第六章 有限元三角形单元程序设计

合集下载

有限元单元法程序设计

有限元单元法程序设计

有限元单元法程序设计是有限元分析(FEA)中的重要环节,它通过将连续的物理问题离散化为大量的、相互之间仅按特定方式相互联系的有限个单元的组合,从而进行求解。

以下是一个简单的有限元单元法程序设计的例子:
1.定义节点和单元:首先,我们需要定义模型的节点(nodes)和单元(elements)。

节点是空间中的点,而单元是由节点连接而成的物理实体。

2.建立网格:然后,我们需要根据模型的形状和大小,建立起一个合适的网格。

这个网格应该能够捕捉到模型的主要特征,并且足够细以捕捉到细节。

3.定义材料属性:接下来,我们需要为每个单元定义材料属性,比如弹性模量、泊松比、密度等。

4.施加载荷和约束:然后,我们需要根据问题的要求,对模型施加载荷和约束。

例如,我们可能需要施加压力、重力等载荷,以及位移、转动等约束。

5.进行有限元分析:最后,我们使用有限元方法进行求解。

这包括计算每个节点的位移和应力,以及根据这些结果进行后处理,比如生成报告、生成可视化图像等。

以上就是一个简单的有限元单元法程序设计的过程。

在实际应用
中,还需要考虑很多其他的因素,比如模型的复杂性、计算资源的限制等。

因此,编写一个有效的有限元程序需要深入理解有限元方法、计算机科学和工程知识。

有限元中三角形单元源程序

有限元中三角形单元源程序

附录:平面问题三角形单元源程序******************************************************************* * ANALYSIS PROGTAM OF FINITE ELEMENT METHOD * * FOR PLANE STRESS/STRAIN OF TRIANGULAR ELEMENT * * ----- FEMT3.FOR ----- * *------------------------------------------------------------- * * Subroutines: 1-SDATA, 2-STE, 3-ATE, 4-DTE, 5-BTE, 6-STIFF * * 7-EQUPE, 8-INSCD, 9-BGSMT, 10-SIGME * ******************************************************************* DIMENSION LND(50,3),X(100),Y(100),JR(20,3),PJ(20,3),P(200) REAL KS(200,100)OPEN(5,FILE='FEMT3.DAT')OPEN(6,FILE='FEMT3.OUT',STATUS='NEW')READ(5,*) NJ,NE,NS,NPJ,IPS(结点、单元、支承、荷载、类型)WRITE(6,*)' FINITE ELEMENT ANALYSIS IN PLANE PROBLEM'WRITE(6,*)' SOURCE DATA OUTPUT'WRITE(6,20) NJ,NE,NS,NPJ,IPS20 FORMAT(4X,'NJ',3X,'NE',3X,'NS',3X,'NPJ',2X,'IPS'/1X,5I5)IF(IPS.EQ.0) WRITE(6,*)' PLANE STRESS PROBLEM'IF(IPS.EQ.1) WRITE(6,*)' PLANE STRAIN PROBLEM'CALL SDATA(NJ,NE,NS,NW,NPJ,IPS,E,PR,T,V,LND,X,Y,JR,PJ)NJ2=2*NJWRITE(6,50) NJ250 FORMAT(/1X,'DEGREES OF FREEDOM=',I5)WRITE(6,60) NW60 FORMAT(1X,'BAND WIDTH=',I5)CALL STIFF(NJ,NE,NJ2,NW,LND,X,Y,E,PR,T,KS)(总刚6)CALL EQUPE(NJ,NE,NPJ,NJ2,T,V,LND,X,Y,PJ,P)({P}7)CALL INSCD(NS,NW,NJ2,JR,KS,P)(引入支承条件8)CALL BGSMT(NJ,NJ2,NW,KS,P)(解方程9)CALL SIGME(NE,NJ,NJ2,E,PR,LND,X,Y,P)(求应力10)CLOSE(5)CLOSE(6)END*--------------------------------------------------------C SUBPROGRAM-1C INPUT STRUCTURAL DATASUBROUTINE SDATA(NJ,NE,NS,NW,NPJ,IPS,E,PR,* T,V,LND,X,Y,JR,PJ)DIMENSION LND(NE,3),X(NJ),Y(NJ),JR(NS,3),PJ(NPJ,3)READ(5,*) E,PR,T,V(弹性模量、泊松比、厚度、容重)WRITE(6,10) E,PR,T,V10 FORMAT(/6X,'E',10X,'PR',9X,'T',9X,'V'/,4F10.2)READ(5,*)((LND(I,J),J=1,3),I=1,NE)(结点编码)WRITE(6,20)20 FORMAT(/1X,'ELEMENT INFORMATION'/3X,'ELEM',3X,* 'I J K'/)WRITE(6,30)(I,(LND(I,J),J=1,3),I=1,NE)30 FORMAT(1X,4I5)READ(5,*)(X(I),Y(I),I=1,NJ)(结点坐标)WRITE(6,40)40 FORMAT(/1X,'COORDINATES OF NODES'/3X,'NODES',* 8X,'X',13X,'Y')WRITE(6,50)(I,X(I),Y(I),I=1,NJ)50 FORMAT(1X,I5,2E15.6)READ(5,*)((JR(I,J),J=1,3),I=1,NS)(约束信息)WRITE(6,60)60 FORMAT(/1X,'CONSTRAINED NODES'/3X,'NODE',3X,'X',4X,'Y') WRITE(6,70)((JR(I,J),J=1,3),I=1,NS)70 FORMAT(1X,3I5)READ(5,*)((PJ(I,J),J=1,3),I=1,NPJ)(荷载信息)WRITE(6,80)80 FORMAT(/1X,'LOAD CASES'/3X,'NODE',8X,'X',13X,'Y')WRITE(6,90)((PJ(I,J),J=1,3),I=1,NPJ)90 FORMAT(1X,F5.0,2E15.6)100 NW=0(半带宽)DO 110 IE=1,NEDO 110 I=1,3DO 110 J=1,3IW=IABS(LND(IE,I)-LND(IE,J))IF(NW.LT.IW) THENNW=IWENDIF110 CONTINUENW=(NW+1)*2IF(IPS.NE.0) THENE=E/(1.0-PR*PR)PR=PR/(1.0-PR)ENDIFEND*---------------------------------------------------------C SUBPROGRAM-2C CALCULATE ELEMENT STIFFNESS MATRIXSUBROUTINE STE(IE,NJ,NE,LND,X,Y,E,PR,T,KE)DIMENSION LND(NE,3),X(NJ),Y(NJ),B(3,6),D(3,3)REAL KE(6,6)CALL ATE(IE,NJ,NE,LND,X,Y,AE)CALL DTE(E,PR,D)CALL BTE(IE,NJ,NE,LND,X,Y,AE,B)DO 10 I=1,6DO 10 J=1,6KE(I,J)=0.DO 10 K=1,3DO 10 K1=1,310 KE(I,J)=KE(I,J)+B(K,I)*D(K,K1)*B(K1,J)C=AE*TDO 30 I=1,6DO 30 J=1,630 KE(I,J)=KE(I,J)*CEND*------------------------------------------------ C SUBPROGRAM-3C CALCULATE ELEMENT AREASUBROUTINE ATE(IE,NJ,NE,LND,X,Y,AE)DIMENSION LND(NE,3),X(NJ),Y(NJ)I=LND(IE,1)J=LND(IE,2)K=LND(IE,3)XIJ=X(J)-X(I)YIJ=Y(J)-Y(I)XIK=X(K)-X(I)YIK=Y(K)-Y(I)AE=.5*(XIJ*YIK-XIK*YIJ)END*----------------------------------------------C SUBPROGRAM-4C CALCULATE ELASTICITY MATRIXSUBROUTINE DTE(E,PR,D)DIMENSION D(3,3)DO 10 I=1,3DO 10 J=1,310 D(I,J)=0.D(1,1)=E/(1.-PR*PR)D(1,2)=E*PR/(1.-PR*PR)D(2,1)=D(1,2)D(2,2)=D(1,1)D(3,3)=.5*E/(1.+PR)END*------------------------------------------------ C SUBPROGRAM-5C CALCULATE MATRIX [B]SUBROUTINE BTE(IE,NJ,NE,LND,X,Y,AE,B)DIMENSION LND(NE,3),X(NJ),Y(NJ),B(3,6)I=LND(IE,1)J=LND(IE,2)K=LND(IE,3)DO 10 II=1,3DO 10 JJ=1,610 B(II,JJ)=0.B(1,1)=Y(J)-Y(K)B(1,3)=Y(K)-Y(I)B(1,5)=Y(I)-Y(J)B(2,2)=X(K)-X(J)B(2,4)=X(I)-X(K)B(2,6)=X(J)-X(I)B(3,1)=B(2,2)B(3,2)=B(1,1)B(3,3)=B(2,4)B(3,4)=B(1,3)B(3,5)=B(2,6)B(3,6)=B(1,5)DO 20 I1=1,3DO 20 J1=1,620 B(I1,J1)=.5/AE*B(I1,J1)END*------------------------------------------------------- C SUBPROGRAM-6C CALCULATE GLOBAL STIFFNESS MATRIXSUBROUTINE STIFF(NJ,NE,NJ2,NW,LND,X,Y,E,PR,T,KS) DIMENSION LND(NE,3),X(NJ),Y(NJ)REAL KS(NJ2,NW),KE(6,6)DO 5 I=1,NJ2DO 5 J=1,NW5 KS(I,J)=0.DO 10 IE=1,NECALL STE(IE,NJ,NE,LND,X,Y,E,PR,T,KE)DO 10 I=1,3IZ=LND(IE,I)DO 10 II=1,2IH =2*(I -1)+IIIDH=2*(IZ-1)+IIDO 10 J=1,3JZ=LND(IE,J)DO 10 JJ=1,2L =2*(J -1)+JJIL=2*(JZ-1)+JJIF(IL.GE.IDH) THENIDL=IL-IDH+1KS(IDH,IDL)=KS(IDH,IDL)+KE(IH,L)ENDIF10 CONTINUEEND*-------------------------------------------------------- C SUBPROGRAM-7C CALCULATE NODAL LOAD VECTORSUBROUTINE EQUPE(NJ,NE,NPJ,NJ2,T,V,LND,X,Y,PJ,P) DIMENSION LND(NE,3),X(NJ),Y(NJ),PJ(NPJ,3),P(NJ2) DO 10 I=1,NJ210 P(I)=0.DO 20 I=1,NPJII=PJ(I,1)P(2*II-1)=PJ(I,2)20 P(2*II)=PJ(I,3)30 IF(V.EQ.0.) GOTO 50DO 40 IE=1,NECALL ATE(IE,NJ,NE,LND,X,Y,AE)PE=-V*AE*T/3.DO 40 I=1,3II=LND(IE,I)40 P(2*II)=P(2*II)+PE50 RETURNEND*---------------------------------------------C SUBPROGRAM-8C INTRODUCE BOUNDARY CONDITIONSUBROUTINE INSCD(NS,NW,NJ2,JR,KS,P)DIMENSION P(NJ2),JR(NS,3)REAL KS(NJ2,NW)DO 30 I=1,NSIR=JR(I,1)DO 30 J=2,3IF(JR(I,J).EQ.0) GOTO 30II=2*IR+J-3KS(II,1)=1.DO 10 JJ=2,NW10 KS(II,JJ)=0.IF(II.GT.NW) JO=NWIF(II.LE.NW) JO=IIDO 20 JJ=2,JO20 KS(II-JJ+1,JJ)=0.P(II)=0.30 CONTINUEEND*-------------------------------------------C SUBPROGRAM-9C SOLVE EQUATIONS BY GS METHODSUBROUTINE BGSMT(NJ,NJ2,NW,KS,P)DIMENSION P(NJ2)REAL KS(NJ2,NW)NJ1=NJ2-1DO 20 K=1,NJ1IF(NJ2.GT.K+NW-1) IM=K+NW-1IF(NJ2.LE.K+NW-1) IM=NJ2K1=K+1DO 20 I=K1,IML=I-K+1C=KS(K,L)/KS(K,1)IW=NW-L+1DO 10 J=1,IWM=J+I-K10 KS(I,J)=KS(I,J)-C*KS(K,M)20 P(I)=P(I)-C*P(K)P(NJ2)=P(NJ2)/KS(NJ2,1)DO 40 I1=1,NJ1I=NJ2-I1IF(NW.GT.NJ2-I+1) JO=NJ2-I+1IF(NW.LE.NJ2-I+1) JO=NWDO 30 J=2,JOK=J+I-130 P(I)=P(I)-KS(I,J)*P(K)40 P(I)=P(I)/KS(I,1)WRITE(6,50)50 FORMAT(/1X,'NODAL DISPLACEMENTS'/3X,* 'NODE',5X,'X-DISP.',8X,'Y-DISP.')DO 60 I=1,NJ60 WRITE(6,70) I,P(2*I-1),P(2*I)70 FORMAT(1X,I5,2E15.6)END*---------------------------------------------------C SUBPROGRAM-10C CALCULATE ELEMENT STRESS MATRIXSUBROUTINE SIGME(NE,NJ,NJ2,E,PR,LND,X,Y,P)DIMENSION LND(NE,3),X(NJ),Y(NJ),D(3,3),B(3,6), * S(3,6),ST(3),P(NJ2),DE(6)WRITE(6,*)WRITE(6,*)' ELEMENT STRESSES'CALL DTE(E,PR,D)DO 50 IE=1,NECALL ATE(IE,NJ,NE,LND,X,Y,AE)CALL BTE(IE,NJ,NE,LND,X,Y,AE,B)DO 10 I=1,3DO 10 J=1,6S(I,J)=0.DO 10 K=1,310 S(I,J)=S(I,J)+D(I,K)*B(K,J)DO 20 I=1,3DO 20 J=1,2IH=2*(I-1)+JIW=2*(LND(IE,I)-1)+J20 DE(IH)=P(IW)DO 30 I=1,3ST(I)=0.DO 30 J=1,630 ST(I)=ST(I)+S(I,J)*DE(J)SGX=ST(1)SGY=ST(2)TXY=ST(3)ASG=(SGX+SGY)*.5RSG=SQRT(.25*(SGX-SGY)**2+TXY*TXY)SGMA=ASG+RSGSGMI=ASG-RSGIF(SGY.EQ.SGMI) CETA=0.IF(SGY.NE.SGMI) CETA=90.-57.29578*ATAN* (TXY/(SGY-SGMI))50 WRITE(6,60) IE,SGX,SGY,TXY,SGMA,SGMI,CETA60 FORMAT(1X,'ELEMENT NO.=',I4/2X,'SIGX=',E10.4, * 2X,'SIGY=',E10.4,2X,'TXY =',E10.4/2X,'SGMA=', * E10.4,2X,'SGMI=',E10.4,2X,'CETA=',E10.4)END。

matlab有限元三角形单元编程

matlab有限元三角形单元编程

matlab有限元三角形单元编程
在MATLAB中进行有限元分析,可以使用其自带的有限元分析工具箱(FEATool)进行编程。

以下是一个简单的例子,演示如何使用三角形单元进行有限元分析:
1. 打开MATLAB,进入FEATool环境。

2. 创建新的有限元模型。

选择“Model”菜单下的“New Model”选项,进入“Model Builder”界面。

3. 在“Model Builder”界面中,选择“2D Triangle”单元类型,并在绘图区域中绘制出三角形网格。

4. 在“Model Builder”界面中,设置材料属性、边界条件和载荷等参数。

5. 运行有限元分析。

选择“Model”菜单下的“Solve”选项,进行有限元求解。

6. 查看结果。

选择“Model”菜单下的“Results”选项,可以查看位移、应力、应变等结果。

以上是一个简单的例子,演示了如何使用三角形单元进行有限元分析。

在实际应用中,还需要根据具体问题进行详细的建模和计算。

第6章——常应变三角形单元

第6章——常应变三角形单元
应力矩阵
[S1
S 2 S3 ]
ci 1-µ bi 2
bi E µb = Si DB = i i 2 A(1 − µ 2 ) 1-µ ci 2
µ ci
平面应变:用平面应变弹性矩阵代入得到类似结果。
22:42
有限单元法
崔向阳
16
单元应变和应力矩阵
由于同一单元中的D、B矩阵都是常数矩阵,所以S矩阵也是常 数矩阵。也就是说,三角形三节点单元内的应力分量也是常 量。 当然,相邻单元的E, µ, A和bi、ci(i,j,m)一般不完全相同, 因而具有不同的应力,这就造成在相邻单元的公共边上存在 着应力突变现象。但是随着网格的细分,这种突变将会迅速 减小。
m j
h
1 i U = ∫∫ (σ xε x + σ yε y + τ xyγ xy )hdxdy x 2 A 1 T T T T = ∫∫ σ T εhdxdy σ = ( D ε ) = ε D 2 A
−1
u1 u2 u 3
u ( x, y ) = {1 x
1 x1 y} 1 x2 1 x3
y1 y2 y3
−1
u1 u2 u 3
4
22:42
有限单元法
崔向阳
平面三角形单元
假设
{ N1
N2
N 3 } = {1 x
m 相邻单元的位移在公共边上是连续的 形函数在单元上的面积分和边界上的线积分公式为 i
j p
A ∫ ∫A Ni dxdy = 3
式中 lij 为 ij 边的长度。
Ni =1 i m j
22:42
1 ∫ij Ni dl = 2 lij

有限元单元法程序设计

有限元单元法程序设计

有限元单元法程序设计有限元单元法是一种用于工程结构分析和设计的计算方法,它将大型结构分解为许多小的离散单元,通过分析单元之间的相互作用来预测结构的力学行为。

有限元单元法程序设计是指针对特定工程问题,编写计算机程序来实现有限元分析的过程。

下面将介绍有限元单元法程序设计的基本流程和关键要点。

一、问题建模和网格划分有限元单元法程序设计的第一步是对工程结构进行合理的建模和网格划分。

建模的目的是将实际结构抽象为适用于有限元分析的数学模型,包括定义结构的几何特征、材料属性、边界条件等。

网格划分是将结构分解为许多小的单元,每个单元具有一定的形状和尺寸,以便于数值计算。

常用的单元形状包括三角形、四边形、四面体、六面体等,根据结构的特点选择合适的单元形状和尺寸。

二、单元刚度矩阵和载荷矩阵的求解在有限元单元法程序设计中,需要编写算法来求解每个单元的刚度矩阵和载荷矩阵。

单元刚度矩阵描述了单元内部的力学性能,包括刚度、弹性模量、泊松比等,它们通常通过数学公式或有限元理论推导得到。

载荷矩阵描述了单元受到的外部荷载,可以是均匀分布载荷、集中载荷或者边界条件引起的约束力。

通过合适的数值积分方法,可以计算得到每个单元的刚度矩阵和载荷矩阵。

三、组装全局刚度矩阵和载荷向量在有限元单元法程序设计中,需要将所有单元的刚度矩阵和载荷向量组装成整个结构的全局刚度矩阵和载荷向量。

这涉及到单元之间的连接关系以及边界条件的处理。

采用适当的组装算法,可以将各个单元的刚度矩阵和载荷向量叠加在一起,形成整个结构的刚度矩阵和载荷向量。

四、求解位移和应力有限元单元法程序设计的最后一步是求解结构的位移和应力。

通过斯蒂芬-泰勒算法或者其他迭代算法,可以得到整个结构的位移分布,然后根据位移场计算各个点的应变和应力。

这一过程涉及到对整个结构刚度矩阵的求解和对位移的后处理。

有限元单元法程序设计是一个复杂而又精密的工作,需要深入理解有限元原理、结构力学知识和数学方法。

matlab有限元三角形单元程序

matlab有限元三角形单元程序

matlab有限元三角形单元程序以下是一个简单的 MATLAB 有限元三角形单元程序的示例:```matlab% 定义模型参数E = 1000; % 弹性模量nu = 0.3; % 泊松比thickness = 1; % 板的厚度% 定义节点坐标nodes = [0, 0; 1, 0; 1, 1; 0, 1; 0.5, 0.5];% 定义单元连接关系connectivity = [1, 2, 5; 2, 3, 5; 3, 4, 5; 4, 1, 5];% 计算总节点数和总单元数numNodes = size(nodes, 1);numElements = size(connectivity, 1);% 初始化全局刚度矩阵和载荷向量K = zeros(numNodes);F = zeros(numNodes, 1);% 循环遍历每个单元for i = 1:numElements% 查找当前单元的节点编号nodesIndex = connectivity(i, :);% 根据节点编号从全局坐标矩阵中取出节点坐标coordinates = nodes(nodesIndex, :);% 计算当前单元的局部刚度矩阵localK = calculateLocalStiffness(E, nu, thickness, coordinates);% 组装局部刚度矩阵到全局刚度矩阵中K(nodesIndex, nodesIndex) = K(nodesIndex, nodesIndex) + localK;% 计算当前单元的局部载荷向量localF = calculateLocalLoad(thickness, coordinates);% 组装局部载荷向量到全局载荷向量中F(nodesIndex) = F(nodesIndex) + localF;end% 边界条件:节点1固定K(1, :) = 0;K(1, 1) = 1;F(1) = 0;% 解线性方程组U = K \ F;% 输出位移结果disp('节点位移:');disp(U);% 计算应力结果stress = calculateStress(E, nu, thickness, nodes, connectivity, U);% 输出应力结果disp('节点应力:');disp(stress);% 计算局部刚度矩阵的函数function localK = calculateLocalStiffness(E, nu, thickness, coordinates)% 计算单元的雅可比矩阵J = (1/2) * [coordinates(2,1)-coordinates(1,1), coordinates(3,1)-coordinates(1,1);coordinates(2,2)-coordinates(1,2), coordinates(3,2)-coordinates(1,2)];% 计算雅可比矩阵的逆矩阵invJ = inv(J);% 计算单元刚度矩阵B = invJ * [-1, 1, 0; -1, 0, 1];D = (E/(1-nu^2)) * [1, nu, 0; nu, 1, 0; 0, 0, (1-nu)/2]; localK = thickness * abs(det(J)) * (B' * D * B);end% 计算局部载荷向量的函数function localF = calculateLocalLoad(thickness, coordinates) localF = zeros(3, 1);midPoint = [sum(coordinates(:,1))/3,sum(coordinates(:,2))/3];localF(3) = thickness * 1 * det([coordinates(1,:); coordinates(2,:); midPoint]);end% 计算各节点应力的函数function stress = calculateStress(E, nu, thickness, nodes, connectivity, U)stress = zeros(size(nodes, 1), 3);for i = 1:size(connectivity, 1)nodesIndex = connectivity(i, :);coordinates = nodes(nodesIndex, :);Ke = calculateLocalStiffness(E, nu, thickness, coordinates);Ue = U(nodesIndex);stress(nodesIndex, :) = stress(nodesIndex, :) + (Ke * Ue)';endstress = stress / thickness;end```这个程序实现了一个简单的平面三角形单元有限元分析,包括定义节点坐标和单元连接关系、计算全局刚度矩阵和载荷向量、施加边界条件、解线性方程组、计算节点位移和应力等。

三角形单元有限元程序设计

三角形单元有限元程序设计一、引言
⑴文档背景
⑵文档目的
⑶读者对象
⑷名词解释
二、程序结构设计
⑴程序流程图
⑵程序组成模块描述
⑶主要数据结构设计
⑷代码逻辑设计
三、数据预处理
⑴数据输入格式与读取
⑵数据清洗与去噪
⑶数据预处理方法
⑷数据分割与划分
四、网格
⑴网格算法介绍
⑵网格质量评估与改善
⑶网格的实现方法
五、有限元方法
⑴有限元离散的原理
⑵有限元单元的选择
⑶有限元离散的网格节点选取
⑷有限元插值函数的计算六、模型求解
⑴线性方程组的求解方法
⑵模型参数的设置与调整
⑶迭代算法的选择与实现七、模型评估与验证
⑴结果评估指标的选择
⑵模型验证方法
⑶结果可视化与分析
八、性能优化
⑴程序性能分析与评估
⑵程序高效化的方法与技巧
⑶并行计算与优化
九、实例与案例
⑴实例介绍与问题描述
⑵实例数据处理过程
⑶实例模型求解与结果分析十、总结与展望
⑴工作总结
⑵程序改进与优化展望
⑶研究方向与发展趋势
十一、附件
●附件1、程序源代码
●附件2、输入数据样例文件
●附件3、网格结果数据文件附录:法律名词及注释
●法律名词1、注释1
●法律名词2、注释2
●法律名词3、注释3
请注意,附件的具体文件名和数据内容将根据你的实际情况进行调整。

法律名词及注释部分需要根据实际需要进行扩充和修改。

请合理对文档结构和章节内容进行调整,以符合你的具体要求。

第六章三角形单元的有限元法程序设计


从第j列的主对角线元素起到该列上方第一个非零 元素为止,所含元素的个数称为第j列的列高,记为hj ; 如果把第j列上方第1个非零元素的行号记为mj,则第j 列的列高为 hj = j - mj + 1 其实,hj就是第j行的左带宽,因而必有 UBW= max(hj)
j=1,2, …,N
利用节点位移信息数组 ID (去约束后节点位移自 由度编码),可容易地确定刚度矩阵 [K] 任何一列的 列高。
{ } [S ]{ }
例1:对角受压的正方形薄板,载 荷沿厚度均匀分布,为2N/m。由 于对称性,取1/4部分作为计算对
2N/m y x
象,试用有限元程序进行计算。
2N/m 2m 2m
h 1.0m, E 1.0, 0.0
例2:简支梁,梁高3m,跨度18m,厚度1m,承 受均布荷载10N/m2。已知 E 2 1010 N / m2 , 0.167
y为挤压应力,属次要应 力。材料力学不考虑 , FEM与弹性力学误差较大。
6.2 提高计算精度的方法
(1) 计算结果的整理 计算结果包括位移和应力两个方面。在位移方 面,一般无须进行整理工作。应力结果则需要 整理。通常认为计算出的应力是三角形单元形 心处的应力。而相邻单元之间的应力存在突变, 甚至正、负符号都不相同。为了由计算结果推 算出结构内某一点的接接实际的应力,必须通 过某种平均计算。通常可采用两单元平均法或 绕结点平均法。
平均法整理单元应力
两单元平均法:把两个相邻单元中的常应力加 以平均,用来表示公共边界中点处的应力。 绕结点平均法:把环绕某一结点的各单元常应 力加以平均,用以表示该结点的应力。在内结 点效果较好,而在边界结点可能很差,一般改 为应由内结点的应力外推计算出来。 (2)网格的细分 通过网格的细分,使每个单元的面积缩小,那 么尽管每个单元是应变、常应力单元,仍可较 好地反映结构中的应力变化,使得到的解答收 敛于问题的精确解。

有限元三角形单元求解方法

整体刚度矩阵
假设整体结构被划分为ne个单元和n个节点,在整体坐标系下,对于每个
单元均有:
(12)
将上述这些方程集合起来(整体坐标下叠加),便可得到整个结构的平衡方程。为此,需要将 、 、 体积膨胀,分别扩大为 , , 的矩阵才能相加。膨胀后,原有节点号对应位置的元素不变,而其它元素均为零。
对于整体结构有
将四个节点的坐标值带入上式
其中
(13)
总刚度矩阵处理
为了方便计算可以采用划零置一法对自由状态的刚度矩阵进行修正,将零位移对应的刚度矩阵的行和列置零,对角线上的主元素置一,其他元素不变,与此同时还要对 修正,将与位移项对应的各项置零。
具体参照论《总刚度矩阵的奇异性与非奇异性_边界条件处理方法的讨论》
四边形共四个节点,每个节点有x,y两个自由度,共8个自由度。因此x和y方向的位移场可以各有4个待定系数,即取以下多项式作为单元的位移场模式
(3)
求得
(4)
由此得到
(5)
式中: ;A为三角形单元的面积,为使面积的值为正,本单元节点号的次序必须是逆时针转向。
将式(5)带入式(2)得:
(6)
式中 ; ;
写成矩阵的形式 单元应变
(7)
将式(6)带入式(7)得
(8)
对于弹性力学的平面应力问题,应力应变关系可表示为:
(9)
(10)
单元刚度矩阵
(11)
三角形单元刚度矩阵
一个三节点三角形单元,其节点i、j、m按逆时针方向排列。每个有3个节点(以i、j、m为序),共有6个节点位移分量。其单元位移或单元节点位移列阵为:
(1)
选位移函数(单元中任意一点的位移与节点位移的关系)为简单多项式:
(2)
将三个节点的位移值带入得:

有限元三角形划分程序

else
J0=z;
for(j=2;j<=J0;j++)
KZ[z-j+1][j]=0.0;
}
P[z]=0.0;
}
NJ1=NJ2-1;
for(k=1;k<=NJ1;k++)
{
if(NJ2>k+DD-1)
IM=k+DD-1;
{
printf("%2d %-21.6f %-21.6f\n",i,P[2*i-1],P[2*i]);
}
for(E=1;E<=NE;E++)
{
DUGD(E,2);
for(i=1;i<=3;i++)
{
for(j=1;j<=2;j++)
dh=2*(JM[E][i]-1)+ii;
for(j=1;j<=3;j++)
{
for(jj=1;jj<=2;jj++)
{
)+jj;
dl=zl-dh+1;
{
S[i][j]=0.0;
for(k=1;k<=3;k++)
S[i][j]=S[i][j]+D[i][k]*B[k][j];
}
}
if(ASK>2)
{
for(i=1;i<=6;i++)
P[2*ME]=P[2*ME]+PE;
}
}
for(i=1;i<=NZ;i++)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形单元程序
%------------------------------------------------%compute element matrices and vectors and assemble %------------------------------------------------for iel=1:nel %loop for the total number of element
nd(1)=nodes(iel,1); nd(2)=nodes(iel,2); nd(3)=nodes(iel,3);
%1st connected node for (iel)-th element %2nd connected node for (iel)-th element %3rd connected node for (iel)-th element
%coord values of 1st node %coord values of 2nd node %coord values of 3rd node %extract system dofs for the element
x1=x0(nd(1),1); y1=x0(nd(1),2); x2=x0(nd(2),1); y2=x0(nd(2),2); x3=x0(nd(3),1); y3=x0(nd(3),2); index=feeldof(nd,nnel,ndof);
Ni,x
area=0.5*(x1*y2+x2*y3+x3*y1-x1*y3-x2*y1-x3*y2); %area of triangula area2=area*2; dhdx=(1/area2)*[(y2-y3) (y3-y1) (y1-y2)]; dhdy=(1/area2)*[(x3-x2) (x1-x3) (x2-x1)]; %derivatives w.r.t x %derivatives w.r.t y %kinematic matrice %element stiffness matrice
三角形单元程序设计
Байду номын сангаас
问题描述
考虑一个平面应力问题如图所示,假设厚度h=1,材料为各项 同性,杨氏模量为 E=1,泊松比为 ν=0,相关力和位移边界条 件如图中所示,问题左端为固定约束。试用两个三角形单元 分析此问题,三角形单元的网格划分如图所示。试求问题各 节点位移u、v和应力σx,σy和σxy。
1 T e de K de 2
16:51
-0.5*lengthy*(1+(lx+1-i)/lx)*(1-(j-1)/ly)];
三角形单元程序
%---------------------------------------------------------------------%input data for nodal connectivity for each element %nodes(i,j) where i->element no. and j->connected nodes %---------------------------------------------------------------------nodes=[]; for i=1:lx for j=1:ly nodes=[nodes; (ly+1)*(i-1)+j (ly+1)*i+j (ly+1)*(i-1)+j+1;]; nodes=[nodes; (ly+1)*i+j (ly+1)*i+j+1 (ly+1)*(i-1)+j+1;]; end end
16:51
三角形单元程序
%---------------------------------%input data for boundary conditions %---------------------------------bcdof=[]; bcval=[]; for i=1:ly+1 bcdof=[bcdof 1+2*(i-1) 2+2*(i-1)]; bcval=[bcval 0 0]; end
A(0, 0) D(4, 0)
F 1
fload=-1;
% the total load
B(0, 2)
C (4, 1)
16:51
三角形单元程序
lx=16; % number of element in x-axis ly=8; % number of element in y-axis nel=2*lx*ly; % number of element nnel=3; %number of nodes per element ndof=2; %number of dofs per node nnode=(lx+1)*(ly+1); %total number of nodes in system sdof=nnode*ndof; %total system dofs edof=nnel*ndof; %degrees of freedom per element %------------------------------------------------------%input data for nodal coordinate values %------------------------------------------------------x0=[]; for i=1:lx+1 for j=1:ly+1 x0=[x0; (i-1)*lengthx/lx end end 16:51
Ni, y
kinmtx2=fekine2d(nnel,dhdx,dhdy); k=kinmtx2'*matmtx*kinmtx2*area;
K e BT DBhdxdy BT DBA
A
kk=feasmb_2(kk,k,index); end
%assemble element matrics
16:51
三角形单元程序
%--------------------------------------%find the derivatives of shape functions %---------------------------------------
1 Ni ai bi x ci y 2A
A(0, 0) D(4, 0)
C (4, 1)
B(0, 2)
16:51
三角形单元程序
%------------------------------------------------%initialization of matrices and vectors %------------------------------------------------ff=sparse(sdof,1); %system force vector k=sparse(edof,edof); %initialization of element matrix kk=sparse(sdof,sdof); %system matrix disp=sparse(sdof,1); %system displacement vector eldisp=sparse(edof,1); %element displacement vector stress=zeros(nel,3); %matrix containing stress components strain=zeros(nel,3); %matrix containing strain components index=sparse(edof,1); %index vector kinmtx=sparse(3,edof); %kinematic matrix matmtx=sparse(3,3); %constitutive matrix %------------------------------------------------%compute material matrices %------------------------------------------------matmtx=fematiso(1,emodule,poisson); %constitutive matrice 16:51
A(0, 0) D(4, 0)
F 1
C (4, 1)
B(0, 2)
16:51
三角形单元程序
clear all first_time=cputime; format long %-------------------------------------------%input data for control parameters %-------------------------------------------lengthx=4; %length of x-axis side of problem lengthy=2; %length of y-axis side of problem emodule=1.0; poisson=0.0; %elastic modulus %Poisson's ratio
16:51
三角形单元程序
kk1=kk; %-------------------------------------------------------------------------% force vector %-------------------------------------------------------------------------ff(sdof,1)=fload; %-----------------------% apply boundary condition %-----------------------[kk,ff]=feaplyc2(kk,ff,bcdof,bcval); %------------------------% solve the matrix equation %------------------------%disp=kk\ff; [LL UU]=lu(kk); utemp=LL\ff; disp=UU\utemp;
相关文档
最新文档