有限元法进行疲劳分析
基于多体动力学和有限元法的机车车体结构疲劳仿真研究

基于多体动力学和有限元法的机车车体结构疲劳仿真研究一、本文概述随着现代轨道交通的飞速发展,机车车体结构的疲劳问题日益凸显,对机车运行的安全性和稳定性构成了严重威胁。
因此,对机车车体结构进行疲劳仿真研究具有重要的现实意义和工程应用价值。
本文旨在通过结合多体动力学和有限元法,对机车车体结构的疲劳特性进行深入探讨,以期在理论层面为机车车体结构的优化设计和疲劳寿命预测提供科学依据。
多体动力学作为研究多个刚体或柔性体之间相互作用的一门学科,能够全面考虑机车车体在运动过程中的复杂动力学行为。
有限元法作为一种数值分析方法,能够精确地模拟机车车体结构的应力分布和变形情况。
通过将两者相结合,可以在更准确的模拟机车车体结构在实际运行过程中的受力状态,进而分析车体结构的疲劳特性。
本文首先将对多体动力学和有限元法的基本原理进行简要介绍,然后详细阐述如何将这两种方法相结合,构建机车车体结构的疲劳仿真模型。
在此基础上,通过对仿真结果的分析,探讨机车车体结构的疲劳分布规律、疲劳寿命预测方法以及疲劳优化设计的可能性。
本文还将对研究中存在的局限性进行反思,并提出未来研究的方向和展望。
通过本文的研究,希望能够为机车车体结构的疲劳仿真提供一种新的思路和方法,为提升机车车体结构的安全性和稳定性提供理论支持和实践指导。
二、多体动力学理论及应用多体动力学,作为研究多个相互连接的刚体或弹性体在复杂系统中的运动规律的科学,近年来在机车车体结构研究中得到了广泛应用。
该理论的核心在于通过建立精确的数学模型,模拟机车在实际运行过程中的各种动力学行为,包括振动、冲击、加速度分布等,从而为车体结构设计提供理论支撑和优化方向。
在机车车体结构疲劳仿真研究中,多体动力学的主要应用表现在以下几个方面:建立多体动力学模型:基于机车的实际结构和运行条件,通过引入适当的约束条件和连接关系,建立包含车体、转向架、轮对等关键部件的多体动力学模型。
这一模型能够反映机车在实际运行中的动态行为,为后续的疲劳仿真分析提供基础。
有限元法进行疲劳分析

有限元法进行疲劳分析1一、有限元法疲劳分析的基本思路用有限元法进行疲劳分析,其基本思路是:首先进行静或动强度分析,然后进入到后处理器取出相关的应力应变结果,在后处理器中再定义载荷事件,循环材料特性,接着根据所需要的疲劳准则对每一个载荷事件进行寿命计算,最后根据累计损伤理论判断是否开始破坏。
由于结构受力状态往往是一复杂的应力状态,而在实验中测得的结构材料S-N曲线又常是在简单应力状态下获得的,因此常用最小能量屈服准则或其它等效准则,将所研究的疲劳点上的复杂应力用一个等效应力替代。
对有限元法而言,这一过程很容易实现。
等效替代以后,即可参照原始材料的S-N曲线进行疲劳寿命评估。
上述方法称之为应力-寿命法或S-N法,该方法不严格区分裂纹产生和裂纹扩展,而是给出结构发生突然失效前的全寿命估计。
当然,还可以采用更加现代化的局部应变法或初始裂纹法。
因篇幅所限,因此仅讨论S-N法,且针对车辆结构疲劳分析。
2二、疲劳分析由于车辆结构的零部件属于低应力、高循环疲劳,故常使用Stress life准则,并使用修正Goodman图,此时,S-N曲线的经验公式修正为:计算中需要的材料参数包括:弹性模量、疲劳强度系数、疲劳强度指数、强度极限。
其具体的分析过程是:1.建立物理模型(Physical Model)对于疲劳分析来说,物理模型即包含结点、单元、物理特性和材料特性的有限元模型。
2.建立数学模型(Mathematical Model)数学模型也就是使用物理模型计算应力或应变。
求解后,可从后处理器中获取相关的应力或应变。
3.载荷工况(Loading Conditions)对于静态疲劳分析来说,可以用建立载荷函数的方式施加载荷。
4.定义事件(Events)在进行疲劳评估之前,必须先定义事件。
它由物理模型、数学模型、载荷工况组成,如图1-1所示。
5.评估(Evaluation)一般来说,我们可进行下列估算:·事件损伤(Event Damage)·事件损伤方向(Event Damage Direction)·损伤累积(Accumulated Damage)·事件寿命估算(Event Life Estimate)6.后处理(Post Processing)疲劳分析的后处理与静力学的后处理完全一致,此处不再重复。
有限元法在机械设计中的应用

有限元法在机械设计中的应用有限元法(Finite Element Method, FEM)是一种数值分析方法,广泛应用于机械设计中。
它通过将连续物体划分为互不重叠的离散单元,将连续的问题转化为离散的代数问题,从而求解材料和结构的力学性能。
有限元法在机械设计中的应用多种多样,以下将介绍其中几个常见的应用领域。
有限元法在机械结构分析方面的应用非常广泛。
对于复杂的机械结构,往往难以用解析方法求解其应力、变形等力学性能。
而有限元法能够将结构离散成无数小单元,然后通过求解这些单元的力学方程,得到整个结构的力学性能。
通过有限元法进行结构分析,可以准确预测各个点的应力、变形,并且能够快速检测结构中的弱点和缺陷,从而指导设计优化和改进。
有限元法在机械疲劳分析中的应用也非常重要。
机械零件在长期使用过程中会发生疲劳失效,会对机械性能产生严重的影响。
通过有限元法模拟机械零件的疲劳寿命,可以预测零件的寿命以及在哪些位置容易发生疲劳破坏,从而指导工程师进行合理的寿命设计。
有限元法在机械振动分析中也有广泛的应用。
当机械结构受到外界激励时,可能会发生振动现象,振动会对机械结构产生不利的影响。
通过有限元法可以对机械结构的振动模态进行计算和分析,从而了解结构的固有频率、模态形态以及共振情况,有助于设计和优化机械结构。
有限元法在热传导分析、流体力学和电磁场等领域也有着广泛的应用。
当机械设备进行高速运动时,由于摩擦和压力变化,会产生大量的热量。
有限元法可以计算机械部件的温度分布,以便进行散热设计。
有限元法可以模拟流体在机械设备内的流动情况,优化流动通道和内部结构,从而提高机械设备的效率。
有限元法还可以分析机械设备中的电磁场分布,比如电机中的电磁场分析,有助于理解电磁特性以及改善设备性能。
有限元法在机械设计中的应用涵盖了结构分析、疲劳分析、振动分析、热传导分析、流体力学分析等多个领域。
通过有限元法,可以更加准确地预测和分析机械部件的力学性能,提高机械设备的设计效率和可靠性。
基于有限元的疲劳分析方法及实践

基 于有 限元 的疲 劳分析 方 法及 实 六 践
王彦伟 罗继伟 z 叶 军 z 陈立平 , (华 中科技大 学 国家 C D支撑 软件 工程技 术研 究 中心 , A 武汉 4 07 ) 洛 阳轴 承研究 所 , 304 ( 洛阳 4 13 ) 704
F A a e t u n lssa d I p l a in E b s df i ea ay i n sa p i t ag t c o
W ANG Ya — e L iw i, u C N ip n 1 n w i, UO j— e2YE J n 。 HE L— ig
(C D C ne , u zo gU i r t f ce c A e trH ah n nv s yO i e&T c nlg , h n4 0 7 , hn ) ei S n eh o y Wu a 3 0 4 C ia o
和不同载荷顺序对疲劳寿命的影响 , 因而无法适用与塑性变形居 主导地位的低周疲劳情况。
微观塑性变形有关 ; 但从宏观上 , 人们仍然根据疲劳破坏发生时 的应力循环次数 , 将疲劳破坏分为高周疲劳和低周疲劳[ 其中 , 1 】 。 高周疲劳受应力幅控制中 , 循环应力 的水平较低 , 弹性变形居 主
s w ebsd ai eaa s r eso m cie at l oa di eal o a ae f g nl ipo s ahn riea r e dt . t f r t u ys c f p b t n i s
Ke r s y wo d :Fa i u na y i;Fi t lm e na y i ; a p c r m ;Cr k tg e a l ss niee e nta l ss Lo d s e t u ac
有限元法在机械设计中的应用

有限元法在机械设计中的应用
有限元法(Finite Element Method,简称FEM)是一种利用数值计算方法解决复杂的连续介质问题的数学模型和计算方法。
1. 结构分析:有限元法可以用于分析各类机械结构的变形和应力分布情况。
在机械
设计中,通过对机械零部件进行有限元分析,可以在设计阶段发现结构的弱点和不足之处,指导后续的结构优化设计,并确保设计的安全可靠。
2. 模态分析:有限元法可以用于分析结构的固有频率和模态形态。
在机械设计中,
通过模态分析可以了解结构的固有频率,避免与外界的激励频率发生共振,提高结构的工
作稳定性和可靠性。
3. 疲劳分析:有限元法可以用于分析材料的疲劳寿命。
在机械设计中,通过对机械
零部件进行疲劳分析,可以预测结构在长期使用过程中存在的疲劳问题,指导材料的选择
和结构的改进,延长机械的使用寿命。
4. 流体力学分析:有限元法可以用于分析流体在机械结构中的流动特性和压力分布
情况。
在机械设计中,通过流体力学分析可以优化流体的流通路径和传热效果,提高机械
设备的工作效率。
有限元法在机械设计中的应用,可以通过数值计算的方法对机械结构的性能进行预测
和评估。
通过有限元法的应用,可以提前发现和解决结构中的问题,指导优化设计,提高
机械设备的性能和可靠性。
FEMFAT疲劳分析教程

FEMFAT疲劳分析教程
FEMFAT(有限元疲劳分析工具)是一种用于预测部件疲劳寿命和性能的软件工具。
它基于有限元方法,可以对结构进行疲劳分析、寿命预测和结构优化。
本教程将介绍FEMFAT软件的基本使用方法和疲劳分析的基本原理。
第一部分:FEMFAT软件介绍
1.FEMFAT软件的基本功能和应用领域;
2.FEMFAT软件的主要特点和优势;
3.FEMFAT软件的安装和设置。
第二部分:建立有限元模型
1.导入CAD模型到FEMFAT软件;
2.确定模型的边界条件和加载条件;
3.定义材料性能参数。
第三部分:疲劳加载和分析
1.定义疲劳分析的加载条件;
2.进行疲劳分析,包括应力分析和应变分析;
3.疲劳寿命预测方法和理论。
第四部分:结果分析和优化设计
1.分析疲劳分析结果,包括寿命预测和疲劳热图;
2.根据结果进行优化设计,改进结构的疲劳性能;
3.结果验证和优化方案的效果评估。
第五部分:案例分析
1.疲劳分析实例,如汽车发动机支架的疲劳分析;
2.案例的建模、加载条件和分析过程;
3.案例结果分析和优化设计。
第六部分:注意事项和常见问题
1.使用FEMFAT软件时的注意事项和使用技巧;
2.常见问题解答。
总结:FEMFAT软件是一种强大的疲劳分析工具,可以用于预测结构部件的疲劳寿命和性能。
通过本教程,您将学会使用FEMFAT软件进行疲劳分析,并能够根据分析结果进行结构的优化设计,提高结构的疲劳寿命和性能。
希望本教程能够帮助您更好地理解和使用FEMFAT软件。
基于有限元法的柱塞泵曲轴疲劳强度分析

轴承颈的圆柱面上的约束状况 : 径向固定 、 切向和轴
向 自f 。 # I
最大处在 曲拐与 主轴颈 、 曲柄销 与曲柄过 渡 网角处 ,
收稿 日期 :0 9 0 — 9 2 0 — 9 1 作者简介 : 陈丽娜 (9 2 )女 , 十生 18 一 , 硕
( ) 存 曲轴 轴 承颈凸 台面上 的约束 2施加 只有在 压缩工况 的时候 该 面是 固定 的 。加 载载
0 பைடு நூலகம்
黼
图 9 节点 2 0 随 旋转 角 的 应 力变 06
螺 土 5 0
图 6 节 点 1 2 随 旋 转 角 的 应 力 变 92
点 随旋 转角 的应力 变化如 图 9所示 。
( ) 三 曲柄销 第二 圆角 6第 最 小安 全 系数 := . ,节 点号 :0 8 n3 7 8 2 3 ,该点 在
曲轴包括 : 主轴颈 、 曲柄 和 曲柄销 连杆轴颈 三个 部分 , 本文研究 的是柱 塞泵 的曲轴 , 一拐与第 二拐 第
图 1 曲柄 销 与连 杆 示意 图
相差 20 , 4 。第三 楞与第 一 拐相差 10 运转 时 将 电 2。 动机 的旋 转运动 转变成 柱塞 的往 复运 动。
考 虑这些 因素 ,对 曲轴 实体建模 时保 留主要几何 特 征 , 略其 他细节部 分 。网格单元 以六 面体为 主 , 忽 部
分为五 面体 , 图 2 见 。
1 曲轴有 限元 模 型 的建 立
表 1 曲轴 几 何 参 数
曲轴 总 长
1 9 5m . 6 0
曲 轴 几何 参 数 见 表 1 由于旋转 角不 同 , 。 连 杆 力 的方 向也 不 同 , 曲 柄 销 上 的 受 力 面 积
有限元法在机械设计中的应用

有限元法在机械设计中的应用有限元法是一种基于数学原理的现代计算技术,它被广泛应用于机械设计、结构分析、流体力学、电磁场等领域。
在机械设计中,有限元法可以帮助工程师们更准确地预测和分析结构性能,优化设计,提高产品质量和节约成本。
以下是有限元法在机械设计中的应用。
1. 结构分析有限元法最常用的应用是结构分析。
在机械设计中,结构分析可以帮助工程师们分析机械零部件的应力、变形、位移、刚度等特征。
通过有限元法,可以将结构分为许多小的单元,计算每个单元的应力和位移,并将它们整合成整体结构的应力和位移。
这样一来,工程师们可以更好地理解结构的性能,选择更合适的设计方案。
2. 材料选择在机械设计中,材料的选择是非常重要的。
有限元法可以对不同材料的性能进行计算,帮助工程师们选择最优的材料。
通过计算应力和位移,可以确定材料的强度、刚度、韧性等特性。
这样一来,工程师们就可以根据不同的需求选择适合的材料。
3. 疲劳分析疲劳分析是机械设计中的一个重要方面。
有限元法可以在设计过程中对零部件进行疲劳分析,计算它们的疲劳寿命。
通过预测零部件的疲劳寿命,工程师们可以选择更可靠的设计方案,避免机械失效和安全事故。
4. 模拟分析在机械设计的早期阶段,有限元法可以在计算机上进行模拟分析,帮助工程师们进行设计可行性分析。
通过模拟分析,工程师们可以验证设计是否合理,优化设计,提高机械性能。
5. 优化设计有限元法还可以用于优化机械设计。
通过计算不同设计方案的性能,工程师们可以通过优化设计来改进机械性能。
这种优化设计方法可以在早期阶段对机械进行改进,避免在后期阶段出现缺陷和工作效率低下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元语言及编译器(Finite Element Language And it’s Compiler,以下简称FELAC) 是中国科学院数学与系统科学研究院梁国平研究院于1983年开始研发的通用有限元软件平 台,是具有国际独创性的有限元计算软件,是PFEPG系列软件三十年成果(1983年—2013 年)的总结与提升,有限元语言语法比PFEPG更加简练,更加灵活,功能更加强大。目前 已发展到2.0版本。其核心采用元件化思想来实现有限元计算的基本工序,采用有限元语
2. 建立数学模型(Mathematical Model) 数学模型也就是使用物理模型计算应力或应变。求解后,可从后处理器中获取相关的应 力或应变。
3. 载荷工况(Loading Conditions) 对于静态疲劳分析来说,可以用建立载荷函数的方式施加载荷。
4. 定义事件(Events) 在进行疲劳评估之前,必须先定义事件。它由物理模型、数学模型、载荷工况组成,如 图1-1所示。
言来书写程序的代码,为各领域,各类型的有限元问题求解提供了一个极其有力的工具。 FELAC可以在数天甚至数小时内完成通常需要一个月甚至数月才能完成的编程劳动。
Thank you
元计算科技发展有限公司是一家既年青又悠久的科技型企业。年青是因为她正处在战略重组 后的初创期,悠久是因为她秉承了中国科学院数学研究所在有限元和出中国人自己的CAE软件。
元计算秉承中国科学院数学与系统科学研究院有限元自动生成核心技术(曾获中科院科技进 步二等奖、国家科技进步二等奖),通过自身不懈的努力与完善,形成一系列具有高度前瞻性和 创造性的产品。
5. 评估(Evaluation) 一般来说,我们可进行下列估算: ·事件损伤(Event Damage) ·事件损伤方向(Event Damage Direction) ·损伤累积(Accumulated Damage) ·事件寿命估算(Event Life Estimate)
6. 后处理(Post Processing) 疲劳分析的后处理与静力学的后处理完全一致,此处不再重复。
一、有限元法疲劳分析的基本思路
用有限元法进行疲劳分析,其基本思路是:首先进行静或动强度分析,然后进入到后 处理器取出相关的应力应变结果,在后处理器中再定义载荷事件,循环材料特性,接着根 据所需要的疲劳准则对每一个载荷事件进行寿命计算,最后根据累计损伤理论判断是否开 始破坏。由于结构受力状态往往是一复杂的应力状态,而在实验中测 得的结构材料S-N曲 线又常是在简单应力状态下获得的,因此常用最小能量屈服准则或其它等效准则,将所研 究的疲劳点上的复杂应力用一个等效应力替代。对有限元法而言,这一过程很容易实现。 等效替代以后,即可参照原始材料的S-N曲线进行疲劳寿命评估。上述方法称之为应力-寿 命法或S-N法,该方法不严格区 分裂纹产生和裂纹扩展,而是给出结构发生突然失效前的 全寿命估计。当然,还可以采用更加现代化的局部应变法或初始裂纹法。因篇幅所限,因 此仅讨论S-N法,且针对车辆结构疲劳分析。
二、疲劳分析 由于车辆结构的零部件属于低应力、高循环疲劳,故常使用Stress life准则,
并使用修正Goodman图,此时,S-N曲线的经验公式修正为:
计算中需要的材料参数包括:弹性模量、疲劳强度系数、疲劳强度指数、强 度极限。
其具体的分析过程是:
1. 建立物理模型(Physical Model) 对于疲劳分析来说,物理模型即包含结点、单元、物理特性和材料特性的有限 元模型。