第二章:高分子的

合集下载

高分子物理第二章 何曼君

高分子物理第二章 何曼君

ei ei 1 cos
sin cos sin sin
ei ei 2 cos 2 ei ei m cos m ei e j cos
i- j
ei 1 0 0 ei ei 2 cos2 - sin 2 sin
2.2.3.1 静态柔顺性-热力学定义 2 1
De
持久长度
lp=l exp(De /kT) De-0, lp->l
32
2.2.3 高分子的柔顺性(flexibility)
2.2.3.2 动态柔顺性-动力学定义
DE
2
由 1到 2的转换时间(持续时间) t p=t 1exp(DE/kT) D E-0, t p ->t 1
In melt or solution
Random coil 无规线团
Computer Simulation of a Single Chain in Solutions
30
特殊的链构象:平面锯齿链(zigzag)和螺旋链
Polyproplenes in Crystals
31
2.2.3 高分子的柔顺性(flexibility)
i 1 j i 1 i j
N
N
2
/N
2
41
理想高分子链模型几何统计理论结果的适用性
体积排除
1.模型的局限性
稀溶液反而有问题 矛盾??
适合Q溶液, 熔体
2. 几何统计方法 的局限性
不知道具体的概率分布
42
2.2.4.2 理想高分子链模型的概率统计方法

h1 , F ( h1 ) h2 , F ( h2 ) h3 , F ( h3 )

第二章 高分子的链结构

第二章 高分子的链结构

支化与交联
(1)支化: ������ 长支化--分子链之间的物理缠结作用增加,分子 链活动受阻,柔顺性下降。 ������ 短支化--分子链间距离增大,柔顺性增加。
(2)交联: ������ 轻度交联--不影响链的活动能力,柔顺性不变。 ������ 高度交联--链的活动受阻,柔顺性下降。
氢键及分子间作用力
第一节 高分子链的近程结构
(3)杂链高分子
--分子主链由两种或以上的原子如氧、氮、 硫、碳等以共价键组成的高分子:
第一节 高分子链的近程结构
二、端基的组成 (P27)
顺序异构体--由于结构单元的连接方式 不同而产生的异构体。带有不对称取代基的 单烯类单体(CH2=CHR)聚合生成高分子 时,结构单元的键接方式则可能有头—头、 头—尾、尾—尾三种不同方式:
图1.5共聚物的键接方式示意图
第二节 高分子链的柔顺性及影响因素
一、小分子的内旋转--柔顺性的成因
构象是指分子链中由单键内旋转所形成的原子(或基团)在空 间的几何排列图像。 大分子链的直径极细(约零点几纳米),而长度很长(可达几百、 几千纳米不等),通常在无扰状态下这样的链状分子不是笔直的, 而呈现或伸展或紧缩的卷曲图像。 这种卷曲成团的倾向与分子链上的单键发生内旋转有关。
立构规整度的测定方法
四、支化与交联(线性如何产生支化和交联)
支化
图1.3支化高分子链的几种模型
表1.5各种聚乙烯的性能与应用领域
交联
大分子链之间通过支链或某种化学键相键接,形成一个分子 量无限大的三维网状结构的过程称交联(或硫化),形成的立体 网状结构称交联结构。热固性塑料、硫化橡胶属于交联高分子, 如硫化天然橡胶是聚异戊二烯分子链通过硫桥形成网状结构

高分子物理 第2章 聚合物的凝聚态结构资料

高分子物理 第2章 聚合物的凝聚态结构资料

原因
聚合物没有气态的原因:
1)聚合物分子量很大,分子链很长; 2)聚合物中总范德华力超过化学键的键能; 3)消除所有的范德华力作用以前化学键断列而分解。
范德华力与化学键的区别 ?
化学键: 是构成分子的原子键的作用力吸引力和排斥 力达到平衡时形成的稳定的键。
共价键,离子键,金属键
范德华力: 是存在于分子间或者分子内非键合原子 间的相互作用力。
PE球晶的微光显微镜照片
PE球晶的电子显微镜照片
研究球晶的结构、形成条件、影响因素和变形 破坏,有着十分重要的实际意义:
◆ 球晶的大小直接影响聚合物的力学性能,球晶越大,材 料的冲击强度越小,越容易破裂。
◆ 球晶的大小对聚合物的透明性也有很大影响,通常非晶 聚合物是透明的,而结晶聚合物由于存在晶相和非晶 相,两相折射率不同,使得物质呈现乳白色而不透明。
★ CED=300 — 400J/cm3聚合物,为塑料。
192 4
例1 : 根据高聚物的分子结构和分子间作用能,定性地讨 论表中所列各高聚物的性能。
高聚物 聚乙烯 聚异丁烯 天然橡胶 聚丁二烯 丁苯橡胶 聚苯乙烯
内聚能密度 高聚物
259
聚甲基丙烯酸甲酯
272
聚醋酸乙烯酯
280
聚氯乙烯276源自聚对苯二甲酸乙二酯由晶体结构(十分之几纳米)堆砌而成的晶体外形, 尺寸一般可达到几十微米,有时可以达到几厘米。
聚合物的结晶形态有几种
按结晶条件不同可以分为以下几种类型:
结晶形态
单晶 树枝状晶
柱晶
球晶 纤维状晶和串晶
伸直链晶
第二节 结晶聚合物
3、聚合物的结晶形态 1)单晶 单晶的结构特点: ◆ 只能在极稀的溶液中(0.01~0.1%)缓慢结晶时生成的; ◆ 聚合物单晶的横向尺寸可以从几微米到几十微米,

材料化学第2章高分子材料的结构

材料化学第2章高分子材料的结构

X
CH2
C n
H
有不对称碳原子,所以有旋光异构。
注:对高分子来说,关心不是具体构型(左旋或 右旋),而是构型在分子链中的异同,即:
全同(等规)、间同或无规。
34
c
aC b
高分子链上有 取代基的碳原子 可以看成是不对
d
R RR R R
称碳原子
HHHH
将锯齿形碳链 H 排在一个平面上,
RH
RH
取代基在空间有 不同的排列方式。
以大分子链中的重复单元数目表示,记作 DP
注:重复单元与结构单元的异同:
5
(1) 由一种结构单元组成的高分子
一个高分子如果是由一种单体聚合而成,其重复单 元与结构单元相同。
例如:聚苯乙烯
n CH2 CH 聚合
CH2-CH-CH2-CH-CH2-CH
缩写成
CH2 CH n
n 表示重复单元数,也称为链节数, 在此等于聚合度
(6) 单体单元(monomer unit): 与单体的化学组成完全相同只是化学结构不同的 结构单元。
4
(7) 聚合度(degree of polymerization): 聚合物分子中,结构单元的数目叫聚合度。 聚合度是衡量高分子大小的一个指标。
有两种表示法:
以大分子链中的结构单元数目表示,记作 xn
2.6 高分子材料的结构
前言 一、定义
1. 高分子化合物 是指分子量很高并由共价键连接的一类化合物 . 又称:高分子化合物、大分子化合物、高分子、
大分子、高聚物、聚合物 Macromolecules, High Polymer, Polymer
分子量:一般高达几万、几十万,甚至上百万, 范围在104~106

第2章-高分子链的结构

第2章-高分子链的结构
够发生内旋转。但是,单键的内旋转并不是孤立的,它会带动与
其相邻的化学键一起运动,所以一个化学键不能成为独立的单元。
链段是一个统计单元,最主链结构和环境不同而改变,可以是一
个结构单元,也可以整个大分子链。
度为 :硬段的Tg,下限温度为:软段的Tg。
硬段——软段——硬段
2.1.5 高分子链的构型
构型——分子中由化学键所固定的原子或基团在
空间的几何排列。
几何异构(由双键或环状结构引起)
构型异构
光学异构(由手性中心引起)
顺-2-丁烯
反-2-丁烯




两个相同基团在双键同一侧的称为顺式,在异侧的称为反式。这种由于分
1,2-加成
3,4-加成
1,4-加成
2.1.3 高分子链的构造
高分子的构造
——不考虑化学键内旋转的情况下,聚合物分子链的各种形状。
一般为线性高分子,如有多官能团存在就可以进行支化,形成
支化大分子。
由于分子间没有化学键的存在,高分子在受热后会从固体状态
逐步转变为流动状态——热塑性高分子。
支化高分子可分为:无规、星型、梳形支化。用支化度来描述
但易水解。
聚甲醛(POM)
聚碳酸酯(PC)
CH 2—O—CH 2—O—CH 2—O
O
CH3
CH3
C—O—C—O
C—O—C
CH3
O
CH3
O
(3)元素有机高分子(organic polymer):
主链上不含碳原子,而由Si、B、P、Al、Ti、As等
与O组成,侧链上含有有机基团。
特点:强度不高,具有无机物的耐热性和有机物的
或者取代基位阻较小及活性端的共轭稳定性较差时,头—头结构

高分子概论 第二章 高分子结构

高分子概论 第二章  高分子结构
例如:聚丙烯 (CH2-CH)n
CH3
头—尾 头—头 尾—尾
2、立体异构 (旋光异构) 大分子结构单元内的取代基可能有
不同的排列方式形成立体异构 包括: 等规(全同)、 间规(间同)、 无规立构。
若高分子中含有手性C原子,则其立体构型可有D型和L型, 据其连接方式可分为如下三种:(以聚丙烯为例)
C *H 2C H C H C *H 2 聚 丁 二 烯
当主链中由共轭双键组成时,由于共轭双键因p电子云 重叠不能内旋转,因而柔顺性差,是刚性链。如聚乙炔、 聚苯:
C H = C H -C H = C H -C H = C H 聚 乙 炔
聚 苯
(2) 侧基:
侧基的极性越大,极性基团数目越多,相互作用越强, 单键内旋转越困难,分子链柔顺性越差。如:
章高分子结构与性能
第一节 高分子化学结构 (一级结构、近程结构)
高分子化学结构的多重性,包括: 1、结构单元的连接形式 2、立体异构 3、顺反式结构 4、支链 5、交联
1、结构单元的连接形式
聚合物的序列结构:指聚合物大分 子结构单元的连接方式。
乙烯基聚合物主要是头-尾连接,少 量头-头和尾-尾。
C H 2C H P h
> 聚 苯 乙 烯
对称性侧基,可使分子链间的距离增大,相互作用减弱, 柔顺性大。侧基对称性越高,分子链柔顺性越好。如:
CH2 CH CH3
柔顺性: 聚丙烯 <
CH3 CH2C
CH3
聚异丁烯
(3)氢键
如果高分子链的分子内或分子间可以形成氢键,氢键 的影响比极性更显著,可大大增加分子链的刚性。
蛋白质大分子空间结构 示意图
二级结构
高分子的链结构与高分子链的柔顺性

高分子物理 第二章:高分子的凝聚态结构

高分子物理  第二章:高分子的凝聚态结构

*结晶对物理性质的影响 非晶高分子材料一般是透明的,而结晶高分子材料一般都
是不透明或半透明的。 *结晶高分子材料的透明性与球晶的尺寸有关:
当球晶的尺寸大于入射光的半波长时,在晶相和非 晶相界面发生折射和反射,材料不透明;
当球晶的尺寸小于入射光的半波长时,在晶相和非 晶相界面不发生折射和反射,材料透明。 * 球晶尺寸与材料的力学性能的关系:
球晶尺寸越大力学性能越差,因为球晶的边界会有 更大的裂缝成为力学薄弱环节。
3、2 高聚物晶体的结构: 一、晶格、晶胞和晶胞参数
当物质内部的质点(可是原子、分子、离子)在三维 空间呈周期性的重复排列时,该物质称为晶体。
晶态高聚物通常由许多晶粒所组成,x射线衍射分析可 知,每一晶粒内部具有三维远程有序的结构。但是,由于 高分子链是长链分子,所以呈周期排列的质点是大分子链 中的链节,而不是原子、整个分子或离子。这种结构特征 可以仿照小分子晶体的 基本概念与晶格参数来描述。
晶格——晶体具有的空间点阵,点阵的排列使高聚物具 有一定的几何形状,称为结晶格子,简称晶格。
晶胞——晶体的最小重复单元。 把晶格划分为晶胞,晶胞原子结构确定后,就可确
定晶体结构。
晶胞参数:
用平行六面体来表示晶胞
六个晶胞参数
c
三个晶轴 : a,b,c
βα γ
三个晶角: α,β,γ
b
见书上57页表2-4
聚集态
气态 液态 固态
相态
气相 液相 晶相
注意:高聚物无气态,这是因为高聚物的分子量很大分 子间作用力很大,此分子间作用力大于分子中化学键的 键能,高聚物在气化以前早以分解了,所以无气态。
因而研究单个高分子的行为都是在稀溶液中进行。
高聚物的聚集态

2-高分子的链结构

2-高分子的链结构
• 2-4-1立体化学在高分子中的表现
构型——分子中由化学键所固定的原 子在空间的几何排列,这种排列是热 力学稳定的,要改变构型必须经过化 学键的断裂和重组。
立体异构的分类
• (1)旋光异构——若正四面体的中心原
子上四个取代基是不对称的(即四个基团 不相同)。此原子称为不对称C原子,这 种不对称C原子的存在会引起异构现象, 其异构体互为镜影对称,各自表现不同的 旋光性,故称为旋光异构。
硫桥
CH3
CH2C CHCH2
S
CH3
CH2C S
CHCH2
S CH2C
CHCH2
CH3
应用
• 另外一种交联PE,它是经过辐射交联,使
得软化点和强度均大大提高,大都用于电 气接头,电缆的绝缘套管等
• 除无规交联外,还有规整的网络结构,如:
耐高温的全梯型吡咯,耐高温的碳纤维。
2-4 高分子链的构型
2-2-3双烯类单体
• 以最简单的双烯单体-丁二烯为例来考虑键
接方式:
1,4加成
nH2C CH CH CH2
1,2加成
CH2 CH CH CH n
顺式 反式
CH2 CH
n
CH CH2
全同 间同 无规
• 异戊二烯单体聚合的键接方式:
1,4加成
CH C CH2 CH3
1,2加成 3,4加成
CH3
CH2 CH C
高分子结构内容:
近程结构
高分子链结构
远程结构
化学组成 链接方式 单个高分子链的键接(交联与支化) 空间构型 序列结构(共聚物)
高分子的大小(分子量)
高分子的形态(构象)
高分子聚集态结构
晶态(Crystalline) 非晶态(Non—crystalline)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⑸ 晶态聚合物的晶区外的部分
故非晶态结构问题是一个具有普遍性的问题。
聚合物的非晶态结构,目前仍处于争议阶 段。论争的焦点:
(一)、局部有序模型(yeh两相球粒模型,或折 叠链缨状胶束粒子模型)
图2—61
根据:电子显微镜观察结果 50A°左右的小颗 粒 (有序区)
论点:高聚物非晶态包含“颗粒”和粒间两个区 域
2.4.3 聚合物结晶过程的时间依赖性—Avrami方程 膨胀计法
Vt t 中间 V∞ t∞ 终了(达到平衡)
V0 t0 开始
V—体积 t—时间 V0-V∞=△V∞——结晶完全时最大的收缩体积 Vt-V∞=△Vt ——任一时刻未收缩的体积 △Vt / △V∞ ——t时刻未收缩的体积分数
以△Vt / △V∞~t作图得:等温结晶曲线呈反S型
第二章:高分子的凝聚态结构
第一节 高聚物分子内和分子间相互作用力
聚集态是从分子热运动和力学特征考虑区分的物质的 状态,包括:气态、液态、固态。 而物质的相是从热力学和结构特征来区分的物资的状 态,分为:晶相、液相、气相。 气相:远程、近程都是无序; 晶相:远程、近程都是有序;
液相:近程有序、远程无序。
1、锯齿形构象:
平面锯齿构象 PZ (书57页表2-4)
是指分子链的构象,一些没有取代基或取代基较小的 碳链高分子采取此构象排入晶格。 如:PE、PET、PVA(聚乙烯醇)
2、螺旋型构象:
带有较多侧基的高分子,为减少空间位阻,降低位 能,只能采取螺旋构象。
HPq
H——螺旋型构象 P——每个等同周期重复单元的数目
3、2 高聚物晶体的结构:
一、晶格、晶胞和晶胞参数 当物质内部的质点(可是原子、分子、离子)在三维 空间呈周期性的重复排列时,该物质称为晶体。 晶态高聚物通常由许多晶粒所组成,x射线衍射分析可
知,每一晶粒内部具有三维远程有序的结构。但是,由于
高分子链是长链分子,所以呈周期排列的质点是大分子链 中的链节,而不是原子、整个分子或离子。这种结构特征 可以仿照小分子晶体的 基本概念与晶格参数来描述。
4、结晶缺陷——非晶区。
* 结晶高聚物最重要的证据为x射线衍射花样—— 同心环(德拜环)和衍射曲线。 * 非晶的x射线衍射花样——弥散环。
下图是等规立构的聚苯乙烯和无规立构的聚苯乙
烯的x射线衍射花样:
三、高聚物晶体中分子链的构象:
结晶过程中高聚物的密度 ,比容 ,分子链采
取位能最低的特定构象排入晶格。
*结晶对物理性质的影响 非晶高分子材料一般是透明的,而结晶高分子材料一般都 是不透明或半透明的。 *结晶高分子材料的透明性与球晶的尺寸有关: 当球晶的尺寸大于入射光的半波长时,在晶相和非
晶相界面发生折射和反射,材料不透明;
当球晶的尺寸小于入射光的半波长时,在晶相和非 晶相界面不发生折射和反射,材料透明。 * 球晶尺寸与材料的力学性能的关系: 球晶尺寸越大力学性能越差,因为球晶的边界会有 更大的裂缝成为力学薄弱环节。
第二节 高聚物结晶的形态和结构
(高聚物的形态学)
高分子熔体 高分子溶液
冷却 结晶
结晶形态与外界条件有关:温度、冷却速度、外力
等因素有关。 3.1 结晶形态: 单晶、伸直链晶体、串晶和柱晶、球晶。 在不同的结晶条件下 不同的结晶形态 性能的关系
1、单晶(薄片单晶体):
——远程有序和进程有序贯穿整个晶体。 整个晶体由一个统一的方式组成,具有规则的外形;
等同周期:在分子链上具有相同结构的两点间的 最小距离。
q——每个等同周期中螺旋的数目。
例如:PTFE 晶体中分子链呈螺旋型构象 H136
因PTFE的螺旋型构象,使碳原子骨架被F所包围, F原子相互排斥,有自润滑性,因此具有冷流性。又由 于它的螺旋硬棒状结构,因此熔点高,可耐三酸两碱。 19º C时,PTFE会发生晶系的变化,由三斜 六方,使
颗粒
(粒子相)
有序区:分子链折叠,排列规整 尺寸 为2~4nm 粒界区:围绕有序区形成的,包含折叠链弯 曲部分、链端、缠接点,尺寸为1~2nm
粒间区:无规线团,尺寸为1~5nm
(粒间相)
特征:局部有序
这个模型可能解释结晶过程很快和非晶态聚合物 的密度大于完全无规的同系物的密度。
这个模型现已被一些学者所否定。
晶相
远程序
过渡态:
玻璃态—固体—液相 液晶态—液体—晶相
2、高分子的凝聚态
晶态(晶相) 聚合物 玻璃态 非晶态 (液相) 粘流态 橡胶态 固态
液态
2.3.1 高聚物的晶态结构模型
(一)两相结构模型(缨状微束模型)
图2—44
衍射环—晶区的表示 实验事实:X-衍射图 弥散环—非晶区 晶粒尺寸<<大分子链长
晶胞的平行六面体有七种类型, 形成了七大晶系
高聚物有各向异性,因此合成高聚物的晶格中无立方 晶系,而只有六大晶系。结晶条件…构象…晶型(同质多晶) 二、高聚物晶体的特点: 1、原则上是分子晶体,但晶胞中晶格单元是链节而不是
分子链;
2、高分子晶体是各向异性的晶体(具有方向性) c轴方向:是主链的中心轴 a、b轴方向:靠范德华力相连; 3、具有六大晶系——无立方晶系;

双轴拉伸的薄膜的韧性非常好。
分子间的作用力:范德华里力(静电,诱导,色散) 氢键
静电力:极性分子间 诱导力:极性分子和非极性分子间 色散力:分子的瞬时极性间,普遍存在 氢键:X—H…Y
内聚能密度(Cohesive energy density): 把一摩尔液体或固体分子移动到其分子间的引 力范围之外所需要的能量(2-8试)
1、聚α-烯烃的定向聚合物—等规PP、等规PS、定向 PMMA等,具有一定的结晶能力,且与其规整度有关 2、定向的双烯类高分子,全顺式和全反式都能结晶 3、近似对称和规整的聚合物—PCTFE、PVA等仍有相 当的结晶能力
三、共聚
1、无规整共聚物减弱或丧失结晶能力,如乙丙橡 胶、但乙烯-四氟乙烯共聚物仍能结晶 2、接枝共聚物其结晶能力↓ 3、嵌段共聚物能结晶的嵌段可形成自己的晶区, 如: 聚酯——PBD ——聚酯
非晶态
橡胶态 粘流态
取向态 液晶态
织态
高分子链结构 高聚物的聚集态结构 高分子的宏观性能
成型历史
高聚物的聚集态结构由什么决定? 首先是链的结构,其次是高聚物的成型、加工条 件。 高分子的聚集态结构是直接影响材料性能的因素, 经验告诉我们,即使在同样一种高聚物,由于加工成 型条件不同,其制品性能也有很大差别。 如:PET缓慢冷却时制品是脆性的,而迅速冷却
此模型得到了—实验事实的证实
(三) 插线板模型
图2—58
Flory认为,分子链做近邻折叠的可能很小。 此模型实质为一种非折叠模型 此模型得到了许多中子散射实验的支持。
晶体的特征:三维有序,紧密堆砌,能量最低。
2.3.2 高聚物非晶态结构模型
非晶态的形成:
⑴ 不能结晶的聚合物
⑵ 能结晶,但结晶速度极慢,在通常条件下得不 到晶体 ⑶ 低温结晶性好,常温下很难结晶 ⑷ 结晶聚合物在熔融态及过冷液体
晶格——晶体具有的空间点阵,点阵的排列使高聚物具 有一定的几何形状,称为结晶格子,简称晶格。 晶胞——晶体的最小重复单元。
把晶格划分为晶胞,晶胞原子结构确定后,就可确
定晶体结构。 晶胞参数: 用平行六面体来表示晶胞 c β a α γ 六个晶胞参数
三个晶轴 : a,b,c 三个晶角: α,β,γ b 见书上57页表2-4
结晶速度的定义:
在v~t关系时,它定义为在某一特定温度下,因结晶而 发生体积收缩进行一半所需时间的倒数,用1/t1/2表示, 其单位是s-1,min-1,hr-1。
测定方法:
1、膨胀计法 在一定T下观测结晶速度随时间的变化 2、偏光显微镜法 在等温条件下观察球晶大小 3、解偏振光强度法 随时间的变化 4、动态x-射线衍射
在应力作用下,
高分子熔体、 溶液冷却而得。
4、球晶: (1) 形成条件:
高聚物熔体 速冷
高分子溶液
(2)性质:
无应力作用殊的双折射现象; 偏光显微镜下呈特殊 的黑十字消光图案 (Maltase十字)。
100m
聚乙烯球晶的扫描电镜照片。右图是局部放大的照片。三维立体的 照片把聚乙烯球晶的球状形貌表现得特别逼真,比一般球晶的黑十 字消光图案更能说明问题。
△Vt / △V∞
0
t
dv l vt dt
v
vt

dv v
0
t
kt l dt
论 点:晶区、非晶区互相穿插,同时存在,一条大 分子链可能通过几个晶区和非晶区,晶区尺寸很小,分子 链在晶区规整排列,在非晶区无规堆砌。
贡献:可以解释一些实验事实,比如高聚物结晶的不完 全性→结晶度概念,出现内应力等 晶区 高聚物的晶态 非晶区 结晶缺陷区 共存的状态
(二)折叠链模型
图2—45 实验事实:晶相、非晶相可能分离,制得单晶。 论 点:大分子的折叠链形式排入晶格。长链分 子在一定条件下,其伸展部分倾向于相互靠近形成链束, 为减小表面能,链束自发地折叠成带状结构,进而排列 成晶片。 折叠方式有三种可能情况: (a) 近邻规整折叠 图2 —51 (b) 近邻松散折叠 跨层折叠 图2 —53
分子排列得更紧密。
第三节 高聚物聚集态结构模型
2.3.0 物质的聚集态
1、小分子物质的聚集态
气体 分子运动特征 力学特征 热>分 无一定体积 和形状 液体 热≈分 有一定体积 无一定形状 固体 热<分 形状、体积 皆一定
[其(分)分子间作用力,(热)热运动能]
结构学特征
(有序性)
气相
无序
液相
近程序
(二)无规线团模型
图2—63 Flory提出,影响很大,实验证据很多。 论 点:不同分子链之间,彼此纠缠,呈无规线 团状,非晶态高分子的排列完全是无序 的,是均相,并非两相。
相关文档
最新文档