第4课时:二次函数的图象与性质(3)
二次函数的图象和性质3(含答案)

2010年全国各地数学中考试题分类汇编17二次函数的图象和性质3一、选择题 1.(2010湖北鄂州)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论①a 、b 异号;②当x =1和x=3时,函数值相等;③4a +b =0,④当y =4时,x 的取值只能为0.结论正确的个数有( ) 个A .1 B.2 C.3 D.4【答案】C2.(2010湖北省咸宁)已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、 B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是 A .1y >2y B .1y 2y = C .1y <2y D .不能确定【答案】A3.(2010北京) 将二次函数y =x 2-2x +3,化为y =(x -h )2+k 的形式,结果为( )A .y =(x +1)2+4 B .y =(x -1)2+4 C .y =(x +1)2+2D . y =(x -1)2+2【答案】D4.(2010山东泰安)下列函数:①3y x =-;②21y x =-;③()10y x x=-<;④223y x x =-++,其中y 的值随x 值增大而增大的函数有( )A 、4个B 、3个C 、2个D 、1个 【答案】B5.(2010四川乐山).设a 、b 是常数,且b >0,抛物线y=ax 2+bx +a 2-5a -6为下图中四个图象之一,则a 的值为( )A. 6或-1B. -6或1C. 6D. -1【答案】DyxO yx Oyx O1 -1 yxO1 -16.(2010黑龙江哈尔滨)在抛物线42-=x y 上的一个点是( )(A )(4,4) (B )(1,-4) (C )(2,0) (D ).(0,4) 【答案】C7.(2010江苏徐州)平面直角坐标系中,若平移二次函数y=(x-2009)(x-2010)+4的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为 A .向上平移4个单位 B .向下平移4个单位 C .向左平移4个单位 D .向右平移4个单位 【答案】B8.(2010陕西西安)已知抛物线103:2-==x x y C ,将抛物线C 平移得到抛物线C '若两条抛物线C 、C ' 关于直线1=x 对称,则下列平移方法中,正确的是A .将抛物线C 向右平移25个单位 B .将抛物线C 向右平移3个单位 C .将抛物线C 向右平移5个单位 D .将抛物线C 向右平移6个单位【答案】C9.(2010 福建三明)抛物线772--=x kx y 的图象和x 轴有交点,则k 的取值范围是( )A .47-≥k B .47-≥k 且0≠k C .47->k D .47->k 且0≠k 【答案】B10.(2010 山东东营) 二次函数2y ax bx c =++的图象如图所示,则一次函数ac bx y -=与反比例函数xcb a y +-=在同一坐标系内的图象大致为( )【答案】B二、填空题1.(2010江苏扬州)y =2x 2-bx +3的对称轴是直线x =1,则b 的值为__________.x(B)x(A)x(C)(D)【答案】42.(2010山东泰安)将y=2x 2-12x-12变为y=a (x-m )2+n 的形式,则m·n=. 【答案】-903.(2010湖北襄樊)将抛物线212y x =-向上平移2个单位,再向右平移1个单位后,得到的抛物线的解析式为____________..【答案】21(1)22x --+或21322x x -++ 4.(2010江苏 镇江)已知实数y x y x x y x +=-++则满足,033,2的最大值为 .【答案】45.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20 三、解答题1.(2010湖北鄂州)如图,在直角坐标系中,A (-1,0),B (0,2),一动点P 沿过B 点且垂直于AB 的射线BM 运动,P 点的运动速度为每秒1个单位长度,射线BM 与x 轴交与点C .(1)求点C 的坐标.(2)求过点A 、B 、C 三点的抛物线的解析式.(3)若P 点开始运动时,Q 点也同时从C 出发,以P 点相同的速度沿x 轴负方向向点A 运动,t 秒后,以P 、Q 、C 为顶点的三角形为等腰三角形.(点P 到点C 时停止运动,点Q 也同时停止运动)求t 的值.(4)在(2)(3)的条件下,当CQ =CP 时,求直线OP 与抛物线的交点坐标.【答案】(1)点C 的坐标是(4,0);(2)设过点A 、B 、C 三点的抛物线的解析式为y =ax 2+bx +c (a ≠0),将点A 、B 、C 三点的坐标代入得:020164a b c c a b c =-+⎧⎪=⎨⎪=++⎩解得12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式是:y = 12-x 2+32x +2. (3)设P 、Q 的运动时间为t 秒,则BP =t ,CQ =t .以P 、Q 、C 为顶点的三角形为等腰三角形,可分三种情况讨论.①若CQ =PC ,如图所示,则PC = CQ =BP =t .∴有2t =BC =5t 5②若PQ =QC ,如图所示,过点Q 作DQ ⊥BC 交CB 于点D ,则有CD =PD .由△ABC ∽△QDC ,可得出PD =CD =255t ,∴555t =,解得t =40511-. ③若PQ =PC ,如图所示,过点P 作PE ⊥AC 交AC 于点E ,则EC =QE =255PC ,∴12t =255(5t ),解得t 32540-(4)当CQ =PC 时,由(3)知t 5P 的坐标是(2,1),∴直线OP 的解析式是:y =12x ,因而有12x =12-x 2+32x +2,即x 2-2x -4=0,解得x =15OP 与抛物线的交点坐标为(5152)和(5,152). 2.(2010湖北省咸宁)已知二次函数2y x bx c =+-的图象与x 轴两交点的坐标分别为(m ,0),(3m -,0)(0m ≠).(1)证明243c b =;(2)若该函数图象的对称轴为直线1x =,试求二次函数的最小值.【答案】(1)证明:依题意,m ,3m -是一元二次方程20x bx c +-=的两根.根据一元二次方程根与系数的关系,得(3)m m b +-=-,(3)m m c ⨯-=-. ∴2b m =,23c m =. ∴224312c b m ==.(2)解:依题意,12b-=,∴2b =-.由(1)得2233(2)344c b ==⨯-=.∴2223(1)4y x x x =--=--. ∴二次函数的最小值为4-.3.(2010湖北恩施自治州) 如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由. (3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.【答案】解:(1)将B 、C 两点的坐标代入得⎩⎨⎧-==+33c c b解得:⎩⎨⎧-=-=32c b所以二次函数的表达式为:322--=x x y(2)存在点P ,使四边形POP /C 为菱形.设P 点坐标为(x ,322--x x ), PP /交CO 于E若四边形POP /C 是菱形,则有PC =PO .连结PP / 则PE ⊥CO 于E ,∴OE=EC =23∴y =23-.∴322--x x =23-解得1x =2102+,2x =2102-(不合题意,舍去) ∴P 点的坐标为(2102+,23-)…………………………8分 (3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,322--x x ),易得,直线BC 的解析式为3-=x y 则Q 点的坐标为(x ,x -3).EB QP OE QP OC AB S S S S CPQ BPQ ABC ABPC ⋅+⋅+⋅=++=∆∆∆212121四边形 3)3(2134212⨯+-+⨯⨯=x x =87523232+⎪⎭⎫ ⎝⎛--x当23=x 时,四边形ABPC 的面积最大 此时P 点的坐标为⎪⎭⎫⎝⎛-415,23,四边形ABPC 的 面积875的最大值为. 4.(2010北京)在平面直角坐标系xOy 中,抛物线23454122+-++--=m x x mx m y 与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上.(1)求B 点的坐标;(2)点P 在线段OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线OB 交与点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧做等等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动).① 当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;② 若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点做x 轴的垂线,与直线AB 交与点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q点运动时,M 点、N 点也随之运动).若P 点运动到t分别有一条边恰好落在同一条直线上,求此刻t 的值.【答案】解:(1)∵抛物线23454122+-++--=m m x mx m y 经过原点, ∴m 2—3m +2=0. 解的m 1=1,m 2=2. 由题意知m ≠1. ∴m =2,∴抛物线的解析式为x x y 25412+-= ∵点B (2,n )在抛物线x x y 25412+-=,n=4.∴B 点的坐标为(2,4)(2)①设直线OB 的解析式为y =k 1x 求得直线OB 的解析式y =2x ∵A 点是抛物线与x 轴的一个交点, 可求得A 点的坐标为(10,0),设P 点的坐标为(a ,0),则E 点的坐标为(a ,2a ). 根据题意做等腰直角三角形PCD ,如图1.(第24题)可求得点C 的坐标为(3a ,2a ), 有C 点在抛物线上,得2a =-41x (3a )2+25x 3a . 即49a 2— 211a =0解得 a 1=922,a 2=0(舍去)∴OP =922②依题意作等腰直角三角形QMN . 设直线AB 的解析式y =k 2x +b由点A (10 ,0),点B (2,4),求得直线AB 的解析式为y =-21x +5 当P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况:第一种情况:CD 与NQ 在同一条直线上,如图2所示,可证△DPQ 为等腰直角三角形.此时QP 、OP 、AQ 的长可依次表示为t 、4t 、 2t 个单位. ∴PQ = DP = 4t ∴t +4t +2t =10 ∴t=710第二种情况:PC 与MN 在同一条直线上,如图3所示.可证△PQM 为等腰直角三角形.此时OP 、AQ 的长依次表示为t 、2t 个单位, ∴OQ = 10 - 2t ∵F 点在直线AB 上 ∴FQ =t ∵MQ =2t ∴PQ =MQ =CQ =2t ∴t +2t +2t =10 ∴t =2.第三种情况:点P 、Q 重合时,PD 、QM 在同一条直线上,如图4所示,此时OP 、AQ 的长依次表示为t 、2t 个单位.∴t +2t=10 ∴t =310 综上,符合题意的值分别为710,2,310. 5.(2010云南红河哈尼族彝族自治州)二次函数2x y =的图像如图8所示,请将此图像向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图像,并写出函数的解析式.(2)求经过两次平移后的图像与x 轴的交点坐标,指出当x 满足什么条件时,函数值大于0?【答案】解:画图如图所示: 依题意得:2)1(2--=x y=2122-+-x x =122--x x∴平移后图像的解析式为:122--x x (2)当y=0时,122--x x =0 2)1(2=-x 21±=-x 212121+=-=x x ,∴平移后的图像与x 轴交与两点,坐标分别为(21-,0)和(21+,0) 由图可知,当x<21-或x>21+时,二次函数2)1(2--=x y 的函数值大于0. 6.(2010云南楚雄)已知:如图,抛物线2y ax bx c =++与x 轴相交于两点A (1,0),B (3,0).与y 轴相较于点C (0,3). (1)求抛物线的函数关系式; (2)若点D (7,2m )是抛物线2y ax bx c =++上一点,请求出m 的值,并求处此时△ABD 的面积.【答案】解:(1)由题意可知09303a b c a b c c ++=⎧⎪++=⎨⎪=⎩ 解得143a b c =⎧⎪=-⎨⎪=⎩所以抛物线的函数关系式为243y x x =-+. (2)把D (7,2m )代人函数解析式243y x x =-+中,得2775()43224m =-⨯+=.所以155(31)244ABD S ∆=⨯-⨯=. 7.(2010湖北随州)已知抛物线2(0)y ax bx c a =++≠顶点为C (1,1)且过原点O.过抛物线上一点P (x ,y )向直线54y =作垂线,垂足为M ,连FM (如图). (1)求字母a ,b ,c 的值;(2)在直线x =1上有一点3(1,)4F ,求以PM 为底边的等腰三角形PFM 的P 点的坐标,并证明此时△PFM 为正三角形;(3)对抛物线上任意一点P ,是否总存在一点N (1,t ),使PM =PN 恒成立,若存在请求出t 值,若不存在请说明理由.【答案】(1)a =-1,b =2,c =0(2)过P 作直线x=1的垂线,可求P 的纵坐标为14,横坐标为1132.此时,MP =MF =PF =1,故△MPF 为正三角形. (3)不存在.因为当t <54,x <1时,PM 与PN 不可能相等,同理,当t >54,x >1时,PM 与PN 不可能相等.8.(2010河南)在平面直角坐标系中,已知抛物线经过A(4,0),B(0,一4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.【答案】(1)设抛物线的解析式为y =ax 2+bx +c (a ≠0),则有1640,4,420.a b c c a b c -+=⎧⎪=-⎨⎪++=⎩解得1,21,4.a b c ⎧=⎪⎪=⎨⎪=-⎪⎩∴抛物线的解析式y =12x 2+x ﹣4(2)过点M 作MD ⊥x 轴于点D .设M 点的坐标为(m ,n ). 则AD =m +4,MD =﹣n ,n =12m 2+m -4 . ∴S = S △AMD +S 梯形DMBO -S △ABO =12( m +4) (﹣n )+12(﹣n +4) (﹣m ) -12×4×4 = ﹣2n -2m -8 = ﹣2(12m 2+m -4) -2m -8 = ﹣m 2-4m (-4< m < 0)∴S 最大值 = 4(3)满足题意的Q 点的坐标有四个,分别是:(-4 ,4 ),(4 ,-4), (-2+52-25-2-52+59.(2010四川乐山)如图(13.1),抛物线y =x2+bx+c 与x 轴交于A ,B 两点,与y 轴交于点C(0,2),连接AC ,若tan ∠OAC =2. (1)求抛物线对应的二次函数的解析式;(2)在抛物线的对称轴l 上是否存在点P ,使∠APC =90°,若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图(13.2)所示,连接BC ,M 是线段BC 上(不与B 、C 重合)的一个动点,过点M 作直线l ′∥l ,交抛物线于点N ,连接CN 、BN ,设点M 的横坐标为t .当t 为何值时,△BCN 的面积最大?最大面积为多少?【答案】解:(1)∵抛物线y=x2+bx+c过点C(0,2). ∴x=2又∵tan∠OAC=OCOA=2, ∴OA=1,即A(1,0).又∵点A在抛物线y=x2+bx+2上. ∴0=12+b×1+2,b=-3 ∴抛物线对应的二次函数的解析式为y=x2-3x+2(2)存在过点C作对称轴l的垂线,垂足为D,如图所示,∴x=-332212ba-=-=⨯.∴AE=OE-OA=32-1=12,∵∠APC=90°,∴tan∠PAE= tan∠CPD∴PE CDEA DP=,即12PE322PE=-,解得PE=12或PE=32,∴点P的坐标为(32,12)或(32,32)。
最新北师大版九年级数学下册《二次函数的图象与性质》优质教学课件

解:y=(x-4)2-15
开口向上,顶点坐标为(4,-15)
对称轴为直线 x=4
类型2:a=1,b为奇数
5.(例2)求抛物线y=x2+x+1的顶点坐标.
解:∵y=x2+x+1
1
1
2
=x +x+ 4 +1-
4
3
1
2
=(x +x+ )+
1 4 3 4
=(x+ 2 )2+ 4
(3)对称轴为直线x=1.25,顶点坐标为(1.25,-1.125).
(4)对称轴为直线x=0.75,顶点坐标为(0.75,9.375).
【例题】
如图,桥梁的两条钢缆具有相同的抛物线形状.按照图中的
直角坐标系,左面的一条抛物线可以用y=
9
400
表示,而且左、右两条抛物线关于y轴对称.
y/m
10
桥面
我们知道,作出二次函数y=3x2的图象,通过平移抛
物线y=3x2可以得到二次函数y=3x2-6x+5的图象.
那是怎样平移的呢?
只要将表达式右边进行配方就可以知道了.
y=3x2-6x+5
=3(x-1)2+2
配方后的表达式通常称为配方
式或顶点式
y 3x 6 x 5
2
3(x 2x) 5
,-3).
.
(2)画抛物线 y=ax2+bx+c 的草图,
(4)若抛物线与 x 轴的两个交点为 A,B,与 y 轴的交点为 C,求 S△ABC.
= (x2+2x+1)- - = (x+1)2-3,∴抛物线的顶点
4a
要确定五点,即①开口方向;②对
二次函数的图象与性质(第4课时)-2022-2023学年九年级数学下册教材配套教学课件(北师大版)

∴a-1>0,
解得a>1.
故选:A.
3.点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,当x1
>x2>1时,y1与y2的大小是( )
A.y1≤y2 B.y1<y2 C.y1≥y2 D.y1>y2
【答案】D
【详解】解:∵抛物线y=(x-1)2-3,a=1>0开口向上,
(3)将抛物线C先向左平移2个单位长度、再向上平移
1个单位长度后,所得抛物线为` .请直接写出抛物
线` 的函数解析式.
【答案】(1)抛物线C的开口向下,对称轴为直线
x=1,顶点坐标为(1,2);
(2)y的取值范围为-2≤y≤2;
(3)y=-(x+1)2+3
(1)
解:∵y=-x2+2x+1=-(x-1)2+2,
典例精析
例1.已知二次函数y=a(x-1)2-c的图象如图所示,
则一次函数y=ax+c的大致图象可能是( A )
解析:根据二次函数开口向上则a>0,根据-c是
二次函数顶点坐标的纵坐标,得出c>0,故一次函数
y=ax+c的大致图象经过第一、二、三象限.故选A.
知识点二 二次函数y=a(x-h)2+k与y=ax2的关系
对称轴为直线x=1,当x>1时,y随x的增大而增大,
点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,
∴x1>x2>1,
∴y1>y2.
故选:D.
4.如图,在平面直角坐标系中,O为坐标原点,正
方形OABC的顶点A在y轴的负半轴上,点C在x轴的
正半轴上,经过点A、B的抛物线y=a(x-2)2+c(a>0)
22.1 二次函数的图象和性质(第4课时)

(1,3)
y/m
O1 2 3 x/m
321
(1,3)
y/m
O1 2 3 x/m
321
小组评价与总结
这节课你有什么收获?
九、作业: 教科书习题22.1,第5题(2)(3),第7题(1).
十、课后反思
是x = h,顶点是(h,0),开口向下,顶点是抛物线的
最高点,a越小,抛物线的开口越小.当x<h时,y随
x的增大而增大,当x>h时,y随x的增大而减小.
小组合作
达标测评
例 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3 m,水柱落地处离池
象特征和性质.
通过对二次函数 的探究,你能说出二次函数 的图象特征和性质
吗?
归纳:ห้องสมุดไป่ตู้
一般地,当a>0时,抛物线 的对称轴
是x = h,顶点是(h,0),开口向上,顶点是抛物线的
最低点,a越大,抛物线的开口越小.当x<h时,y随
x的增大而减小,当x>h时,y随x的增大而增大.
归纳:
一般地,当a<0时,抛物线 的对称轴
课题
22.1二次函数的图象和性质(第4课时)
课时
1
主备人:张红亮
一、教材内容分析
本课是在学生已经学习了二次函数y = ax 2,y = ax 2 + k的基础上,继续进行二次函数的学习,这是对二次函
数图象和性质研究的延续.
二、学情分析
三、教学目标(知识与技能,过程与方法,情感态度与价值观)
四、教学重点
五、教学难点
六、教学方法
二次函数图像和性质教学设计(3篇)

二次函数图像和性质教学设计(3篇)二次函数的图像和性质3教学设计篇一22.1.3二次函数y=a(x-h)2+k的图象和性质教学设计知识与技能:会用描点法画出二次函数y=a(x-h)2+k的图象;过程与方法:结合图象确定抛物线y=a(x-h)2+k的开口方向、对称轴与顶点坐标及性质;情感态度与价值观:通过比较抛物线y=a(x-h)2+k与y=ax2的关系,培养学生的观察、分析、总结的能力。
学情分析学生在学习了前两课时的基础上,对于顶点式已经有了一定的认识,可以根据类比思想比较容易得出完整顶点式的图象性质,所以这一部分主要是学生独立探究,个别指导,然后归纳总结。
之后把侧重点放在对实际问题的探究上,重点研究实际问题的建模过程,鼓励一题多解,拓展学生思维。
重点难点教学重点:画出形如y=a(x-h)2+k的二次函数的图象,能指出开口方向,对称轴,顶点。
教学难点:理解函数y=a(x-h)2+k与y=ax2及其图象的相互关系。
4教学过程一、复习导入新课师:同学们,在学习新课之前,我们先来做这样一道题。
观察y=-x2、y=-x2-1、y=-(x+1)2这三条抛物线中,第一条抛物线可以经过怎样的平移得到第二条和第三条抛物线。
(指名学生回答)。
师:同学们可不可以在这个知识点的基础上进一步猜想一下第一条抛物线能否经过怎样的平移得到抛物线y=-(x+1)2-1 生:向左平移一个单位,再向下平移一个单位。
师:这个猜想是否正确呢?这节课我们一起来验证一下。
(板书课题)二、探究探究一(大屏幕出示)(自探问题部分)1.画出函数y=-(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.x y=-(x+1)2-1 函数… …-4-3-2-10 1 2 ……开口方向顶点对称轴最值增减性y=-(x+1)2-1(学生口头展示以上问题)2.师:(结合课件)把抛物线y=-x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-(x+1)2-1.所以抛物线y=-x2 与抛物线y=-(x+1)2-1 形状___________,位置________________.通过刚才的演示,可以证明我们前面的猜想是正确的。
27.2 二次函数的图象与性质(3)(第4课时)

27.2 二次函数的图象与性质(3)(第4课时)一、知识回顾:请填写下表:函数开口方向 对称轴 顶点坐标 y 的最值增减性在对称轴左侧 在对称轴右侧y=ax 2a >0 a <0 y=ax 2+ca >0 a <0我们已经了解到,函数k ax y +=2的图象,可以由函数2ax y =的图象 平移 所得,那么函数2)2(21-=x y 的图象,是否也可以由函数221x y =平移而得呢?画图试一试,你能从中发现什么规律吗?二、实践与探索1. 函数y=(x+3)2的图象与y=x 2的图象有什么关系?(1)在同一直角坐标系中,画出函数y=x 2和y=(x+3)2的图象; 列表: x … -6 -5 -4 -3 -2 -1 0 1 2 3 … y=x 2 … 9 4 1 0 1 4 9 … y=(x+3)2… …思考:(2)函数y=(x+3)2的图象与y=x 2的图象的形状相同吗?(3)从表格中的数值看,函数y=(x+3)2的函数值与函数y=x 2的函数值相等时,它们所对应的自变量的值有什么关系?(4)从点的位置看,函数y=(x+3)2的图象与函数y=x 2的图象的位置有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?结论:函数y=(x+3)2的图象可以由函数y=x 2的图像沿x 轴向 平移 个单位长度得到,所以它是 ,这条抛物线的对称轴是 ,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小.2、在直角坐标系中作出函数y=-3(x+1)2和y=-3(x-1)2的图象,利用上面的方法观察函数,y=-3(x+1)2 ,y=-3(x-1)2与函数y=x 2的图像的关系,与同学交流你的看法. x … -3 -2 -1 0 1 2 3 4 5 6 … y=x 2 … 9 4 1 0 1 4 9 … y=(x-3)2 … …观察下图,思考并回答下列问题: ①抛物线y=-3(x-1)2可以看作是抛物线y=-3x 2沿x 轴 平移了 个单位;抛物线y=-3(x+1)2可以看作是抛物线y=-3x 2沿x 轴 平移了 个单位. ②图象向左平移还是向右平移,移多少个单位长度,有什么规律吗? ③抛物线y=-3(x-1)2的顶点是 ;对称轴是 ; 抛物线y=-3(x+1)2的顶点是 ;对称轴是 . ④抛物线y=-3(x-1)2在对称轴(x=1)的左侧,即当x 时, y 随着x 的增大而 ;在对称轴(x=1)右侧,即当x 时, y 随着x 的增大而 .当x= 时,函数y 有最 值是;抛物线y=-3(x+1)2在对称轴(x=-1)的左侧,即当x< 时, y 随着x 的增大而 ;在对称轴(x=-1)右侧,即当x 时, y 随着x 的增大而 .当x= 时,函数y 有最 值是 . 三、整理知识点 1.y =ax 2 y =ax 2+k y =a (x-h)2 开口方向顶点对称轴最值增减性(对称轴左侧)2.对于二次函数的图象,只要|a |相等,则它们的形状_________,只是_________不同. 四、课堂训练1.填表图象(草图) 开口 方向 顶点 对称轴最值 对称轴 右侧的增减性y =12x 2y =-5 (x +3)2y =3 (x -3)22.抛物线y =4 (x -2)2与y 轴的交点坐标是___________,与x 轴的交点坐标为________. 3.把抛物线y =3x 2向右平移4个单位后,得到的抛物线的表达式为____________________.把抛物线y =3x 2向左平移6个单位后,得到的抛物线的表达式为____________________.4.将抛物线y =-13 (x -1)x 2向右平移2个单位后,得到的抛物线解析式为____________.5.写出一个顶点是(5,0),形状、开口方向与抛物线y =-2x 2都相同的二次函数解析式 ___________________________.(1)二次函数y=2(x+5)2的图像是 ,开口 ,对称轴是 ,当x= 时,y 有最 值,是 .(2)二次函数y=-3(x-4)2的图像是由抛物线y= -3x 2向 平移 个单位得到的;开口 ,对称轴是 ,当x= 时,y 有最 值,是 . (3)将二次函数y=2x 2的图像向右平移3个单位后得到函数 的图像,其对称轴是 ,顶点是 ,当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. ⑷将二次函数y= -3(x-2)2的图像向左平移3个单位后得到函数 的图像,其顶点坐标是 ,对称轴是 ,当x= 时,y 有最 值,是 .(5)将函数y=3(x -4)2的图象沿x 轴对折后得到的函数解析式是 ;将函数y=3(x -4)2的图象沿y 轴对折后得到的函数解析式是 ;(6)把抛物线y=a (x-4)2向左平移6个单位后得到抛物线y=- 3(x-h )2的图象,则 a= ,h= .若抛物线y= a (x-4)2的顶点A ,且与y 轴交于点B ,抛物线y= - 3(x-h )2的顶点是M ,则SΔMAB= .(7)将抛物线y=2x 2-3先向上平移3单位,就得到函数 的图象,在向 平移 个单位得到函数y= 2(x-3)2的图象.(8)函数y=3(x+6)2的图象是由函数 的图象向左平移5个单位得到的,其图象开口向 ,对称轴是 ,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x= 时,y 有最 值是 .五、课内小结 六、课外作业:A1.抛物线y =2 (x +3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x >-3时,y______________;当x =-3时,y 有_______值是_________.2.抛物线y =m (x +n)2向左平移2个单位后,得到的函数关系式是y =-4 (x -4)2,则 m =__________,n =___________.3.若将抛物线y =2x 2+1向下平移2个单位后,得到的抛物线解析式为_______________. 4.若抛物线y =m (x +1)2过点(1,-4),则m =_______________.5.抛物线y=2(x-3)2的开口方向是 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线y= 向 平移 个单位得到的.6.函数y= -2x 2,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= .5.函数y= -5(x -4)2的图象。
第4课时_二次函数y=a(x-h)2的图象与性质_导学案
第4课时二次函数y=a(x-h)2的图象与性质教学内容:教材33-35页,二次函数y=a(x-h)2的图像和性质一、学习目标:1.会画二次函数y=a(x-h)2的图象并掌握它的开口方向,对称轴,顶点坐标及增减性等性质;2.掌握二次函数y=a(x-h)2的图像的平移规律;3.学生动手经历二次函数y=a(x-h)2图像性质的探索过程,加深理解图像的性质;重点:二次函数y=a(x-h)2的图象和性质难点:二次函数y=a(x-h)2的图象与抛物线y=ax2的位置关系。
二、教学过程:一.复习旧知:1.将二次函数y=5x2-3向上平移7个单位长度后所得抛物线的解析式为______.2.写出一个顶点坐标为(0,-3),开口方向与抛物线y=-x2的方向相反,形状相同的抛物线的解析式_____.3.抛物线y=4x2+1关于x轴对称的抛物线的解析式________.二、探索新知:1.这节课我们将继续探究y=a(x-h)2的图像和性质,他们与y=ax2又有怎样的联系与区别呢?2.课件展示33页探究:在同一坐标系中画出二次函数y=-12(x+1)2,y-12(x-1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.先列表:描点并画图.12. ①抛物线y =-12 (x +1)2 ,y =-12 x 2,y =-12 (x -1)2的形状大小____________.②把抛物线y =-12 x 2向左平移_______个单位,就得到抛物线y =-12 (x +1)2 ;把抛物线y =-12 x 2向右平移_______个单位,就得到抛物线y =-12 (x +1)2 .三、整理知识点2.对于二次函数的图象,只要|a|相等,则它们的形状_________,只是_________不同.四、课堂训练2.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.3.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为______________.把抛物线y=3x2向左平移6个单位后,得到的抛物线的表达式为_______________.4.将抛物线y=-13(x-1)2向右平移2个单位后,得到的抛物线解析式为____________.5.写出一个顶点是(5,0),形状、开口方向与抛物线y=-2x2都相同的二次函数解析式___________________________.。
二次函数的图象与性质
二次函数的图象与性质(3)------说课稿六合区竹镇民族中学陆东柱一、教材分析:本节课为九年级(下)第六章第2节内容,研究抛物线的平移变换,抛物线的平移变换是二次函数性质的一个重要内容。
教育教学目标:(1)知识目标:会用描点法画二次函数的图象,能根据图象认识其性质。
(2)能力目标:能从图象间位置变化,发现、归纳图象间的变化规律。
(3)情感目标:通过学生自己动手画图、观察、推测、探索、归纳,让学生体验数学学习方法,感受有收获的快乐。
教学重难点:(1)本课重点是用运动变化的观点,从“坐标数值的变化”与“图形的位置变化”的关系着手,探索抛物线y=ax2+k,y=a(x+m)2的图象与二次函数y=ax2图象的关系。
(2)难点主要是容量大,上下平移与左右平移并存,学生容易混淆。
二、学情分析:本节课创设了轻松的学习氛围,学生画图、观察、归纳抛物线上下平移规律能较轻松完成。
学生归纳左右平移变换时,列表会发现问题,画图也会有问题,教师给适当点拨。
整个教学过程都贯穿在学生操作、学生观察、分析、归纳之中。
三、教学策略:本节课始终是在学生的高度参与下展开的,由简单具体的函数图象的变化特征,去探索一般形式的函数图象的变化的规律,符合中学生的认知水平,学生能较容易的接受。
四、教学程序:(一)课堂结构:1、复习回顾2、新课导学3、练习巩固4、思维拓展5、作业布置(二)教学简要过程:1、复习回顾:通过两个练习复习y=x2的图象与性质,y=x2与y=-x2图象间的关系也是一个变换形式,以引起学生的思考。
2、新课导学:(1)通过列表、描点、画图、探索、归纳,学生能正确得到上下平移图象的特征。
思考中设计了三个问题,对图象的变换有较清晰的认识。
(2)在学习图象左右平移时,老师要给一定的指导,要从列表中的数值变化特点及抛物线对称性角度考虑,画出正确的图象,再观察、分析、类比,得出相关变换规律。
思考中设计了三个问题,它是建立在图象的基础上的。
九年级数学上册第21章第4课时二次函数y=ax^2 bx c的图象和性质习题课件新版沪科版ppt
1 2
,y2),(3 1
2
,y3),则y1,y2,y3的大小关系为
y1<y2<y3 .
9.已知二次函数y=-x2+2x+3. (1)求抛物线的顶点及与x轴交点的坐标; 解:(1)它与x轴的交点为(-1,0),(3,0),顶点为(1,4).
(2)x取什么值时,y的值随x值的增大而减小? (2)x>1时,y的值随x值的增大而减小.
知识点四 二次函数y=ax2+bx+c与y=ax2的关系
10.(2018·广西)将抛物线y=1 x2-6x+21向左平移2个单位长度后,得到新抛 2
物线的表达式为( D )
A. y=12 (x-8)2+5 B. y=1 (x-4)2+5
2
C. y=1(x-8)2+2
2
D. y=1(x-4)2+3
2
A.图象与y轴的交点坐标为(0,1)
B.图象的对称轴在y轴的右侧
C.当x<0时,y的值随x值的增大而减小 D. y的最小值为-3
8.(1)如图,抛物线的顶点是P(1,3),则函数y随自变量x的增大
而减小的x的取值范围是 x>1 ;
(2)小颖在二次函数y=2x2+4x+5的图象上找到三点
(-1,y1),(
解:(2)△ABM是直角三角形,且∠BAM=90°.理由如下:作BC⊥x轴 于点C.∵点A的坐标为(-1,0),点B的坐标为(2,3),∴AC=BC=3, ∴∠BAC=45°.∵点M是抛物线y=x2-1的顶点,∴点M的坐标为(0, -1),∴OA=OM=1.∵∠AOM=90°,∴∠MAC=45°,∴∠BAM= ∠BAC+∠MAC=90°,∴△ABM是直角三角形.
11.(2018·德州)如图,函数y=ax2-2x+1和y=ax-a(a是常数,且a≠0)在同 一平面直角坐标系的图象可能是( B )
二次函数的图象与性质 说课稿
二次函数的图象与性质说课稿尊敬的领导和老师们,我今天要讲的是人教版九年级上册第二十二章第一节《二次函数的图象与性质》(第4课时)。
我将从教材、教学目标、重点难点、教学设计和反思五个方面展开今天的说课。
一、教材地位与作用:二次函数是初中函数的主要内容和难点。
通过本节课的研究,学生将建立起二次函数比较完整的知识结构,逐步完善二次函数的认知结构。
二次函数不仅是一元二次方程的延续和提高,也是研究高中代数内容的重要基础,并且在现实生活、物理学和其他科学技术中有着广泛的应用。
本课程的内容是在学生已经掌握了特殊的二次函数y=ax2和y=ax2+k的图象的画法、性质以及研究方法等内容的基础上提出的。
它不仅是二次函数特殊式y=ax2(a=0,c=0)和y=ax2+k(b=0)的延续,也是研究顶点式y=a(x-h)2+k和一般式y=ax2+bx+c的关键,具有承上启下的作用。
九年级学生因为在七八年级研究时,研究态度、研究方法、研究能力的不同,知识掌握程度参差不齐,两级分化已经形成。
但是,他们普遍储备了一定感性具体的数学问题情境,在一次函数的知识积累基础上,绝大部分具备了一定的模仿借鉴能力、动手操作能力、掌握了一些观察图象的方法。
借助图象分析归纳、抽象思维能力,对知识的猜想和验证有较大的兴趣。
相当部分学生因为面临升学考试的紧迫任务,比较关注:为什么学?怎样学?有探究的欲望。
他们乐于接受老师和同学的意见和建议。
基于以上对教材和学情的认识,我设计了本节课的教学目标,包括知识与技能、过程与方法、情感态度与价值观三个方面。
二、教学目标知识与技能:1、掌握画二次函数y=a(x-h)2的图象的方法,并能说出其开口方向、对称轴、顶点坐标。
2、理解和掌握二次函数y=a(x-h)2的性质。
3、理解抛物线y=a(x-h)2与y=ax2之间的位置关系。
过程与方法:培养学生观察、分析、比较、抽象和概括等能力,让他们能够用数形结合的思想研究二次函数的图象和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 二次函数 第4课时:二次函数的图象与性质(3)
班级 姓名 学号 学习目标:
1、经历把函数2
ax y =的图象沿x 轴、y 轴平移后得到函数k m x a y ++=2
)(的图象的探究过程,进一步了解上述图象变换的实质是:图象的形状、大不都没有改变,只是位置发生了变化.
2、能说出函数k m x a y ++=2
)(的图象是如何由抛物线2
ax y =平移得到的,并能说出它的开口方向、顶点坐标、对称轴及函数值与自变量值变化关系等性质. 问题探索:
问题1:思考与探索:函数2)1(2++=x y 的图象是抛物线吗?
练一练:回答下列问题:
①抛物线2
1)1(32
+
+=x y 是由抛物线2
3x y = 怎样平移得到的? ②抛物线2)32(212-+-=x y 是由抛物线2
21x y -=
怎样平移得到的?
③抛物线1)23(22+-=x y 由抛物线2
2x y =怎样平移得到的?
④抛物线1)1(212
---=x y 是由抛物线22
1x y -=怎样平移得到的?
⑤抛物线21)1(32++=x y 是由抛物线2
132
-=x y 怎样平移得到的?
⑥抛物线2)32(212-+-=x y 是由抛物线2
)32(21--=x y
怎样平移得到的?
问题2:先填表再思考问题:
请思考归纳二次函数k m x a y ++=2)(的性质 练一练:
指出下列二次函数图像的开口方向、对称轴和顶点坐标及函数值与自变量值变化关系 (1)()5222
+-=x y ; (2)()245.02
++=x y ; (3)3)1(52---=x y .
问题3:
(1)已知抛物线2
ax y =与c x y +-
=2
3
2的形状、开口方向相同,且将抛物线2ax y =沿y 轴平移2个单位就能与抛物线c x y +-=2
3
2完全重合,则a =_________,c =__________.
(2)一条抛物线其形状、开口方向与抛物线22x y =相同,对称轴与抛物线2
)2(-=x y 相同,且顶点的纵坐标是3,则这条抛物线的函数解析式是_______________.
(3)已知二次函数k x y +-=2
)1(3的图象上有三个点A(1,2y ),B(2, 2y ),C(3,5y -),则321,,y y y 的大小关系为
( )
A . 321y y y >>
B . 312y y y >>
C . 213y y y >>
D . 123y y y >>
(4)已知抛物线k h x a y +-=2
1)(与2)1(2
2-+=x y 的开口方向和形状都相同,最低的坐标是(―2,―1).求1y 的解析式,并说明抛物线1y 是怎样由2y 平移得到的; (5)已知二次函数2)1)(3(2
+--=x k y ,求:
①当k 为何值时,函数有最大值?最大值是多少?
②当k 为何值时,函数有最小值?最小值是多少?
(=x y
课后作业:
1、(1)把抛物线23x y =向上平移1个单位,再向左平移2个单位,得到的抛物线是( ) A .2)1(32--=x y B .2)1(32++=x y C .1)2(32++=x y D .1)2(32+-=x y
(2)把抛物线24x y -=向下平移2个单位,再向左平移1个单位,得到的抛物线是( ) A .2)1(42---=x y B .2)1(42-+-=x y C .2)1(42++-=x y D .1)2(42+--=x y
(3)把抛物线2
23x y -
=向上平移1个单位,再向右平移1个单位,得到的抛物线是( ) A .1)1(232+--=x y B .1)1(232
++-=x y
C .1)1(232---=x y
D .1)1(2
32
-+-=x y
(4)把抛物线2)1(2+-=x y 向上平移2个单位,再向右平移1个单位,得到的抛物线是( )
A .222+-=x y
B .1)3(22++-=x y
C .222--=x y
D .2)2(22++-=x y
(5)抛物线2)1(22+-=x y 的顶点坐标是 ( )
A .(1,2)
B .(-1,2)
C .(2,-1)
D .(2,1) (6)抛物线1)2(32-+-=x y 的顶点坐标是 ( ) A .(2,-1) B .(-2,-1) C .(-1,2) D .(-1,-2)
(7)、若A ),413(1y -、B ),1(2y -、C ),3
5
(3y 为二次函数9)2(2++-=x y 的图象上的三点,则1y 、2y 、3y 的大小关系是( )
A .1y <2y <3y
B .3y <2y <1y
C .3y <1y <2y
D .2y <1y <3y
2、已知函数: ①1212-=
x y ,②21)1(32+--=x y ,③232+-=x y , ④2)23(322-+=x y ,⑤422
--=x y ,⑥2)3
1(2---=x y .
(1)图象开口向上的函数是 ,图象开口向下的函数是 ;
(2)图象对称轴是y 轴的函数是 ,图象对称轴与y 轴平行的函数是 3、写出下列函数的图象的顶点坐标和对称轴的位置 (1)1)2(22
++=x y ;
(2)2)3(4
3
2
+--=x y
4、将抛物线32+=x y 向右平移2个单位再向上平移1个单位后,求所得的抛物线的顶点坐标.
5、一个二次函数的图象向下平移3个单位长度再向左平移2个单位后,得到二次函数y=2
25
x -的图象,试写出原二次函数的表达式.
6、已知抛物线k m x a y ++=2)(中,21||=a ,最高点的坐标是(2
5,1-),求这条抛物线.
7、已知一次函数的图象过抛物线2)1(2++=x y 的顶点和坐标原点.
(1)求一次函数的关系式;
(2)判断点(-2,5)是否在此抛物线的图象上.
8、能否适当地上下平移函数2
2
1x y =
的图象,使得到的新的图象过点(4,-2)?若能,说出平移的方向和距离;若不能,说明理由.
9、已知),(b a 是抛物线2
x y =上的一点.甲同学说:“点),(b a -一定也在2
x y =的图象上”.乙同学说:“我不但知道点),(b a -在抛物线2
x y =上,而且我还知道点),(b a --也一定在
2x y -=的图象上”.你认为甲、乙两同学的说法正确吗?请发表你的看法.。