3,-1),b=(-6,-9,3),∴a=-13b,∴a∥b,∴l1∥l2.②∵a=(5,0,2),b=(0,4,0),∴a·b=0,∴a⊥b,∴l1⊥l2.(2)①∵u=(1,-1,2),v=(3,2,12 -),∴u·v=3-2-1=0,∴u⊥v,∴α⊥β.②∵u=(0,3,0),v=(0,-5,0),∴u=-35v,∴u∥v,∴α∥β.(3)①∵u=(2,2,-1),a=(-3,4,2),∴u·a=-6+8-2=0,∴u⊥a,∴l⊂α或l∥α.②∵u=(0,2,-3),a=(0,-8,12),∴u=-14a,∴u∥a,∴l⊥α.知识点二利用向量方法证明平行问题如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.证明方法一如图所示,以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,则可求得M (0,1,12),N (12,1,1), D(0,0,0),A 1(1,0,1),B(1,1,0), 于是MN =(12,0,12), 设平面A 1BD 的法向量是 n=(x ,y ,z ). n =(x ,y ,z).则n ·DB =0,得0,0,x z x y +=⎧⎨+=⎩取x =1,得y =-1,z =-1.∴n =(1,-1,-1).又 MN ·n = (12,0,12)·(1,-1,-1)=0, 方法二 ∵MN = 111111122C N C M C B C C -=-111111()22D A D D DA =-=∴MN ∥1DA ,又∵MN ⊄平面A 1BD.∴MN ∥平面A 1BD.知识点三 利用向量方法证明垂直问题在正棱锥P —ABC 中,三条侧棱两两互相垂直,G 是△PAB 的重心,E 、F分别为BC 、PB 上的点,且BE ∶EC =PF ∶FB =1∶2.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是PG 与BC 的公垂线段. 证明 (1)方法一如图所示,以三棱锥的顶点P 为原点,以PA 、PB 、PC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.令PA =PB =PC =3,则A(3,0,0)、B(0,3,0)、C(0,0,3)、E(0,2,1)、F(0,1,0)、G(1,1,0)、P(0,0,0). 于是PA =(3,0,0),FG =(3,0,0),故 PA =3FG ,∴PA ∥FG .而PA ⊥平面PBC ,∴FG ⊥平面PBC ,又FG ⊂平面EFG ,∴平面EFG ⊥平面PBC. 方法二 同方法一,建立空间直角坐标系,则 E(0,2,1)、F(0,1,0)、G(1,1,0).EF =(0,-1,-1),EG =(0,-1,-1),设平面EFG 的法向量是n =(x ,y ,z), 则有n ⊥EF ,n ⊥PA ,∴0,0,y z x y z +=⎧⎨--=⎩令y =1,得z =-1,x =0,即n =(0,1,-1).而显然PA =(3,0,0)是平面PBC 的一个法向量.这样n ·PA = 0,∴n ⊥PA即平面PBC 的法向量与平面EFG 的法向量互相垂直,∴平面EFG ⊥平面PBC. (2)∵EG =(1, -1, -1),PG =(1,1,0),BC =(0, -3,3),∴EG ·PG =1-1= 0,EG ·BC =3-3 = 0,∴EG ⊥PG ,EG ⊥BC , ∴EG 是PG 与BC 的公垂线段.知识点四 利用向量方法求角四棱锥P —ABCD 中,PD ⊥平面ABCD ,PA 与平面ABCD 所成的角为60°,在四边形ABCD 中,∠D =∠DAB =90°,AB =4,CD =1,AD =2.(1)建立适当的坐标系,并写出点B ,P 的坐标; (2)求异面直线PA 与BC 所成角的余弦值.解 (1)如图所示,以D 为原点,射线DA ,DC ,DP 分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系D —xyz ,∵∠D =∠DAB =90°,AB =4,CD =1,AD =2, ∴A(2,0,0),C(0,1,0),B(2,4,0).由PD ⊥面ABCD 得∠PAD 为PA 与平面ABCD 所成的角. ∴∠PAD =60°.在Rt △PAD 中,由AD =2,得PD =23. ∴P(0,0,23). (2)∵PA =(2,0,-23), BC =(-2, -3,0)∴cos 〈PA ,BC 〉=1313PA BC PA BC⋅=-∴PA与BC所成角的余弦值为1313.正方体ABEF-DCE′F′中,M、N分别为AC、BF的中点(如图所示),求平面MNA与平面MNB所成二面角的余弦值.解取MN的中点G,连结BG,设正方体棱长为1.方法一∵△AMN,△BMN为等腰三角形,∴AG⊥MN,BG⊥MN.∴∠AGB为二面角的平面角或其补角.∵AG=BG=64,,AB AG GB=+,设〈AG,GB〉=θ,AB2=AG 2+2AG·GB+GB2,∴1=(64)2+2×64×64cosθ+(64)2.∴cosθ=13,故所求二面角的余弦值为13.方法二以B为坐标原点,BA,BE,BC所在的直线分别为x轴、y轴、z轴建立空间直角坐标系B-xyz则M(12,0,12),N (12,12,0),中点G(12,14,14),A(1,0,0),B(0,0,0),由方法一知∠AGB为二面角的平面角或其补角.∴GA=(12,-14,-14),GB=(12,-14,-14),∴ cos<GA, GB>=GA GBGA GB⋅=11833388-=-⨯,故所求二面角的余弦值为13.方法三 建立如方法二的坐标系,∴110,0,AM n AN n ⎧⋅=⎪⎨⋅=⎪⎩ 即110,22110,22x z x y ⎧-+=⎪⎪⎨⎪-+=⎪⎩取n 1=(1,1,1).同理可求得平面BMN 的法向量n 2=(1,-1,-1). ∴cos 〈n 1,n 2〉=1212n n n n ⋅1333==-⨯,故所求二面角的余弦值为13知识点五 用向量方法求空间的距离已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离.解如图所示,以C 为原点,CB 、CD 、CG 所在直线分别为x 、y 、z 轴建立空间直角坐标系C -xyz.由题意知C(0,0,0),A(4,4,0), B(4,0,0),D(0,4,0),E(4,2,0), F(2,4,0),G(0,0,2).BE =(0,2,0),BF =(-2,4,0),设向量BM ⊥平面GEF ,垂足为M ,则M 、G 、E 、F 四点共面,故存在实数x ,y ,z ,使BM = x BE + y BF + z BG ,即BM = x (0,2,0)+y (-2,4,0)+z (-4,0,2) =(-2y -4z ,2x+4y ,2z ).由BM ⊥平面GEF ,得BM ⊥GE ,BM ⊥EF ,于是BM ·GE =0,BM ·EF =0, 即(24,24,2)(4,2,2)0,(24,24,2)(2,2,0)0,y x x y z y z x y z --+⋅-=⎧⎨--+⋅-=⎩即50,320,1,x zx y zx y z-=⎧⎪+++⎨⎪++=⎩,解得15,117,113,11xyz⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩∴BM=(-2y-4z,2x+4y,2z)=226,,111111⎛⎫⎪⎭⎝∴|BM|=222226()()()111111++21111=即点B到平面GEF的距离为21111.考题赏析(安徽高考)如图所示,在四棱锥O—ABCD中,底面ABCD是边长为1的菱形,∠ABC=4π,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求异面直线AB与MD所成角的大小;(2)求点B到平面OCD的距离.解作AP⊥CD于点P.如图,分别以AB、AP、AO所在直线为x、y、z轴建立平面直角坐标系.A(0,0,0),B(1,0,0),P (0,22,0),D (-22,22,0),O(0,0,2),M(0,0,1).(1)设AB与MD所成角为θ,∵AB=(1,0,0),MD=(-22,22,-1),∴cosθ =12AB MDAG MD⋅=⋅.∴θ=3π.∴AB与MD所成角的大小为3π.(2)∵OP=(0,22,2-),OD=(-22,22,2-),∴设平面OCD的法向量为n = ( x, y , z ),则n·OP=0,n·OD= 0.得220,22220,22y zx y z⎧-=⎪⎪⎨⎪-+-=⎪⎩取z=2,解得n = (0,4,2).设点B到平面OCD的距离为d,则d为OB在向量n上的投影的绝对值.∵OB=(1,0,-2),∴d=OB nn⋅23=,∴点B到平面OCD的距离为23,1.已知A(1,0,0)、B(0,1,0)、C(0,0,1),则平面ABC的一个单位法向量是( ) A.(33,33,-33) B.(33,-33,33)C.(-33,33,33) D.(-33,-33,-33)答案 DAB=(-1,1,0),是平面OAC的一个法向量.AC=(-1,0,1),BC=(0,-1,1)设平面ABC的一个法向量为n=(x,y,z)∴0,0,x yx z-+=⎧⎨-+=⎩令x=1,则y=1,z=1 ∴n=(1,1,1)单位法向量为:nn±=± (33,33,33).2.已知正方体ABCD—A1B1C1D1,E、F分别是正方形A1B1C1D1和ADD1A1的中心,则EF和CD所成的角是( )A.60°B.45°C.30°D.90°答案 B3.设l1的方向向量a=(1,2,-2),l2的方向向量b=(-2,3,m),若l1⊥l2,则m=( )A.1 B.2 C.12D.3答案 B解析因l1⊥l2,所以a·b=0,则有1×(-2)+2×3+(-2)×m=0,∴2m=6-2=4,即m=2.4.若两个不同平面α,β的法向量分别为u=(1,2,-1),v=(-3,-6,3),则( ) A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不正确答案 A解析因v=-3u,∴v∥u.故α∥β.5.已知a、b是异面直线,A、B∈a,C、D∈b,AC⊥b,BD⊥b,且AB=2,CD=1,则a与b所成的角是( )A.30°B.45°C.60°D.90°答案 C解析设〈AB,CD〉=θ,AB·CD=(AC+CD+DB·CD= |CD|2= 1,cosθ=12AB CDAB CD⋅=,所以θ=60°6.若异面直线l1、l2的方向向量分别是a=(0,-2,-1),b=(2,0,4),则异面直线l1与l2的夹角的余弦值等于( )A.25-B.25C.-255D.55答案 B解析设异面直线l1与l2的夹角为θ,则cosθ=a ba b⋅⋅(1)44255416-⨯==⨯⋅+7.已知向量n=(6,3,4)和直线l垂直,点A(2,0,2)在直线l上,则点P(-4,0,2)到直线l 的距离为________.答案366161, 解析PA =(6,0,0),因为点A 在直线l 上, n 与l 垂直,所以点P 到直线l 的距离为2223636616161634PA n⋅==++ 8.平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为________.答案3π或23π,解析 设n 1=(1,0,-1),n 2=(0,-1,1) 则cos 〈n 1,n 2〉=100(1)(1)11222⨯+⨯-+-⨯=-⋅〈n 1,n 2〉=23π.因平面α与平面β所成的角与〈n 1,n 2〉相等或互补,所以α与β所成的角为3π或23π.9.已知四面体顶点A(2,3,1)、B(4,1,-2)、C(6,3,7)和D(-5,-4,8),则顶点D 到平面ABC 的距离为________.答案 11解析 设平面ABC 的一个法向量为n =(x,y,z )则0,0,n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩ ()()x,y,z (2,2,3)0,x,y,z (4,0,6)0,⋅--=⎧⎪⎨⋅=⎪⎩ 2230,460,x y z x z --=⎧⎨+=⎩2,2,3y x z x =⎧⎪⇒⎨=-⎪⎩令x=1, 则n = (1,2, 23-),AD =(-7,-7,7)故所求距离为14714377311374149AD nn---⋅==⨯=++,10.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥平面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于F.(1)证明:PA ∥平面BDE ; (2)证明:PB ⊥平面DEF.证明 (1)如图建立空间直角坐标系,设DC =a ,AC ∩BD =G ,连结EG ,则A(a,0,0),P(0,0,a),C(0,a,0),E (0,2a ,2a ),G (2a ,2a,0). 于是PA =(a ,0, -a ),EG =(2a ,0,2a-),∴PA = 2EG ,∴PA ∥EG .又EG ⊂平面DEB.PA ⊄平面DEB.∴PA ∥平面DEB.(2)由B(a,a,0),得PB =(a, a, -a), 又DE =(0, 2a ,2a),∵PB ·DE =22a 20,2a -= ∴PB ⊥DE.又EF ⊥PB ,EF ∩DE=E ,∴PB ⊥平面EFD.11.如图所示,已知点P 在正方体ABCD —A ′B ′C ′D ′的对角线BD ′上,∠PDA =60°.(1)求DP 与CC ′所成角的大小;(2)求DP 与平面AA ′D ′D 所成角的大小. 解如图所示,以D 为原点,DA 为单位长度建立空间直角坐标系D —xyz. 则DA =(1,0,0),'CC = (0,0,1).连结BD,B ′D ′. 在平面BB ′D ′D 中,延长DP 交B ′D ′于H. 设DH = (m,m,1) (m>0),由已知〈DH ,DA 〉= 60°, 由DA ·DH = |DA ||DH |cos 〈DH ,DA 〉,可得2m =221m + 解得m =22,所以DH =(22,22,1), (1) 因为cos 〈DH ,'CC 〉= 220011222212⨯+⨯+⨯=⨯ (2) 所以〈DH ,'CC 〉= 45°, 即DP 与CC ′所成的角为45°.(2)平面AA ′D ′D 的一个法向量是DC = (0,1,0).因为cos 〈DH ,DC 〉= 220011222212⨯+⨯+⨯=⨯ 所以〈DH ,DC 〉= 60°,可得DP 与平面AA ′D ′D 所成的角为30°.12. 如图,四边形ABCD 是菱形,PA ⊥平面ABCD ,PA=AD=2,∠BAD=60°.平面PBD ⊥平面PAC ,(1)求点A 到平面PBD 的距离;(2)求异面直线AB 与PC 的距离.(1)解 以AC 、BD 的交点为坐标原点,以AC 、BD 所在直线为x 轴、y 轴建立如图所示的空间直角坐标系,则A (3,0,0),B (0,1,0),C (3-,0,0),D (0, -1,0),P (3,0,2).设平面PBD 的一个法向量为n 1=(1,y 1,z 1).由n 1⊥OB , n 1⊥OP ,可得n 1=(1,0,32-).(1)OA =(3,0,0),点A 到平面PBD 的距离,11OA n d n ⋅=2217=, 13.如图所示,直三棱柱ABC —A 1B 1C 1中,底面是以∠ABC 为直角的等腰直角三角形,AC = 2a ,BB 1 = 3a ,D 为A 1C 1的中点,在线段AA 1上是否存在点F ,使CF ⊥平面B 1DF ?若存在,求出|AF |;若不存在,请说明理由.解 以B 为坐标原点,建立如图所示的空间直角坐标系B-xyz.假设存在点F ,使CF ⊥平面B 1DF ,并设AF =λ1AA =λ(0,0,3a )=(0,0,3λa )(0<λ<1), ∵D 为A 1C 1的中点,∴D(22a ,22a ,3a) 1B D = (22a ,22a ,3a)-(0,0,3a)= (22a ,22a , 0), 1B F 1B B BA AF =++=(0,0,3)(2,0,0)(0,0,3)a a a λ-++ ∵CF ⊥平面B 1DF ,∴CF ⊥1B D , CF ⊥1B F ,110,0,CF B D CF B F ⎧⋅=⎪⎨⋅=⎪⎩ 即2300,9920,a λλλ⨯=⎧⎨-+=⎩ 解得λ=23或λ=13 ∴存在点F 使CF ⊥面B 1DF ,且 当λ=13时,|AF |=13,|1AA | = a 当λ=23,|AF | =23,|1AA | = 2a. 14.如图(1)所示,已知四边形ABCD 是上、下底边长分别为2和6,高为eq \r(3)的等腰梯形.将它沿对称轴OO 1折成直二面角,如图(2).(1)证明:AC ⊥BO 1;(2)求二面角O —AC —O 1的余弦值.(1)证明 由题设知OA ⊥OO 1,OB ⊥OO 1.所以∠AOB 是所折成的直二面角的平面角,即OA ⊥OB. 故以O 为原点,OA 、OB 、OO 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则相关各点的坐标是A(3,0,0)、B(0,3,0)、C(0,1, 3)、O 1(0,0, 3).AC ·1BO =-3+3·3=0.所以AC ⊥BO 1.(2)解 因为1BO ·OC =3-+ 3·3=0.所以BO 1⊥OC.由(1)AC ⊥BO 1,所以BO 1⊥平面OAC, 1BO 是平面OAC 的一个法向量.设n=(x ,y ,z )是平面O 1AC 的一个法向量,由10,0,n AC n O C ⎧⋅=⎪⎨⋅=⎪⎩330,0,x y z y ⎧-++=⎪⇒⎨=⎪⎩ 取z= 3,得n=(1,0,3).设二面角O-AC-O 1的大小为θ,由n 、1BO 的方向可知θ=〈n,1BO 〉, 所以cos θ= cos 〈n ,1BO 〉=113n BO n BO ⋅= 即二面角O —AC —O 13。

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。

选修2-1第三章 空间向量与立体几何练习题及答案

第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1. 下列命题中不正确的命题个数是( )①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 与不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 与b 所在直线平行。

A .1B .2C .3D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且P A ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB yAD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 与1CD 所形成角的余弦值为( ) A .1010 B . 15 C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,_ _ D_ A_ P_ N _ B_ M0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.;221111111①(A A+A D +A B )=3(A B )()0;C ⋅-=1111②A A B A A 60;︒11向量与向量的夹角为AD A B ③ ⋅⋅11111立方体ABCD-A B C D 的体积为|AB AA AD |;④4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ; (2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a =-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( ) A .可构成直角三角形 B .可构成锐角三角形C .可构成钝角三角形D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( ) A .[0,5] B .[1,5] C .(1,5) D .[1,25] 4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 .5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1与侧面ABB 1A 1所成的角.C 1 B 1 A 1B A3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值为( ) A .42B .32C .33D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥. (1)求证:1AC ⊥平面1A BC ; (2)求1C 到平面1A AB 的距离; (3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,13AC AA ==,∠ABC =60°. (1)证明:1AB A C ⊥;(2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面P AC .若存在,求S E :EC 的值; 若不存在,试说明理由.CBA C 1B 1 A1 D 1C 1B 1A 1DABC_ C_ _ A_S_ F_ B参考答案第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-.∵1122EN CD BA ===12AB -,EN PM PE =-=211326PC PC PC -=,连结AC ,则PC AC AP AB AD AP =-=+- ∴11()26MN AB AB AD AP =--+-=211366AB AD AP --+,∴211,,366x y z =-=-=.§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ;(2)1,2,CD x CD CC ==1设则 2CC =x, 111,BD AA C C BD A C ⊥∴⊥ 面 ,11:0x AC CD ∴⋅= 只须求满足, 设1,,A A a AD b DC c ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-, 令24260x x +-=,则2320x x --=,解得1x =,或23x =-(舍去), 111,.A C C BD ∴=⊥1CD 时能使平面CC §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示_ C_ D_ A_P_ N _ B_ M _ EA1.A2.D3.B4.165. (1)建系如图,则A (0,0,0) B (0,a ,0) A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1 则有13(,0,0)2MC =-(0,,0)AB a =,1(0,02)AA a =, ∴10MC AB ⋅=,110MC AA ⋅=,所以,MC 1⊥平面ABB 1A 1.因此,AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.13(,2)22a AC a a =-,(0,2)2aAM a =, ∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=∴<1,AC AM >=30°.∴AC 1与侧面ABB 1A 1所成的角为30°.3.2立体几何中的向量方法1.A2.C3.(1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥, 所以DE AC ⊥,又1A D ⊥平面ABC , 以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()10,0,A t ,()10,2,C t ,()10,3,AC t =,()12,1,BA t =--,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得3t =设平面1A AB 的法向量为(),,n x y z =,(13AA =,()2,2,0AB =,所以130220n AA y z n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,3,1n =-, 所以点1C 到平面1A AB 的距离1AC n d n⋅==221. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,3CA =-,()2,0,0CB =, 所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =, 故cos ,m n m n m n⋅<>==⋅7可知二面角1A A B C --7. 4.(1)三棱柱111ABC A B C -为直三棱柱,11AB AA AC AA ∴⊥⊥,,Rt ABC ∆,1,3,60AB AC ABC ==∠=︒,由正弦定理030ACB ∠=.090BAC ∴∠=AB AC ⊥即 .如右图,建立空间直角坐标系,则 1(0,0,0),(1,0,0)3,0),3)A B C A1(1,0,0),(0,3,3)AB AC ∴==, 110030(3)0AB AC ⋅=⨯+⨯-=, 1AB A C ∴⊥.(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量, 设平面1A BC 的法向量为(,,)n l m n =, 则10,0,3BC n AC n BC ⋅=⋅==-又(,,),303,330l m l m n m m n ⎧-+=⎪∴∴==⎨-=⎪⎩. 不妨取1,(3,1,1)m n ==则,22222231101015cos ,5(3)11100m n m n m n ⋅⨯+⨯+⨯<>===⋅++⋅++.1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)22SD a =--,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. (2)由题设知,平面PAC 的一个法向量26()2DS a =,平面DAC 的一个法向量600a OS =(,,,设所求二面角为θ,则3cos OS DS OS DSθ⋅==,得所求二面角的大小为30°. (3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且2626),(0,)DS CS ==(. 设,CE tCS = 则226(,(1),)222BE BC CE BC tCS a a t at =+=+=--,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面.作 者 于华东 责任编辑 庞保军_ C_ A_S_ F_ BO。

高中数学 第3章 空间向量与立体几何 3.2.2 空间线面关系的判定1数学教案

3.2.2 空间线面关系的判定设空间两条直线l 1,l 2的方向向量分别为e 1,e 2,两个平面α1,α2的法向量分别为n 1,n 2,则有下表:思考:否垂直?[提示] 垂直1.若直线l 的方向向量a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α斜交B [∵n =(-2,0,-4)=-2(1,0,2)=-2a , ∴n ∥a ,∴l ⊥α.]2.已知不重合的平面α,β的法向量分别为n 1=⎝ ⎛⎭⎪⎫12,3,-1,n 2=⎝ ⎛⎭⎪⎫-16,-1,13,则平面α与β的位置关系是________.平行 [∵n 1=-3n 2,∴n 1∥n 2,故α∥β.]3.设直线l 1的方向向量为a =(3,1,-2),l 2的方向向量为b =(-1,3,0),则直线l 1与l 2的位置关系是________.垂直 [∵a·b =(3,1,-2)·(-1,3,0)=-3+3+0=0,∴a⊥b ,∴l 1⊥l 2.] 4.若直线l 的方向向量为a =(-1,2,3),平面α的法向量为n =(2,-4,-6),则直线l 与平面α的位置关系是________.垂直 [∵n =-2a ,∴n ∥a ,又n 是平面α的法向量,所以l ⊥α.]利用空间向量证明线线平行【例1】 如图所示,在正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别为DD 1和BB 1的中点.求证:四边形AEC 1F 是平行四边形.[证明] 以点D 为坐标原点,分别以DA →,DC →,DD 1→为正交基底建立空间直角坐标系,不妨设正方体的棱长为1,则A (1,0,0),E ⎝⎛⎭⎪⎫0,0,12,C 1(0,1,1),F ⎝⎛⎭⎪⎫1,1,12,∴AE →=⎝ ⎛⎭⎪⎫-1,0,12,FC 1→=⎝ ⎛⎭⎪⎫-1,0,12,EC 1→=⎝ ⎛⎭⎪⎫0,1,12,AF→=⎝ ⎛⎭⎪⎫0,1,12, ∵AE →=FC 1→,EC 1→=AF →, ∴AE →∥FC 1→,EC 1→∥AF →,又∵F ∉AE ,F ∉EC 1,∴AE ∥FC 1,EC 1∥AF , ∴四边形AEC 1F 是平行四边形.1.两直线的方向向量共线(垂直)时,两直线平行(垂直);否则两直线相交或异面. 2.直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.3.两个平面的法向量共线(垂直)时,两平面平行(垂直);否则两平面相交但不垂直. 1.长方体ABCD ­A 1B 1C 1D 1中,E ,F 分别是面对角线B 1D 1,A 1B 上的点,且D 1E =2EB 1,BF =2FA 1.求证:EF ∥AC 1.[证明] 如图所示,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,设DA =a ,DC =b ,DD 1=c ,则得下列各点的坐标:A (a ,0,0),C 1(0,b ,c ),E ⎝ ⎛⎭⎪⎫23a ,23b ,c ,F ⎝⎛⎭⎪⎫a ,b 3,23c . ∴FE →=⎝ ⎛⎭⎪⎫-a 3,b 3,c 3,AC 1→=(-a ,b ,c ),∴FE →=13AC 1→.又FE 与AC 1不共线,∴直线EF ∥AC 1.利用空间向量证明线面、面面平行[探究问题]在用向量法处理问题时,若几何体的棱长未确定,应如何处理? 提示:可设几何体的棱长为1或a ,再求点的坐标.【例2】 在正方体ABCD ­A 1B 1C 1D 1中,M ,N 分别是CC 1,B 1C 1的中点.求证:MN ∥平面A 1BD .[思路探究][证明] 法一:如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,于是DA 1→=(1,0,1),DB →=(1,1,0),MN →=⎝ ⎛⎭⎪⎫12,0,12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥DA 1→,n ⊥DB →,即⎩⎪⎨⎪⎧n ·DA 1→=x +z =0,n ·DB →=x +y =0,取x =1,则y =-1,z =-1,∴平面A 1BD 的一个法向量为n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n .∴MN ∥平面A 1BD .法二:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,∴MN ∥平面A 1BD .法三:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12DA →-12A 1A →=12()DB →+BA→-12()A 1B →+BA →=12DB →-12A 1B →.即MN →可用A 1B →与DB →线性表示,故MN →与A 1B →,DB →是共面向量,故MN ∥平面A 1BD . 1.本例中条件不变,试证明平面A 1BD ∥平面CB 1D 1.[证明] 由例题解析知,C (0,1,0),D 1(0,0,1),B 1(1,1,1), 则CD 1→=(0,-1,1),D 1B 1→=(1,1,0), 设平面CB 1D 1的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ⊥CD 1→m ⊥D 1B 1→,即⎩⎪⎨⎪⎧m ·CD 1→=-y 1+z 1=0,m ·D 1B 1→=x 1+y 1=0,令y 1=1,可得平面CB 1D 1的一个法向量为m =(-1,1,1),又平面A 1BD 的一个法向量为n =(1,-1,-1). 所以m =-n ,所以m ∥n ,故平面A 1BD ∥平面CB 1D 1.2.若本例换为:在如图所示的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD ∥EF ,EF ∥BC ,BC =2AD =4,EF =3,AE =BE =2,G 是BC 的中点,求证:AB ∥平面DEG .[证明] ∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB , ∴EF ⊥AE ,EF ⊥BE .又∵AE ⊥EB ,∴EB ,EF ,EA 两两垂直.以点E 为坐标原点,EB ,EF ,EA 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2),G (2,2,0),∴ED →=(0,2,2),EG →=(2,2,0),AB →=(2,0,-2).设平面DEG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ED →·n =0,EG →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,2x +2y =0,令y =1,得z =-1,x =-1,则n =(-1,1,-1), ∴AB →·n =-2+0+2=0,即AB →⊥n . ∵AB ⊄平面DEG , ∴AB ∥平面DEG .1.向量法证明线面平行的三个思路(1)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a ⊥u ,即a ·u =0.(2)根据线面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行,要证明一条直线和一个平面平行,在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线的向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.2.证明面面平行的方法设平面α的法向量为μ,平面β的法向量为v ,则α∥β⇔μ∥v .向量法证明垂直问题【例3】 如图所示,在四棱锥P ­ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ; (2)PD ⊥平面ABE . [思路探究] 建系→求相关点的坐标→求相关向量的坐标→判断向量的关系→确定线线、线面关系[证明] AB ,AD ,AP 两两垂直,建立如图所示的空间直角坐标系,设PA =AB =BC =1, 则P (0,0,1). (1)∵∠ABC =60°, ∴△ABC 为正三角形,∴C ⎝ ⎛⎭⎪⎫12,32,0,E ⎝ ⎛⎭⎪⎫14,34,12. 设D (0,y,0),由AC ⊥CD ,得AC →·CD →=0, 即y =233,则D ⎝ ⎛⎭⎪⎫0,233,0,∴CD →=⎝ ⎛⎭⎪⎫-12,36,0.又AE →=⎝ ⎛⎭⎪⎫14,34,12,∴AE →·CD →=-12×14+36×34=0,∴AE →⊥CD →,即AE ⊥CD .(2)法一:∵P (0,0,1),∴PD →=⎝ ⎛⎭⎪⎫0,233,-1.又AE →·PD →=34×233+12×(-1)=0,∴PD →⊥AE →,即PD ⊥AE . ∵AB →=(1,0,0),∴PD →·AB →=0.∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面ABE .法二:AB →=(1,0,0),AE →=⎝ ⎛⎭⎪⎫14,34,12,设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD →=⎝ ⎛⎭⎪⎫0,233,-1,显然PD →=33n .∴PD →∥n ,∴PD →⊥平面ABE ,即PD ⊥平面ABE . 1.证明线线垂直常用的方法证明这两条直线的方向向量互相垂直. 2.证明线面垂直常用的方法(1)证明直线的方向向量与平面的法向量是共线向量; (2)证明直线与平面内的两个不共线的向量互相垂直. 3.证明面面垂直常用的方法 (1)转化为线线垂直、线面垂直处理; (2)证明两个平面的法向量互相垂直.2.在例3中,平面ABE 与平面PDC 是否垂直,若垂直,请证明;若不垂直,请说明理由.[解] 由例3,可知CD →=⎝ ⎛⎭⎪⎫-12,36,0,PD →=⎝ ⎛⎭⎪⎫0,233,-1,设平面PDC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·CD →=-12x +36y =0,m ·PD →=233y -z =0,令y =3,则x =1,z =2,即m =(1,3,2),由例3知,平面ABE 的法向量为n =(0,2,-3), ∴m·n =0+23-23=0,∴m⊥n . 所以平面ABE ⊥平面PDC .1.应用向量法证明线面平行问题的方法 (1)证明直线的方向向量与平面的法向量垂直.(2)证明直线的方向向量与平面内的某一直线的方向向量共线.(3)证明直线的方向向量可用平面内的任两个不共线的向量表示.即用平面向量基本定理证明线面平行.2.证明面面平行的方法设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).3.(1)证明线面垂直问题,可以利用直线的方向向量和平面的法向量之间的关系来证明. (2)证明面面垂直问题,常转化为线线垂直、线面垂直或两个平面的法向量垂直. 1.判断(正确的打“√”,错误的打“×”)(1)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行.( )(2)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.( ) (3)若一直线与平面垂直,则该直线的方向向量与平面内所有直线的方向向量的数量积为0.( )(4)两个平面垂直,则其中一个平面内的直线的方向向量与另一个平面内的直线的方向向量垂直.( )[答案] (1)√ (2)√ (3)√ (4)×2.已知向量a =(2,4,5),b =(3,x ,y ),a 与b 分别是直线l 1,l 2的方向向量,若l 1∥l 2,则( )A .x =6,y =15B .x =3,y =152C .x =3,y =15D .x =6,y =152D [∵l 1∥l 2,∴a ∥b , ∴存在λ∈R ,使a =λb , 则有2=3λ,4=λx,5=λy , ∴x =6,y =152.]3.已知平面α和平面β的法向量分别为a =(1,2,3),b =(x ,-2,3),且α⊥β,则x =________.-5 [∵α⊥β,∴a ⊥b , ∴a ·b =x -4+9=0, ∴x =-5.]4.在正方体ABCD ­A 1B 1C 1D 1中,E 为CC 1的中点,证明:平面B 1ED ⊥平面B 1BD . [证明] 以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D (0,0,0),B 1(1,1,1),E ⎝ ⎛⎭⎪⎫0,1,12,DB 1→=(1,1,1),DE →=⎝⎛⎭⎪⎫0,1,12,设平面B 1DE 的法向量为n 1=(x ,y ,z ),则x +y +z =0且y +12z =0,令z =-2,则y =1,x =1,∴n 1=(1,1,-2).同理求得平面B1BD的法向量为n2=(1,-1,0),由n1·n2=0,知n1⊥n2,∴平面B1DE⊥平面B1BD.。

高中数学第三章空间向量与立体几何3.2.1空间向量与平行关系课件新人教A版选修21


(1)设 n1=(x1,y1,z1)是平面 ADE 的法向量,则 n1⊥D→A,n1⊥A→E, 即nn11· ·AD→→EA==22yx11+=z01,=0,得xz11==-0,2y1, 令 z1=2,则 y1=-1,所以 n1=(0,-1,2). 因为F→C1·n1=-2+2=0,所以F→C1⊥n1. 又因为 FC1⊄平面 ADE,所以 FC1∥平面 ADE.
(2)D→B=(2,2,0),D→E=(1,0,2). 设平面 BDEF 的一个法向量为 n=(x,y,z). ∴nn··DD→→BE==00,, ∴2x+x+22z=y=0,0,∴yz==--12x, x. 令 x=2,得 y=-2,z=-1. ∴n=(2,-2,-1)即为平面 BDEF 的一个法向量.
【自主解答】 以点 A 为原点,AD、AB、AS 所在的直线分别为 x 轴、 y 轴、z 轴,建立如图所示的坐标系,则 A(0,0,0),B(0,1,0),C(1,1, 0),D12,0,0,S(0,0,1).
(1)∵SA⊥平面 ABCD, ∴A→S=(0,0,1)是平面 ABCD 的一个法向量.
第九页,共47页。
图322
【解】 设正方体 ABCD-A1B1C1D1 的棱长为 2,则 D(0,0,0),B(2, 2,0),A(2,0,0),C(0,2,0),E(1,0,2).
(1)连接 AC,因为 AC⊥平面 BDD1B1,所以A→C=(-2,2,0)为平面 BDD1B1 的一个法向量.
第十五页,共47页。
-x1+4z1=0, 即32y1+4z1=0. 令 x1=1,得 z1=14,y1=-23.
第二十八页,共47页。
nn22· ·DD→→EF==00,,即32x2y+2+34y2z+2=40z2,=0, 令 y2=-1,得 z2=38,x2=32. ∴n1=1,-23,14,n2=32,-1,38, ∴n1=23n2,即 n1∥n2, ∴平面 AMN∥平面 EFBD.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.2 立体几何中的向量方法知识点一用向量方法判定线面位置关系(1)设a、b分别是l1、l2的方向向量, 判断l1、l2的位置关系:①a=(2,3, -1), b=(-6, -9,3).②a=(5,0,2), b=(0,4,0).(2)设u、v分别是平面α、β的法向量, 判断α、β的位置关系:①u=(1, -1,2), v=(3,2,12 -).②u=(0,3,0), v=(0, -5,0).(3)设u是平面α的法向量, a是直线l的方向向量, 判断直线l与α的位置关系.①u=(2,2, -1), a=(-3,4,2).②u=(0,2, -3), a=(0, -8,12).解(1)①∵a=(2,3, -1), b=(-6, -9,3),∴a=-13b, ∴a∥b, ∴l1∥l2.②∵a=(5,0,2), b=(0,4,0), ∴a·b=0, ∴a⊥b, ∴l1⊥l2.(2)①∵u=(1, -1,2), v=(3,2,1 2 -),∴u·v=3-2-1=0, ∴u⊥v, ∴α⊥β.②∵u=(0,3,0), v=(0, -5,0), ∴u=-35v, ∴u∥v, ∴α∥β.(3)①∵u=(2,2, -1), a=(-3,4,2),∴u·a=-6+8-2=0, ∴u⊥a, ∴l⊂α或l∥α.②∵u=(0,2, -3), a=(0, -8,12),∴u=-14a, ∴u∥a, ∴l⊥α.知识点二利用向量方法证明平行问题如图所示, 在正方体ABCD-A1B1C1D1中, M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.证明方法一如图所示, 以D为原点, DA、DC、DD1所在直线分别为x轴、y轴、z 轴建立空间直角坐标系, 设正方体的棱长为1, 则可求得M (0,1,12), N (12,1,1), D(0,0,0), A 1(1,0,1), B(1,1,0),于是MN u u u u r =(12, 0, 12),设平面A 1BD 的法向量是n=(x, y, z ). n =(x, y, z).则n ·DB u u u r =0, 得0,0,x z x y +=⎧⎨+=⎩ 取x =1, 得y =-1, z =-1.∴n =(1, -1, -1).又 MN u u u u r ·n = (12,0, 12)·(1, -1, -1)=0,方法二 ∵MN u u u u r = 111111122C N C M C B C C -=-u u u u r u u u u u r u u u u r u u u u r111111()22D A D D DA =-=u u u u r u u u u r u u uu r∴MN u u u u r ∥1DA u u u u r , 又∵MN ⊄平面A 1BD.∴MN ∥平面A 1BD.知识点三 利用向量方法证明垂直问题在正棱锥P —ABC 中, 三条侧棱两两互相垂直, G 是△PAB 的重心, E 、F 分别为BC 、PB 上的点, 且BE ∶EC =PF ∶FB =1∶2.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是PG 与BC 的公垂线段. 证明 (1)方法一如图所示, 以三棱锥的顶点P 为原点, 以PA 、PB 、PC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.令PA =PB =PC =3, 则A(3,0,0)、B(0,3,0)、C(0,0,3)、E(0,2,1)、F(0,1,0)、G(1,1,0)、P(0,0,0).于是PA u u u r=(3,0,0), FG u u u r =(3,0,0),故 PA u u u r=3FG u u u r , ∴PA ∥FG .而PA ⊥平面PBC, ∴FG ⊥平面PBC,又FG ⊂平面EFG, ∴平面EFG ⊥平面PBC. 方法二 同方法一, 建立空间直角坐标系, 则 E(0,2,1)、F(0,1,0)、G(1,1,0).EF u u u r=(0, -1, -1), EG u u u r =(0, -1, -1),设平面EFG 的法向量是n =(x, y, z),则有n ⊥EF u u u r , n ⊥PA u u u r, ∴0,0,y z x y z +=⎧⎨--=⎩令y =1, 得z =-1, x =0, 即n =(0,1, -1).而显然PA u u u r=(3, 0, 0)是平面PBC 的一个法向量.这样n ·PA u u u r = 0,∴n ⊥PA u u u r即平面PBC 的法向量与平面EFG 的法向量互相垂直, ∴平面EFG ⊥平面PBC.(2)∵EG u u u r =(1, -1, -1), PG u u u r=(1, 1, 0),BC uuu r=(0, -3, 3),∴EG u u u r ·PG u u u r =1-1= 0, EG u u u r ·BC uuu r=3- 3 = 0,∴EG ⊥PG, EG ⊥BC,∴EG 是PG 与BC 的公垂线段.知识点四 利用向量方法求角四棱锥P —ABCD 中, PD ⊥平面ABCD, PA 与平面ABCD 所成的角为60°, 在四边形ABCD 中, ∠D =∠DAB =90°, AB =4, CD =1, AD =2.(1)建立适当的坐标系, 并写出点B, P 的坐标; (2)求异面直线PA 与BC 所成角的余弦值.解 (1)如图所示, 以D 为原点, 射线DA, DC, DP 分别为x 轴, y 轴, z 轴的正方向, 建立空间直角坐标系D —xyz,∵∠D =∠DAB =90°, AB =4, CD =1, AD =2, ∴A(2,0,0), C(0,1,0), B(2,4,0).由PD ⊥面ABCD 得∠PAD 为PA 与平面ABCD 所成的角. ∴∠PAD =60°.在Rt △PAD 中, 由AD =2, 得PD =23. ∴P(0,0,23).(2)∵PA u u u r=(2,0, -23), BC uuu r =(-2, -3, 0)∴cos 〈PA u u u r ,BC uuu r 〉= 13PA BC PA BC⋅=-u u u r u u u r u u u r u u u r∴PA 与BC 所成角的余弦值为1313. 正方体ABEF -DCE ′F ′中, M 、N 分别为AC 、BF 的中点(如图所示), 求平面MNA 与平面MNB 所成二面角的余弦值.解 取MN 的中点G, 连结BG, 设正方体棱长为1. 方法一 ∵△AMN, △BMN 为等腰三角形, ∴AG ⊥MN, BG ⊥MN.∴∠AGB 为二面角的平面角或其补角.∵AG=BG=64, ,AB AG GB =+u u u r u u u r u u u r, 设〈AG u u u r , GB uuu r 〉=θ,ABu u u r2=AG u u u r 2+2AG u u u r ·GB uuu r +GB uuu r 2, ∴1=(64)2+2×64×64cosθ+(64)2.∴cosθ=13, 故所求二面角的余弦值为13.方法二 以B 为坐标原点, BA, BE, BC 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系B -xyz则M(12, 0, 12), N (12,12,0), 中点G(12, 14, 14),A(1,0,0), B(0,0,0),由方法一知∠AGB 为二面角的平面角或其补角.∴GA u u u r =(12, -14, -14), GB uuu r =(12, -14, -14),∴ cos<GA u u u r , GB uuu r >=GA GB GA GB ⋅u u u r u u u r u u u r u u u r11833388-=-⨯, 故所求二面角的余弦值为13.方法三 建立如方法二的坐标系,∴110,0,AM n AN n ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r 即110,22110,22x z x y ⎧-+=⎪⎪⎨⎪-+=⎪⎩取n 1=(1,1,1).同理可求得平面BMN 的法向量n 2=(1, -1, -1). ∴cos 〈n 1, n 2〉=1212n n n n ⋅1333==-⨯,故所求二面角的余弦值为13知识点五 用向量方法求空间的距离已知正方形ABCD 的边长为4, E 、F 分别是AB 、AD 的中点, GC ⊥平面ABCD,且GC =2, 求点B 到平面EFG 的距离.解如图所示, 以C 为原点, CB 、CD 、CG 所在直线分别为x 、y 、z 轴建立空间直角坐标系C -xyz.由题意知C(0,0,0), A(4,4,0), B(4,0,0), D(0,4,0), E(4,2,0), F(2,4,0), G(0,0,2).BE u u u r =(0,2,0), BF u u u r=(-2,4,0),设向量BM u u u u r⊥平面GEF, 垂足为M, 则M 、G 、E 、F 四点共面,故存在实数x, y, z, 使BM u u u u r = x BE u u u r + y BF u u u r+ z BG u u u r ,即BM u u u u r= x (0, 2, 0)+y (-2, 4, 0)+z (-4, 0, 2) =(-2y -4z, 2x+4y, 2z ).由BM ⊥平面GEF, 得BM u u u u r ⊥GE uuu r ,BM u u u u r ⊥EF u u u r,于是BM u u u u r ·GE uuu r =0, BM u u u u r ·EF u u u r =0,即(24,24,2)(4,2,2)0,(24,24,2)(2,2,0)0,y x x y z y z x y z --+⋅-=⎧⎨--+⋅-=⎩ 即50,320,1,x z x y z x y z -=⎧⎪+++⎨⎪++=⎩, 解得 15,117,113,11x y z ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩∴BM u u u u r =(-2y -4z,2x +4y,2z)=226,,111111⎛⎫⎪ ⎭⎝∴|BM u u u u r |= 222226()()()111111++211=即点B 到平面GEF 的距离为1111.考题赏析(安徽高考)如图所示, 在四棱锥O —ABCD 中, 底面ABCD 是边长为1的菱形, ∠ABC=4π, OA ⊥底面ABCD, OA =2, M 为OA 的中点. (1)求异面直线AB 与MD 所成角的大小; (2)求点B 到平面OCD 的距离.解 作AP ⊥CD 于点P.如图, 分别以AB 、AP 、AO 所在直线为x 、y 、z 轴建立平面直角坐标系.A(0,0,0), B(1,0,0), P (0,22, 0), D (-22, 22, 0), O(0,0,2), M(0,0,1).(1)设AB 与MD 所成角为θ,∵AB u u u r=(1,0,0), MD u u u u r = (-22, 22, -1),∴cos θ =12AB MD AG MD ⋅=⋅u u u r u u u u r u u u r u u u u r.∴θ=3π. ∴AB 与MD 所成角的大小为3π. (2)∵OP uuu r =(0,22, 2-),OD u u u r=(-22, 22, 2-), ∴设平面OCD 的法向量为n = ( x, y , z ),则n ·OP uuu r =0, n ·OD u u u r= 0.得220,22220,22y zx y z⎧-=⎪⎪⎨⎪-+-=⎪⎩取z=2, 解得n = (0,4,2).设点B到平面OCD的距离为d,则d为OBuuu r在向量n上的投影的绝对值.∵OBuuu r=(1, 0, -2), ∴d=OB nn⋅u u u r23=,∴点B到平面OCD的距离为23,1.已知A(1,0,0)、B(0,1,0)、C(0,0,1), 则平面ABC的一个单位法向量是( )A.333) B.33,3)C.(-33,33,33) D.(-33, -33, -33) 答案 DABu u u r=(-1,1,0), 是平面OAC的一个法向量.ACu u u r=(-1,0,1), BCuuu r=(0, -1,1)设平面ABC的一个法向量为n=(x, y, z)∴0,0,x yx z-+=⎧⎨-+=⎩令x=1, 则y=1, z=1∴n=(1,1,1)单位法向量为:nn±=±333.2.已知正方体ABCD—A1B1C1D1, E、F分别是正方形A1B1C1D1和ADD1A1的中心, 则EF和CD所成的角是( )A.60°B.45°C.30°D.90°答案 B3.设l1的方向向量a=(1,2, -2), l2的方向向量b=(-2,3, m), 若l1⊥l2, 则m=( ) A.1 B.2 C.12D.3答案 B解析因l1⊥l2, 所以a·b=0, 则有1×(-2)+2×3+(-2)×m=0,∴2m=6-2=4, 即m=2.4.若两个不同平面α, β的法向量分别为u=(1,2, -1), v=(-3, -6,3), 则( )A.α∥βB.α⊥βC .α, β相交但不垂直D .以上均不正确 答案 A解析 因v =-3u , ∴v ∥u . 故α∥β.5.已知a 、b 是异面直线, A 、B ∈a, C 、D ∈b, AC ⊥b, BD ⊥b, 且AB =2, CD =1, 则a 与b 所成的角是( )A .30°B .45°C .60°D .90° 答案 C解析 设〈AB u u u r , CD uuu r 〉=θ, AB u u u r ·CD uuu r =(AC u u u r +CD uuu r +DB u u u r ·CD uuur = |CD uuu r |2= 1, cos θ=12AB CD AB CD ⋅=u u u r u u u r u u u r u u u r ,所以θ=60°6.若异面直线l 1、l 2的方向向量分别是a =(0, -2, -1), b =(2,0,4), 则异面直线l 1与l 2的夹角的余弦值等于( )A .25-B .25C .-255D .255答案 B 解析 设异面直线l 1与l 2的夹角为θ, 则cosθ=a b a b⋅⋅(1)44255416-⨯==⨯⋅+ 7.已知向量n =(6,3,4)和直线l 垂直, 点A(2,0,2)在直线l 上, 则点P(-4,0,2)到直线l 的距离为________.答案366161, 解析PA u u u r=(6, 0, 0), 因为点A 在直线l 上, n 与l 垂直, 所以点P 到直线l 的距离22236616161634PA n ⋅==++u u u r 8.平面α的法向量为(1,0, -1), 平面β的法向量为(0, -1,1), 则平面α与平面β所成二面角的大小为________.答案3π或23π,解析 设n 1=(1,0, -1), n 2=(0, -1,1) 则cos 〈n 1, n 21222=-⋅〈n 1, n 2〉=23π.因平面α与平面β所成的角与〈n 1, n 2〉相等或互补, 所以α与β所成的角为3π或23π.9.已知四面体顶点A(2,3,1)、B(4,1, -2)、C(6,3,7)和D(-5, -4,8), 则顶点D 到平面ABC 的距离为________.答案 11解析 设平面ABC 的一个法向量为n =(x,y,z )则0,0,n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r ()()x,y,z (2,2,3)0,x,y,z (4,0,6)0,⋅--=⎧⎪⎨⋅=⎪⎩ 2230,460,x y z x z --=⎧⎨+=⎩2,2,3y x z x =⎧⎪⇒⎨=-⎪⎩令x=1,则n = (1,2, 23-),AD u u u r =(-7, -7, 7)故所求距离为14714377311374149AD n n ---⋅==⨯=++u u u r,10.如图所示, 在四棱锥P —ABCD 中, 底面ABCD 是正方形, 侧棱PD ⊥平面ABCD, PD =DC, E 是PC 的中点, 作EF ⊥PB 交PB 于F.(1)证明:PA ∥平面BDE ; (2)证明:PB ⊥平面DEF.证明 (1)如图建立空间直角坐标系,设DC =a, AC ∩BD =G, 连结EG , 则A(a,0,0), P(0,0, a), C(0, a,0), E (0,2a , 2a ), G (2a , 2a, 0). 于是PA u u u r=(a, 0, -a ),EG u u u r =(2a , 0, 2a-),∴PA u u u r= 2EG u u u r , ∴PA ∥EG .又EG ⊂平面DEB.PA ⊄平面DEB.∴PA ∥平面DEB.(2)由B(a,a,0),得PB u u u r=(a, a, -a),又DE u u u r =(0, 2a ,2a),∵PB u u u r ·DE u u u r =22a 20,2a -= ∴PB ⊥DE.又EF ⊥PB, EF ∩DE=E, ∴PB ⊥平面EFD.11.如图所示, 已知点P 在正方体ABCD —A ′B ′C ′D ′的对角线BD ′上, ∠PDA =60°.(1)求DP 与CC ′所成角的大小;(2)求DP 与平面AA ′D ′D 所成角的大小. 解如图所示, 以D 为原点, DA 为单位长度建立空间直角坐标系D —xyz. 则DA u u u r=(1, 0, 0), 'CC u u u u r= (0,0,1).连结BD,B ′D ′. 在平面BB ′D ′D 中, 延长DP 交B ′D ′于H. 设DH u u u u r = (m,m,1) (m>0),由已知〈DH u u u u r ,DA u u u r〉= 60°,由DA u u u r ·DH u u u u r = |DA u u u r ||DH u u u u r |cos 〈DH u u u u r ,DA u u u r〉,可得2m =221m +解得m =22, 所以DH u u u u r =(22, 22, 1),(1) 因为cos 〈DH u u u u r ,'CC u u u u r 〉= 220011222212⨯+⨯+⨯=⨯(2) 所以〈DH u u u u r ,'CC u u u ur 〉= 45°,即DP 与CC ′所成的角为45°.(2)平面AA ′D ′D 的一个法向量是DC u u u r= (0,1,0). 因为cos 〈DH u u u u r ,DC u u u r 〉= 220011222212⨯+⨯+⨯=⨯所以〈DH u u u u r ,DC u u ur 〉= 60°,可得DP 与平面AA ′D ′D 所成的角为30°.12. 如图, 四边形ABCD 是菱形, PA ⊥平面ABCD, PA=AD=2, ∠BAD=60°.平面PBD ⊥平面PAC,(1)求点A 到平面PBD 的距离;(2)求异面直线AB 与PC 的距离.(1)解 以AC 、BD 的交点为坐标原点, 以AC 、BD 所在直线为x 轴、y 轴建立如图所示的空间直角坐标系, 则A (3, 0, 0), B (0, 1, 0), C (3-, 0, 0), D (0, -1, 0), P (3, 0,2).设平面PBD 的一个法向量为n 1=(1, y 1, z 1). 由n 1⊥OB uuu r , n 1⊥OP uuu r , 可得n 1=(1, 0, 32-). (1)OA u u u r =(3, 0, 0), 点A 到平面PBD 的距离, 11OA n d n ⋅=u u u r 2217=, 13.如图所示, 直三棱柱ABC —A 1B 1C 1中, 底面是以∠ABC 为直角的等腰直角三角形, AC = 2a, BB 1 = 3a, D 为A 1C 1的中点, 在线段AA 1上是否存在点F, 使CF ⊥平面B 1DF ?若存在, 求出|AF u u u r |;若不存在, 请说明理由.解 以B 为坐标原点, 建立如图所示的空间直角坐标系B-xyz.假设存在点F, 使CF ⊥平面B 1DF,并设AF u u u r =λ1AA u u u r =λ(0, 0, 3a )=(0, 0, 3λa )(0<λ<1), ∵D 为A 1C 1的中点,∴D(22a , 22a ,3a) 1B D u u u u r = (22a , 22a ,3a)-(0,0,3a)= (22a ,22a , 0), 1B F u u u u r 1B B BA AF =++u u u u r u u u r u u u r =(0,0,3)(2,0,0)(0,0,3)a a a λ-++∵CF ⊥平面B 1DF,∴CF ⊥1B D u u u u r , CF uuu r ⊥1B F u u u u r ,110,0,CF B D CF B F ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u u r u u u r u u u u r 即2300,9920,a λλλ⨯=⎧⎨-+=⎩解得λ=23或λ=13 ∴存在点F 使CF ⊥面B 1DF, 且 当λ=13时, |AF u u u r |=13,|1AA u u u r | = a 当λ=23, |AF u u u r | =23,|1AA u u u r | = 2a. 14.如图(1)所示, 已知四边形ABCD 是上、下底边长分别为2和6, 高为eq \r(3)的等腰梯形.将它沿对称轴OO 1折成直二面角, 如图(2).(1)证明:AC ⊥BO 1;(2)求二面角O —AC —O 1的余弦值.(1)证明 由题设知OA ⊥OO 1, OB ⊥OO 1.所以∠AOB 是所折成的直二面角的平面角, 即OA ⊥OB. 故以O 为原点, OA 、OB 、OO 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系, 如图所示, 则相关各点的坐标是A(3,0,0)、B(0,3,0)、C(0,1, 3)、O 1(0,0, 3).AC u u u r ·1BO u u u u r =-3+3·3=0. 所以AC ⊥BO 1. (2)解 因为1BO u u u u r ·OC u u u r =3-+ 3·3=0.所以BO 1⊥OC.由(1)AC ⊥BO 1, 所以BO 1⊥平面OAC, 1BO u u u u r 是平面OAC 的一个法向量.设n=(x, y, z )是平面O 1AC 的一个法向量, 由10,0,n AC n O C ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u u r 330,0,x y z y ⎧-++=⎪⇒⎨=⎪⎩ 取z= 3,得n=(1, 0, 3). 设二面角O-AC-O 1的大小为θ, 由n 、1BO u u u u r 的方向可知θ=〈n,1BO u u u u r 〉, 所以cos θ= cos 〈n , 1BO u u u u r 〉=1134n BO n BO ⋅=u u u u r u u u u r 即二面角O —AC —O 13。

相关文档
最新文档