备战2021届高考数学二轮复习热点难点突破专题06 数列的综合(一)(原卷版)
高考解答题突破(二)数列的综合应用2021届高考数学大二轮复习ppt完美课件(30页)

块
高考题型分层突破拿高分
三
第1页
高考解答题突破(二) 数列的综合应用
第2页
突破“两归”——化归、归纳
第3页高 考 解 答 题 突破二 )数列 的综合 应用20 21届高 考数学 大二轮 复习pp t完美课 件(3 0页)( 精品系 列PPT )
1.由于数列是一个特殊的函数,也可根据题目特点,将其化归为函数问题,或通 过对式子的改造,使其化归为可运用数列问题的基本方法.
第6页
高 考 解 答 题 突破(二 )数列 的综合 应用20 21届高 考数学 大二轮 复习pp t完美课 件(3 0页)( 精品系 列PPT )
高 考 解 答 题 突破(二 )数列 的综合 应用20 21届高 考数学 大二轮 复习课pp 件t完(美共 课 件30(张P3 P0T页))( 精品系 列PPT )
[解题指导] (1)2Sn=(n+1)2an-n2an+1 及 an 与 Sn 的关系式→转化递推关系式 ―――等―差――中―项―法――→证{an}为等差数列→求{an}通项公式
(2) 由 an 得 bn 关 系 式 → 两 式 相 除 得 {bn} 的 递 推 关 系 式 确定适合等比数列{bn}的λ
(2)由题意知,bnbn+1=λ·2an=λ·22n, bn+1bn+2=λ·2an+1=λ·22(n+1), 两式相除,可得 bn+2=4bn,即{b2n}和{b2n-1}都是以 4 为公比的等比数列. ∵b1b2=λ·2a1=4λ,b1=1,∴b2=4λ,b3=4b1=4, 要使数列{bn}是等比数列,则 b22=b1b3,可得 4λ2=1, 又 λ>0,∴λ=12. ∴b2n=2·4n-1=22n-1,b2n-1=22n-2,即 bn=2n-1,则 bn+1=2bn, 因此存在 λ=12,使得数列{bn}是等比数列.
(统考版)2021高考数学二轮复习板块1高考专题突破—选择题+填空题命题区间精讲精讲9数列课件文

又a1=12,则a11=2,
∴数列
1
an
是以2为首项,1为公差的等差数列,∴
1 a2 020
=2+(2
020-1)×1=2 021,
∴a2 020=2 0121,故选D.]
1 2 3 4 5 6 78 5.(2020·湖北孝感七校联考)已知数列{an}中,a1=1,an+1=2an
+1(n∈N*),Sn为其前n项和,S5的值为( ) A.63 B.61 C.62 D.57
数n,都有TSnn=3n2+n 1,则ba66等于(
)
A.23 B.194 C.2301 D.1117
D [TS1111=1111ab66=ba66=2324=1117.]
1 2 3 4 5 6 78
8.《九章算术》是我国古代第一部数学专著,全书收集了246 个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而 下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容 积之和为4升,求中间两节的容积各为多少?”该问题中第2节、第3 节、第8节竹子的容积之和为( )
1 2 3 4 5 6 78
5.已知数列{an}中,a1=2,an+1-2an=0,bn=log2an,则数列 {bn}的前10项和等于( )
A.130 B.120 C.55 D.50
C [由a1=2,an+1-2an=0可知,{an}是首项为2,公比为2的 等比数列,所以an=2n,故bn=log2an=n,故数列{bn}的前10项和为 S10=10×2 11=55.]
1 2 3 4 5 6 78
6.中国古代词中,有一道“八子分绵”的数学名题:“九百九
十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来
言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小
2021年高考数学二轮复习 数列的综合应用训练题 理

2021年高考数学二轮复习数列的综合应用训练题理A.18 B.20C.22 D.242.(xx·浙江省名校联考)已知每项均大于零的数列{an }中,首项a1=1且前n项和Sn 满足SnSn-1-Sn-1Sn=2SnSn-1(n∈N*且n≥2),则a81=( )A.638 B.639 C.640 D.6413.(xx·济南模拟)数列{an }中,an+1+(-1)n an=2n-1,则数列{an}的前12项和等于( )A.76 B.78 C.80 D.824.已知曲线C:y=1x(x>0)及两点A1(x1,0)和A2(x2,0),其中x2>x1>0.过A1,A 2分别作x轴的垂线,交曲线C于B1,B2两点,直线B1B2与x轴交于点A3(x3,0),那么( )A.x1,x32,x2成等差数列 B.x1,x32,x2成等比数列C.x1,x3,x2成等差数列 D.x1,x3,x2成等比数列5.(xx·江西宜春模拟)如图所示,当n≥2时,将若干点摆成三角形图案,每条边(包括两个端点)有n个点,若第n个图案中总的点数记为an ,则a1+a2+a3+…+a10=( )A.126 B.135 C.136 D.1406.(xx·辽宁省五校联考)设等差数列{an }的前n项和为Sn,已知(a4-1)3+2013(a4-1)=1,(a2 010-1)3+2 013(a2 010-1)=-1,则下列结论中正确的是( )A.S2 013=2 013,a2 010<a4B.S2 013=2 013,a2 010>a4C.S2 013=2 012,a2 010≤a4D.S2 013=2 012,a2 010≥a47.函数y=x2(x>0)的图像在点(ak ,a2k)处的切线与x轴的交点的横坐标为ak+1,其中k∈N*,若a1=16,则a1+a3+a5=________.8.(xx·江西高考)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.9.对于数列{an },定义数列{an+1-an}为数列{an}的“差数列”,若a1=2,{an }的“差数列”的通项为2n,则数列{an}的前n项和Sn=________.10.(xx·惠州市调研)已知向量p=(an,2n),向量q=(2n+1,-an+1),n∈N*,向量p与q垂直,且a1=1.(1)求数列{an}的通项公式;(2)若数列{bn }满足bn=log2an+1,求数列{an·bn}的前n项和Sn.11.(xx·南昌市模拟)设正项数列{an }的前n项和为Sn,若{an}和{Sn}都是等差数列,且公差相等.(1)求{an}的通项公式;(2)若a1,a2,a5恰为等比数列{bn}的前三项,记数列cn=24bn12bn-12,数列{cn }的前n项和为Tn.求证:对任意n∈N*,都有Tn<2.12.(xx·湖北襄阳调研)已知数列{an },如果数列{bn}满足b1=a1,bn=an+a n-1,n≥2,n∈N*,则称数列{bn}是数列{an}的“生成数列”.(1)若数列{an}的通项为an=n,写出数列{an}的“生成数列”{bn}的通项公式;(2)若数列{cn }的通项为cn=2n+b(其中b是常数),试问数列{cn}的“生成数列”{qn}是否是等差数列,请说明理由;(3)已知数列{dn }的通项为dn=2n+n,求数列{dn}的“生成数列”{pn}的前n项和Tn.1.选B 由S 10=S 11,得a 11=S 11-S 10=0.由于a 11=a 1+(11-1)×d,所以a 1=a 11+(1-11)×d=0+(-10)×(-2)=20.2.选C 由已知S n S n -1-S n -1S n =2S n S n -1,可得S n -S n -1=2,∴{S n }是以1为首项,2为公差的等差数列,故S n =2n -1,S n =(2n -1)2,∴a 81=S 81-S 80=1612-1592=640.3.选B 由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1a n +1=2n +1,得a n +2+a n =(-1)n (2n -1)+(2n +1).取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.4.选A 由题意,B 1,B 2两点的坐标分别为⎝ ⎛⎭⎪⎫x 1,1x 1,⎝ ⎛⎭⎪⎫x 2,1x 2,所以直线B 1B 2的方程为y =-1x 1x 2(x -x 1)+1x 1, 令y =0,得x =x 1+x 2,∴x 3=x 1+x 2,因此,x 1,x 32,x 2成等差数列.5.选C 由已知图形可知,当n≥2时,a n =3(n -1),∴a 1+a 2+a 3+…+a 10=1+3+6+…+27=1+9×3+272=136. 6.选A 设f(x)=x 3+2 013x ,显然f(x)为奇函数和增函数,由已知得f(a 4-1)=-f(a 2 010-1),所以f(a 4-1)=f(-a2 010+1),a4-1=-a2 010+1,a4+a2 010=2,S2 013=2 013a1+a2 0132=2013;显然1>-1,即f(a4-1)>f(a2 010-1),又f(x)为增函数,故a4-1>a2 010-1,即a4>a2 010.7.解析:∵y′=2x,∴k=y′|x=ak =2ak,故切线方程为y-a2k =2ak(x-ak),令y=0得x=12ak,即ak+1=12ak.∴{an }是以16为首项,12为公比的等比数列,即an =16·⎝⎛⎭⎪⎫12n-1.∴a1+a3+a5=16+4+1=21.答案:218.解析:设每天植树的棵数组成的数列为{an},由题意可知它是等比数列,且首项为2,公比为2,所以由题意可得21-2n1-2≥100,即2n≥51,而25=32,26=64,n∈N*,所以n≥6.答案:69.解析:∵an+1-an=2n,∴当n≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n . 当n =1时,a 1=2也适合上式, ∴a n =2n (n ∈N *). ∴S n =2-2n +11-2=2n +1-2.答案:2n +1-210.解:(1)∵向量p 与q 垂直, ∴2n a n +1-2n +1a n =0,即2n a n +1=2n +1a n ,∴a n +1a n=2,∴{a n }是以1为首项,2为公比的等比数列,∴a n =2n -1. (2)∵b n =log 2a n +1,∴b n =n , ∴a n ·b n =n·2n -1,∴S n =1+2·2+3·22+4·23+…+n·2n -1,① ∴2S n =1·2+2·22+3·23+4·24+…+n·2n ,② ①-②得,-S n =1+2+22+23+24+…+2n -1-n·2n =1-2n 1-2-n·2n =(1-n)2n -1, ∴S n =1+(n -1)2n .11.解:(1)设{a n }的公差为d ,则S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =d 2·n,且a 1-d2=0. 又d =d 2,所以d =12, a 1=d 2=14,a n =2n -14.(2)证明:易知b n =14×3n -1,∴c n =2×3n 3n -12.当n≥2时,2×3n3n-12<2×3n3n -13n -3=2×3n -13n -13n -1-1=13n -1-1-13n -1, ∴当n≥2时,T n =32+2×3232-12+…+2×3n 3n -12<32+⎝ ⎛⎭⎪⎫12-132-1+⎝ ⎛⎭⎪⎫132-1-133-1+…+13n -1-1-13n -1=2-13n -1<2,且T 1=32<2,故对任意n ∈N *,都有T n <2.12.解:(1)当n≥2时,b n =a n +a n -1=2n -1, 当n =1时,b 1=a 1=1适合上式, ∴b n =2n -1(n ∈N *).(2)qn =⎩⎨⎧2+b,n=1,4n+2b-2,n≥2,当b=0时,qn =4n-2,由于qn+1-qn=4,所以此时数列{cn}的“生成数列”{qn}是等差数列.当b≠0时,由于q1=c1=2+b,q2=6+2b,q3=10+2b,此时q2-q1≠q3-q 2,所以数列{cn}的“生成数列”{qn}不是等差数列.综上,当b=0时,{qn}是等差数列;当b≠0时,{qn}不是等差数列.(3)pn=⎩⎨⎧3,n=1,3·2n-1+2n-1,n≥2,当n>1时,Tn=3+(3·2+3)+(3·22+5)+…+(3·2n-1+2n-1),∴Tn=3+3(2+22+23+…+2n-1)+(3+5+7+…+2n-1)=3·2n+n2-4.又n=1时,T1=3,适合上式,∴Tn=3·2n+n2-4.26189 664D 晍36459 8E6B 蹫35481 8A99 誙25381 6325 挥24934 6166 慦QvD23679 5C7F 屿AL36097 8D01 贁 31632 7B90 箐。
2021年高考数学复习之专题突破训练《专题六:数列》

2an2
0 ,{an} 的前
n
项和为
Sn
,
则 S5 (
)
a3
A. 31 4
B. 31 2
C. 15 4
D. 15 2
29.(2018•浙江)已知 a1 , a2 , a3 , a4 成等比数列,且 a1 a2 a3 a4 ln(a1 a2 a3 ) ,
若 a1 1 ,则 (
)
A. a1 a3 , a2 a4 B. a1 a3 , a2 a4 C. a1 a3 , a2 a4 D. a1 a3 , a2 a4
音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依
次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等
于 12 2 .若第一个单音的频率为 f ,则第八个单音的频率为 ( )
A. 3 2 f
B. 3 22 f
C. 12 25 f
D. 12 27 f
38.(2020•海南)将数列{2n 1} 与{3n 2} 的公共项从小到大排列得到数列{an} ,则{an} 的
前 n 项和为 .
39.(2019•新课标Ⅲ)记 Sn 为等差数列{an} 的前 n 项和.若 a1
0 ,a2
3a1 ,则
S10 S5
.
40.(2019•江苏)已知数列 {an}(n N*) 是等差数列, Sn 是其前 n 项和.若 a2a5 a8 0 ,
)
A.9
B.11
C.13
D.15
第 1页(共 83页)
10.(2020•合肥一模)已知等差数列{an} 的前 n 项和为 Sn ,a1 3 ,2a4 3a7 9 ,则 S7 的
专题06 构造函数法解决导数不等式问题(一)(原卷版)

专题06 构造函数法解决导数不等式问题(一)以抽象函数为背景、题设条件或所求结论中具有“f (x )±g (x ),f (x )g (x ),f (x )g (x )”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题小题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个f ′(x ),则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是f (x )本身的单调性,而是包含f (x )的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是f ′(x )的形式,则我们要构造的则是一个包含f (x )的新函数,因为只有这个新函数求导之后才会出现f ′(x ),因此解决导数抽象函数不等式的重中之重是构造函数.构造函数是数学的一种重要思想方法,它体现了数学的发现、类比、化归、猜想、实验和归纳等思想.分析近些年的高考,发现构造函数的思想越来越重要,而且很多都用在压轴题(无论是主观题还是客观题)的解答上.构造函数的主要步骤:(1)分析:分析已知条件,联想函数模型;(2)构造:构造辅助函数,转化问题本质;(3)回归:解析所构函数,回归所求问题.考点一 构造F (x )=x n f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=x n f (x ),则F ′(x )=nx n -1f (x )+x n f ′(x )=x n -1[nf (x )+xf ′(x )];(2)若F (x )=f (x )x n ,则F ′(x )=f ′(x )x n -nx n -1f (x )x 2n =xf ′(x )-nf (x )x n +1. 由此得到结论:(1)出现nf (x )+xf ′(x )形式,构造函数F (x )=x n f (x );(2)出现xf ′(x )-nf (x )形式,构造函数F (x )=f (x )xn . 【例题选讲】[例1](1)已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)f (x 2-1)的解集是( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)(2)已知函数f (x )是定义在区间(0,+∞)上的可导函数,其导函数为f ′(x ),且满足xf ′(x )+2f (x )>0,则不等式(x +2 021)f (x +2 021)5<5f (5)x +2 021的解集为( ) A .{x |x >-2 016} B .{x |x <-2 016} C .{x |-2 016<x <0} D .{x |-2 021<x <-2 016}(3)(2015·全国Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(4)设f (x )是定义在R 上的偶函数,当x <0时,f (x )+xf ′(x )<0,且f (-4)=0,则不等式xf (x )>0的解集为________.(5)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( )A .4f (1)<f (2)B .4f (1)>f (2)C .f (1)<4f (2)D .f (1)>4f ′(2)(6)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x >0时,xf ′(x )-f (x )<0,若a =f (e )e ,b =f (ln 2)ln 2,c =f (-3)-3,则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <c <a C .a <c <b D .c <a <b【对点训练】1.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则不等式(x +2 021)2f (x+2 021)-4f (-2)>0的解集为( )A .(-∞,-2 021)B .(-∞,-2 023)C .(-2 023,0)D .(-2 021,0)2.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x的取值范围是________.3.已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (-1)=0,当x >0时,2f (x )>xf ′(x ),则使得f (x )>0成立的x 的取值范围是________.4.设f (x )是定义在R 上的偶函数,且f (1)=0,当x <0时,有xf ′(x )-f (x )>0恒成立,则不等式f (x )>0的解集为________.5.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集 是________________.6.设f (x )是定义在R 上的奇函数,且f (2)=0,当x >0时,xf ′(x )-f (x )x 2<0恒成立,则不等式f (x )x>0的解集 为( )A .(-2,0)∪(2,+∞)B .(-2,0)∪(0,2)C .(-∞,-2)∪(0,2)D .(-∞,-2)∪(2,+∞)7.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )-f (x )<0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )<bf (a )B .bf (a )<af (b )C .af (a )<bf (b )D .bf (b )<af (a )8.设函数f (x )的导函数为f ′(x ),对任意x ∈R ,都有xf ′(x )<f (x )成立,则( )A .3f (2)>2f (3)B .3f (2)=2f (3)C .3f (2)<2f (3)D .3f (2)与2f (3)大小不确定9.定义在区间(0,+∞)上的函数y =f (x )使不等式2f (x )<xf ′(x )<3f (x )恒成立,其中y =f ′(x )为y =f (x )的导函数,则( )A .8<f (2)f (1)<16B .4<f (2)f (1)<8C .3<f (2)f (1)<4D .2<f (2)f (1)<3 考点二 构造F (x )=e nx f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=e nx f (x ),则F ′(x )=n ·e nx f (x )+e nx f ′(x )=e nx [f ′(x )+nf (x )];(2)若F (x )=f (x )e nx ,则F ′(x )=f ′(x )e nx -n e nx f (x )e 2nx =f ′(x )-nf (x )e nx. 由此得到结论:(1)出现f ′(x )+nf (x )形式,构造函数F (x )=e nx f (x );(2)出现f ′(x )-nf (x )形式,构造函数F (x )=f (x )enx . 【例题选讲】[例1](1)若定义在R 上的函数f (x )满足f ′(x )+2f (x )>0,且f (0)=1,则不等式f (x )>1e 2x的解集为 . (2)定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f (x )ex <1的解集为________.(3)若定义在R 上的函数f (x )满足f ′(x )-2f (x )>0,f (0)=1,则不等式f (x )>e 2x 的解集为________.(4)设定义域为R 的函数f (x )满足f ′(x )>f (x ),则不等式e x -1f (x )<f (2x -1)的解集为________.(5)定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e x f (x )>e x -1(其中e 为自然对数的底数)的解集为( )A .(0,+∞)B .(-∞,-1)∪(0,+∞)C .(-∞,0)∪(1,+∞)D .(-1,+∞)(6)定义在R 上的函数f (x )的导函数为f ′(x ),若对任意x ,有f (x )>f ′(x ),且f (x )+2 021为奇函数,则不等式f (x )+2 021e x <0的解集是( )A .(-∞,0)B .(0,+∞)C .⎝⎛⎭⎫-∞,1eD .⎝⎛⎭⎫1e ,+∞ (7)已知定义在R 上的偶函数f (x )(函数f (x )的导函数为f ′(x ))满足f ⎝⎛⎭⎫x -12+f (x +1)=0,e 3f (2 021)=1,若f (x )>f ′(-x ),则关于x 的不等式f (x +2)>1ex 的解集为( ) A .(-∞,3) B .(3,+∞) C .(-∞,0) D .(0,+∞)(8)已知函数f (x )是定义在R 上的可导函数,f ′(x )为其导函数,若对于任意实数x ,有f (x )-f ′(x )>0,则( )A .e f (2 021)>f (2 022)B .e f (2 021)<f (2 022)C .e f (2 021)=f (2 022)D .e f (2 021)与f (2 022)大小不能确定(9)已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 021)>e 2 021f (0)B .f (2)<e 2f (0),f (2 021)>e 2 021f (0)C .f (2)>e 2f (0),f (2 021)<e 2 021f (0)D .f (2)<e 2f (0),f (2 021)<e 2 021f (0)(10)已知函数f (x )在R 上可导,其导函数为f ′(x ),若f (x )满足:(x -1)[f ′(x )-f (x )]>0,f (2-x )=f (x )·e 2-2x ,则下列判断一定正确的是( )A .f (1)<f (0)B .f (2)>e 2f (0)C .f (3)>e 3f (0)D .f (4)<e 4f (0)【对点训练】1.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x <0的 解集为( )A .⎝⎛⎭⎫-∞,12B .(0,+∞)C .⎝⎛⎭⎫12,+∞ D .(-∞,0) 2.已知函数f ′(x )是函数f (x )的导函数,f (1)=1e,对任意实数x ,都有f (x )-f ′(x )>0,则不等式f (x )<e x -2的 解集为( )A .(-∞,e)B .(1,+∞)C .(1,e)D .(e ,+∞)3.已知f ′(x )是定义在R 上的连续函数f (x )的导函数,若f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( )A .(-∞,-1)B .(-1,1)C .(-∞,0)D .(-1,+∞)4.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )>f (x ),且f (x +3)为偶函数,f (6)=1,则不等式f (x )>e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)5.已知函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是( )A .{x |x >0}B .{x |x <0}C .|x |x <-1,或x >1|D .{x |x <-1,或0<x <1}6.已知函数f (x )的定义域为R ,且f (x )+1<f ′(x ),f (0)=2,则不等式f (x )+1>3e x 的解集为( )A .(1,+∞)B .(-∞,1)C .(0,+∞)D .(-∞,0)7.定义在R 上的可导函数f (x )满足f (x )+f ′(x )<0,则下列各式一定成立的是( )A .e 2f (2021)<f (2019)B .e 2f (2021)>f (2019)C .f (2021)<f (2019)D .f (2021)>f (2019)8.定义在R 上的函数f (x )满足f ′(x )>f (x )恒成立,若x 1<x 2,则1e x f (x 2)与2e xf (x 1)的大小关系为( )A .1e x f (x 2)>2e x f (x 1)B .1e x f (x 2)<2e x f (x 1)C .1e x f (x 2)=2e x f (x 1)D .1e x f (x 2)与2e x f (x 1)的大小关系不确定9.设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f (x )>f ′(x )成立,则( )A .3f (ln2)<2f (ln3)B .3f (ln2)=2f (ln3)C .3f (ln2)>2f (ln3)D .3f (ln2)与2f (ln3)的大小不确定10.已知函数f (x )是定义在R 上的可导函数,且对于∀x ∈R ,均有f (x )>f ′(x ),则有( )A .e 2022f (-2022)<f (0),f (2022)>e 2022f (0)B .e 2022f (-2022)<f (0),f (2022)<e 2022f (0)C .e 2022f (-2022)>f (0),f (2022)>e 2022f (0)D .e 2022f (-2022)>f (0),f (2022)<e 2022f (0)考点三 构造F (x )=f (x )sin x ,F (x )=f (x )sin x ,F (x )=f (x ) cos x ,F (x )=f (x )cos x类型的辅助函数 【方法总结】(1)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x +f (x )cos x ;(2)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x -f (x )cos x sin 2x; (3)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x -f (x )sin x ;(4)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x +f (x )sin x cos 2x. 由此得到结论:(1)出现f ′(x )sin x +f (x )cos x 形式,构造函数F (x )=f (x )sin x ;(2)出现f ′(x )sin x -f (x )cos x sin 2x 形式,构造函数F (x )=f (x )sin x; (3)出现f ′(x )cos x -f (x )sin x 形式,构造函数F (x )=f (x )cos x ;(4)出现f ′(x )cos x +f (x )sin x cos 2x 形式,构造函数F (x )=f (x )cos x. 【例题选讲】[例1](1)已知函数f (x )是定义在⎝⎛⎭⎫-π2,π2上的奇函数.当x ∈[0,π2)时,f (x )+f ′(x )tan x >0,则不等式cos xf (x +π2)+sin xf (-x )>0的解集为( ) A .⎝⎛⎭⎫π4,π2 B .⎝⎛⎭⎫-π4,π2 C .⎝⎛⎭⎫-π4,0 D .⎝⎛⎭⎫-π2,-π4 (2)对任意的x ∈⎝⎛⎭⎫0,π2,不等式f (x )tan x <f ′(x )恒成立,则下列不等式错误的是( ) A .f ⎝⎛⎭⎫π3>2f ⎝⎛⎭⎫π4 B .f ⎝⎛⎭⎫π3>2f (1)cos 1 C .2f (1)cos1>2f ⎝⎛⎭⎫π4 D .2f ⎝⎛⎭⎫π4<3f ⎝⎛⎭⎫π6 (3)定义在⎝⎛⎭⎫0,π2上的函数f (x ),函数f ′(x )是它的导函数,且恒有f (x )<f ′(x )tan x 成立,则( ) A .3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3 B .f (1)<2f ⎝⎛⎭⎫π2sin 1 C .2f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π4 D .3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3 (4)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫-π2,π2满足f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式不成立的是( )A .2 f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2 f ⎝⎛⎭⎫-π3<f ⎝⎛⎭⎫-π4C .f (0)<2 f ⎝⎛⎭⎫π4D .f (0)<2f ⎝⎛⎭⎫π3 (5)已知定义在⎝⎛⎭⎫0,π2上的函数f (x ),f ′(x )是f (x )的导函数,且恒有cos xf ′(x )+sin xf (x )<0成立,则( ) A .f ⎝⎛⎭⎫π6>2f ⎝⎛⎭⎫π4 B .3f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3 D .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4(6)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫0,π2满足f ′(x )·cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( )A .2f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π4C .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4D .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π6。
2021年高考试题分项版解析数学(理)专题06数列(Word精析版)

第六章 数列一.基础题组1.【2013年普通高等学校招生全国统一考试(江西卷)理zxxk 】等比数列x ,3x+3,6x+6,…的的第四项等于()A.-24B.0C.12D.242.【2013年普通高等学校统一考试试题新课标Ⅱ数学(理zxxk )卷】等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1= ( )(A ) 13(B )- 13(C ) 19(D )- 193.【2013年全国高考新课标(I )理zxxk 科】若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式是a n =______.4.【2013年普通高等学校招生全国统一考试(广东卷)理zxxk 】 在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.5.【2013年普通高等学校招生全国统一考试(辽宁卷)理zxxk 科】{}{}13n n n a S a n a a 已知等比数列是递增数列,是的前项和.若,是方程 26540x x S -+==的两个根,则 .二.能力题组6.【2013年普通高等学校招生全国统一考试(辽宁卷)理zxxk 科】下面是关于公差0d >的等差数列{}n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p7.【2013年普通高等学校统一考试试题大纲全国理zxxk 科】已知数列{}n a 满足130n n a a ++=,243a =-,则{}n a 的前10项和等于( ) A .106(13)--- B .101(13)9- C .103(13)-- D .103(13)-+8.【2013年普通高等学校招生全国统一考试福建卷理zxxk 】 已知等比数列{}n a 的公比为q ,记m n m n m n m n a a a b +-+-+-+⋅⋅⋅++=)1(2)1(1)1(,m n m n m n m n a a a b +-+-+-*⋅⋅⋅**=)1(2)1(1)1(,()*,N n m ∈,则以下结论一定正确的是( )A. 数列{}n b 为等差数列,公差为m qB. 数列{}n b 为等比数列,公比为m q 2C. 数列{}n c 为等比数列,公比为2m q D. 数列{}n c 为等比数列,公比为mm q9.【2013年普通高等学校招生全国统一考试(湖南卷)】设n S 为数列{}n a 的前n 项和,1(1),,2nn n n S a n N *=--∈则(1)3a =_____;(2)12100S S S ++⋅⋅⋅+=___________.10.【2013年普通高等学校招生全国统一考试(北京卷)理zxxk 】若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q = ;前n 项和S n = .12.【2013年普通高等学校统一考试试题大纲全国理zxxk 科】等差数列{}n a 的前n 项和为n S .已知232S a ,且124,,S S S 成等比数列,求{}n a 的通项公式.三.拔高题组13.【2013年全国高考新课标(I )理zxxk 科】设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,…若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n2,则( )A 、{S n }为递减数列B 、{S n }为递增数列C 、{S 2n -1}为递增数列,{S 2n }为递减数列D 、{S 2n -1}为递减数列,{S 2n }为递增数列14.【2013年普通高等学校统一考试江苏数学试题】在正项等比数列{}n a 中,512a =,673a a +=. 则满足1212n n a a a a a a ++⋅⋅⋅+>⋅⋅⋅的最大正整数n 的值为 .15.【2013年普通高等学校招生全国统一考试(广东卷)理zxxk 】 设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<.16.【2013年普通高等学校统一考试江苏数学试题】 设{}n a 是首项为a ,公差为d 的 等差数列(0d ≠),n S 是前n 项和. 记2n n nS b n c=+,n N *∈,其中c 为实数. (1)若0c =,且1b ,2b ,4b 成等比数列,证明:2(,)nk k S n S k n N *=∈; (2)若{}n b 是等差数列,证明0c =.17.【2013年普通高等学校招生全国统一考试(山东卷)】设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 的前n 项和为n T ,且12n n na T λ++= (λ为常数),令()*2n n cb n N =∈,求数列{}nc 的前n 项和n R .所以11213111121311...4444n n n R --------=+++ 18.【2013年普通高等学校招生全国统一考试(陕西卷)理zxxk 】设{}n a 是公比为q 的等比数列. (Ⅰ) 推导{}n a 的前n 项和公式;(Ⅱ) 设q≠1, 证明数列{1}n a +不是等比数列.19.【2013年普通高等学校招生全国统一考试数学浙江理zxxk 】在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(Ⅰ)求n a d ,;(Ⅱ)若0<d ,求.||||||||321n a a a a ++++20.【2013年普通高等学校招生全国统一考试(江西卷)理zxxk 】正项数列{a n }的前n 项和S n 满足:222(1)()0n n S n n S n n -+--+=(1)求数列{a n }的通项公式a n ;(2)令221(2)n n n b n a +=+,数列{b n }的前n 项和为T n .证明:对于任意n ∈ N*,都有T n <5.6421.【2013年普通高等学校招生全国统一考试湖北卷理zxxk 科】 已知等比数列{}n a 满足:23||10a a -=,123125a a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅰ)是否存在正整数m ,使得121111m a a a +++≥?若存在,求m 的最小值;若不存在,说明理zxxk 由.22.【2013年普通高等学校统一考试天津卷理zxxk 科】 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.23.【2013年普通高等学校招生全国统一考试(北京卷)理zxxk 】 已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项1n a +,2n a +…的最小值记为B n ,d n =A n -B n .(I)若{a n }为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n ∈N *,4n n a a +=),写出d 1,d 2,d 3,d 4的值;(II)设d 为非负整数,证明:d n =-d (n =1,2,3…)的充分必要条件为{a n }为公差为d 的等差数列; (III)证明:若a 1=2,d n =1(n =1,2,3…),则{a n }的项只能是1或2,且有无穷多项为1.假设{}n a (2)n ≥,中存在大于2的项,24.【2013年普通高等学校招生全国统一考试(上海卷)理zxxk 】 给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥;(3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理zxxk 由.25.【2013年普通高等学校招生全国统一考试(四川卷)理zxxk 科】 在等差数列{}n a 中,138a a +=,且4a 为2a 和9a 的等比中项,求数列{}n a 的首项、公差及前n 项和.。
高考数学压轴专题2020-2021备战高考《数列》真题汇编附答案解析

新高中数学《数列》专题解析一、选择题1.设{a n }为等比数列,{b n }为等差数列,且S n 为数列{b n }的前n 项和.若a 2=1,a 10=16且a 6=b 6,则S 11=( ) A .20 B .30 C .44 D .88【答案】C 【解析】 【分析】设等比数列{a n }的公比为q ,由a 2=1,a 10=16列式求得q 2,进一步求出a 6,可得b 6,再由等差数列的前n 项和公式求解S 11. 【详解】设等比数列{a n }的公比为q ,由a 2=1,a 10=16,得810216a q a ==,得q 2=2. ∴4624a a q ==,即a 6=b 6=4,又S n 为等差数列{b n }的前n 项和, ∴()1111161111442b b S b+⨯===.故选:C. 【点睛】本题考查等差数列与等比数列的通项公式及性质,训练了等差数列前n 项和的求法,是中档题.2.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】 因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.3.已知数列{}n a 为等比数列,前n 项和为n S ,且12a =,1n n b a =+,若数列{}n b 也是等比数列,则n S =( ) A .2n B .31n - C .2n D .31n -【答案】C 【解析】 【分析】设等比数列{}n a 的公比为q ,写出,n n a b .由数列{}n b 是等比数列,得2213b b b =,求出q ,即求n S . 【详解】设等比数列{}n a 的公比为q ,112,2n n a a q -=∴=Q ,121n n b q -∴=+,13b ∴=,221b q =+,2321b q =+,{}n b Q 也是等比数列, 2213b b b ∴=,即()()2221321q q +=+解得1q =,2,2n n a S n ∴=∴=. 故选:C . 【点睛】本题考查等比数列的性质,属于基础题.4.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.5.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( ) AB.CD.3-【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】 ∵()11111611221123a a S a π+===,∴623a π=,()62tan tan 3a π⎛⎫== ⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.6.等差数列{}n a 的前n 项和为n S ,已知2611203a a a a --+=,则21S 的值为( ) A .63 B .21C .63-D .21【答案】C 【解析】 【分析】根据等差数列性质,原式可变为()220616113()a a a a a +-+-=,即可求得21112163S a ==-.【详解】∵261116203a a a a a ---+=, ∴()220616113()a a a a a +-+-=, ∴113a =-,∴21112163S a ==-, 故选:C . 【点睛】此题考查等差数列性质和求和公式,需要熟练掌握等差数列基本性质,根据性质求和.7.等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( ) A .(0,)+∞ B .8,75⎛⎫+∞⎪⎝⎭C .83,7525⎛⎫⎪⎝⎭D .83,7525⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】根据题意可知101a >,91a ≤,把1a 的值代入列不等式解得即可. 【详解】由题意,设数列{}n a 的公差为d ,首项1125a =,则10911a a >⎧⎨≤⎩,即101919181a a d a a d =+>⎧⎨=+≤⎩,解得837525d <≤. 故选:D. 【点睛】本题主要考查了等差数列的通项公式的应用,要熟练记忆等差数列的通项公式.8.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可. 【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.9.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.10.等比数列{}n a 的前n 项和为n S ,若32S =,618S =,则106S S 等于( ) A .-3 B .5C .-31D .33【答案】D 【解析】 【分析】先由题设条件结合等比数列的前n 项和公式,求得公比q ,再利用等比数列的前n 项和公式,即可求解106S S 的值,得到答案. 【详解】由题意,等比数列{}n a 中32S =,618S =,可得313366316(1)1121(1)11181a q S q q a q S q q q ---====--+-,解得2q =, 所以101105105516(1)11133(1)11a q S q q q a q S q q---===+=---. 故选:D . 【点睛】本题主要考查了等比数列的前n 项和公式的应用,其中解答中熟记等比数列的前n 项和公式,准确计算是解答的关键,着重考查了推理与计算能力.11.在等差数列{}n a 中,2436a a +=,则数列{}n a 的前5项之和5S 的值为( ) A .108B .90C .72D .24【解析】由于152436a a a a +=+=,所以1555()5369022a a S +⨯===,应选答案A . 点睛:解答本题的简捷思路是巧妙运用等差数列的性质152436a a a a +=+=,然后整体代换前5项和中的15=36a a +,从而使得问题的解答过程简捷、巧妙.当然也可以直接依据题设条件建立方程组进行求解,但是解答过程稍微繁琐一点.12.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=, 解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.13.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值.由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.14.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.15.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1CD .2【答案】B 【解析】 【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得. 【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a 是正项等比数列,所以2020a =∴20201a ==.故选:B 【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.16.等差数列{}n a 中,1599a a a ++=,它的前21项的平均值是15,现从中抽走1项,余下的20项的平均值仍然是15,则抽走的项是( ) A .11a B .12aC .13aD .14a【答案】A 【解析】 【分析】由等差数列的性质可知5113,15a a ==,再根据前21项的均值和抽取一项后的均值可知抽取的一项的大小为15,故可确定抽走的是哪一项. 【详解】因为1952a a a +=,所以539a =即53a =. 有211521S =得1115a =, 设抽去一项后余下的项的和为S ,则2015300S =⨯=,故抽取的一项的大小为11, 所以抽走的项为11a ,故选A. 【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质: (1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+; (2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ;(3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列; (4)232,,,n n n n n S S S S S --L 为等差数列.17.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为( ) A .23岁 B .32岁C .35岁D .38岁【答案】C 【解析】 【分析】根据题意,得到数列{}n a 是等差数列,由9207S =,求得数列的首项1a ,即可得到答案. 【详解】设这位公公的第n 个儿子的年龄为n a ,由题可知{}n a 是等差数列,设公差为d ,则3d =-,又由9207S =,即91989(3)2072S a ⨯=+⨯-=,解得135a =, 即这位公公的长儿的年龄为35岁. 故选C . 【点睛】本题主要考查了等差数列前n 项和公式的应用,其中解答中认真审题,熟练应用等差数列的前n 项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.18.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( )A .20,3⎛⎤ ⎥⎝⎦B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,, 所以f (x )在(0,23π)上存在零点, 即223ππω<,得到ω34>. 故答案为 33,42⎛⎤⎥⎝⎦故选D 【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.19.《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.43钱B.73钱C.83钱D.103钱【答案】C【解析】【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,由题意求得a =﹣6d,结合a﹣2d+a﹣d+a+a+d+a+2d=5a=10求得a=2,则答案可求.【详解】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=10,∴a=2,则a﹣2d=a48 333aa+==.故选:C.【点睛】本题考查等差数列的通项公式,考查实际应用,正确设出等差数列是计算关键,是基础的计算题.20.执行如图所示的程序框图,若输入,则输出的S的值是A.B.C.D.【答案】B【解析】【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果.【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,;第三次运算:,;第四次运算:,;第五次运算:,;第六次运算:,;第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。
2021年高考数学重点难点讲解 数列综合应用教案 旧人教版

2021年高考数学重点难点讲解数列综合应用教案旧人教版纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,减薄率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度.●难点磁场(★★★★★)已知二次函数y=f(x)在x=处取得最小值- (t>0),f(1)=0.(1)求y=f(x)的表达式;(2)若任意实数x都满足等式f(x)·g(x)+anx+bn=xn+1[g(x)]为多项式,n∈N*),试用t 表示an和bn;(3)设圆Cn的方程为(x-an)2+(y-bn)2=rn2,圆Cn与Cn+1外切(n=1,2,3,…);{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rn、Sn.●案例探究[例1]从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加.(1)设n年内(本年度为第一年)总投入为an万元,旅游业总收入为bn万元,写出an,bn的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?命题意图:本题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力,本题有很强的区分度,属于应用题型,正是近几年高考的热点和重点题型,属★★★★★级题目.知识依托:本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点.错解分析:(1)问an、bn实际上是两个数列的前n项和,易与“通项”混淆;(2)问是既解一元二次不等式又解指数不等式,易出现偏差.技巧与方法:正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧.解:(1)第1年投入为800万元,第2年投入为800×(1-)万元,…第n 年投入为800×(1-)n -1万元,所以,n 年内的总投入为an=800+800×(1-)+…+800×(1-)n -1=800×(1-)k -1=4000×[1-()n ]第1年旅游业收入为400万元,第2年旅游业收入为400×(1+),…,第n 年旅游业收入400×(1+)n -1万元.所以,n 年内的旅游业总收入为bn=400+400×(1+)+…+400×(1+)k -1=400×()k -1.=1600×[()n -1](2)设至少经过n 年旅游业的总收入才能超过总投入,由此bn -an >0,即:1600×[()n -1]-4000×[1-()n ]>0,令x=()n ,代入上式得:5x2-7x+2>0.解此不等式,得x <,或x >1(舍去).即()n <,由此得n ≥5.∴至少经过5年,旅游业的总收入才能超过总投入.[例2]已知Sn=1++…+,(n ∈N*)设f(n)=S2n+1-Sn+1,试确定实数m 的取值范围,使得对于一切大于1的自然数n ,不等式:f(n)>[logm(m -1)]2-[log(m -1)m ]2恒成立. 命题意图:本题主要考查应用函数思想解决不等式、数列等问题,需较强的综合分析问题、解决问题的能力.属★★★★★级题目.知识依托:本题把函数、不等式恒成立等问题组合在一起,构思巧妙.错解分析:本题学生很容易求f(n)的和,但由于无法求和,故对不等式难以处理.技巧与方法:解决本题的关键是把f(n)(n ∈N*)看作是n 的函数,此时不等式的恒成立就转化为:函数f(n)的最小值大于[logm(m -1)]2-[log(m -1)m ]2.解:∵Sn=1++…+.(n ∈N*)0)421321()421221(42232122121321221)()1(1213121)(112>+-+++-+=+-+++=+-+++=-+++++++=-=∴++n n n n n n n n n n n f n f n n n S S n f n n 又∴f(n+1)>f(n)∴f(n)是关于n 的增函数∴f(n) min=f(2)=∴要使一切大于1的自然数n ,不等式f(n)>[logm(m -1)]2-[log(m -1)m ]2恒成立只要>[logm(m -1)]2-[log(m -1)m ]2成立即可由得m >1且m ≠2此时设[logm(m -1)]2=t 则t >0 于是⎪⎩⎪⎨⎧>->02011209t t 解得0<t <1由此得0<[logm(m -1)]2<1解得m >且m ≠2.●锦囊妙计1.解答数列综合题和应用性问题既要有坚实的基础知识,又要有良好的思维能力和分析、解决问题的能力;解答应用性问题,应充分运用观察、归纳、猜想的手段,建立出有关等差(比)数列、递推数列模型,再综合其他相关知识来解决问题.2.纵观近几年高考应用题看,解决一个应用题,重点过三关:(1)事理关:需要读懂题意,明确问题的实际背景,即需要一定的阅读能力.(2)文理关:需将实际问题的文字语言转化数学的符号语言,用数学式子表达数学关系.(3)事理关:在构建数学模型的过程中;要求考生对数学知识的检索能力,认定或构建相应的数学模型,完成用实际问题向数学问题的转化.构建出数学模型后,要正确得到问题的解,还需要比较扎实的基础知识和较强的数理能力.●歼灭难点训练一、选择题1.(★★★★★)已知二次函数y=a(a+1)x2-(2a+1)x+1,当a=1,2,…,n,…时,其抛物线在x轴上截得的线段长依次为d1,d2,…,dn,…,则 (d1+d2+…+dn)的值是( )A.1B.2C.3D.4二、填空题2.(★★★★★)在直角坐标系中,O是坐标原点,P1(x1,y1)、P2(x2,y2)是第一象限的两个点,若1,x1,x2,4依次成等差数列,而1,y1,y2,8依次成等比数列,则△OP1P2的面积是_________.3.(★★★★)从盛满a升酒精的容器里倒出b升,然后再用水加满,再倒出b升,再用水加满;这样倒了n次,则容器中有纯酒精_________升.4.(★★★★★)据2000年3月5日九届人大五次会议《政府工作报告》:“xx年国内生产总值达到95933亿元,比上年增长7.3%,”如果“十·五”期间(xx年~xx年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为_________亿元.三、解答题5.(★★★★★)已知数列{an}满足条件:a1=1,a2=r(r>0),且{anan+1}是公比为q(q>0)的等比数列,设bn=a2n-1+a2n(n=1,2,…).(1)求出使不等式anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范围;(2)求bn和,其中Sn=b1+b2+…+bn;(3)设r=219.2-1,q=,求数列{}的最大项和最小项的值.6.(★★★★★)某公司全年的利润为b元,其中一部分作为奖金发给n位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n排序,第1位职工得奖金元,然后再将余额除以n发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金.(1)设ak(1≤k≤n)为第k位职工所得奖金金额,试求a2,a3,并用k、n和b表示ak(不必证明);(2)证明ak>ak+1(k=1,2,…,n-1),并解释此不等式关于分配原则的实际意义;(3)发展基金与n和b有关,记为Pn(b),对常数b,当n变化时,求Pn(b).7.(★★★★)据有关资料,1995年我国工业废弃垃圾达到7.4×108吨,占地562.4平方公里,若环保部门每年回收或处理1吨旧物资,则相当于处理和减少4吨工业废弃垃圾,并可节约开采各种矿石20吨,设环保部门1996年回收10万吨废旧物资,计划以后每年递增20%的回收量,试问:(1)xx年回收废旧物资多少吨?(2)从1996年至xx年可节约开采矿石多少吨(精确到万吨)?(3)从1996年至xx年可节约多少平方公里土地?8.(★★★★★)已知点的序列An(xn,0),n∈N,其中x1=0,x2=a(a>0),A3是线段A1A2的中点,A4是线段A2A3的中点,…,An是线段An-2An-1的中点,….(1)写出xn与xn-1、xn-2之间关系式(n≥3);(2)设an=xn+1-xn,计算a1,a2,a3,由此推测数列{an}的通项公式,并加以证明;(3)求xn.参考答案难点磁场解:(1)设f(x)=a(x -)2-,由f(1)=0得a=1.∴f(x)=x2-(t+2)x+t+1.(2)将f(x)=(x -1)[x -(t+1)]代入已知得:(x -1)[x -(t+1)]g(x)+anx+bn=xn+1,上式对任意的x ∈R 都成立,取x=1和x=t+1分别代入上式得:且t ≠0,解得an=[(t+1)n+1-1],bn=[1-(t+1n)(3)由于圆的方程为(x -an)2+(y -bn)2=rn2,又由(2)知an+bn=1,故圆Cn 的圆心On 在直线x+y=1上,又圆Cn 与圆Cn+1相切,故有rn+rn+1=|an+1-an |=(t+1)n+1设{rn}的公比为q ,则②÷①得q==t+1,代入①得rn=∴Sn=π(r12+r22+…+rn2)=[(t+1)2n -1]歼灭难点训练一、1.解析:当a=n 时y=n(n+1)x2-(2n+1)x+1由|x1-x2|=,得dn=,∴d1+d2+…+dn1)111(lim )(lim 1111113121211)1(132121121=+-=+++∴+-=+-++-+-=+++⋅+⋅=∞→∞→n d d d n n n n n n n n答案:A二、2.解析:由1,x1,x2,4依次成等差数列得:2x1=x2+1,x1+x2=5解得x1=2,x2=3.又由1,y1,y2,8依次成等比数列,得y12=y2,y1y2=8,解得y1=2,y2=4,∴P1(2,2),P2(3,4).∴=(3,4) ∴,5||,22,14862121===+=OP OP OP 110252221sin ||||21102sin ,102722514||||cos 21212121212121=⨯⨯⨯==∴=∴=⨯=∴∆OP P OP S OP P OP OP OP P P OP 答案:13.解析:第一次容器中有纯酒精a -b 即a(1-)升,第二次有纯酒精a(1-)-,即a(1-)2升,故第n 次有纯酒精a(1-)n 升.答案:a(1-)n4.解析:从xx 年到xx 年每年的国内生产总值构成以95933为首项,以7.3%为公比的等比数列,∴a5=95933(1+7.3%)4≈1xx0(亿元).① ②答案:1xx0三、5.解:(1)由题意得rqn -1+rqn >rqn+1.由题设r >0,q >0,故从上式可得:q2-q -1<0,解得<q <,因q >0,故0<q <;(2)∵0,212212212221212121≠=++=++=∴==---+++++++q a a q a q a a a a a b b q a a a a a a n n n n n n n n n n n n n n n n .b1=1+r ≠0,所以{bn}是首项为1+r ,公比为q 的等比数列,从而bn=(1+r)qn-1.当q=1时,Sn=n(1+r),1)1(),2()3()1( ,0)10( ,111lim ,0)1)(1(1lim 1lim ,1)1)(1(,1;11)1)(1(1lim 1lim,1)1)(1(,10;0)1(1lim 1lim -∞→∞→∞→∞→∞→∞→∞→+=⎪⎩⎪⎨⎧≥<<+-==-+-=--+=>+-=-+-=--+=<<=+=n n n n n n n n n n n n n n n n n n n q r b q q r q S q r q S qq r S q r q q r q S qq r S q r n S 有由所以时当时当.2.2011log )1)(1(log log )1(log ])1[(log ])1[(log log log 2222122212-+=-+++=++=-+n q n r q n r q r q r b b n n n n,从上式可知,当n -20.2>0,即n ≥21(n ∈N*)时,Cn 随n 的增大而减小,故1<Cn ≤C21=1+=2.25 ①当n -20.2<0,即n ≤20(n ∈N*)时,Cn 也随n 的增大而减小,故1>Cn ≥C20=1+=-4 ②综合①②两式知,对任意的自然数n 有C20≤Cn ≤C21,故{Cn}的最大项C21=2.25,最小项C20=-4.6.解:(1)第1位职工的奖金a1=,第2位职工的奖金a2=(1-)b ,第3位职工的奖金a3=(1-)2b ,…,第k 位职工的奖金ak= (1-)k -1b;(2)ak -ak+1=(1-)k -1b >0,此奖金分配方案体现了“按劳分配”或“不吃大锅饭”的原则.(3)设fk(b)表示奖金发给第k 位职工后所剩余数,则f1(b)=(1-)b,f2(b)=(1-)2b,…,fk(b)=(1-)kb.得Pn(b)=fn(b)=(1-)nb,故.7.解:设an 表示第n 年的废旧物资回收量,Sn 表示前n 年废旧物资回收总量,则数列{an}是以10为首项,1+20%为公比的等比数列.(1)a6=10(1+20%)5=10×1.25=24.8832≈25(万吨) (2)S6=2.016.1101%)201(]1%)201[(1066-⨯=-+-+=99.2992≈99.3(万吨) ∴从1996年到xx 年共节约开采矿石20×99.3≈1986(万吨)(3)由于从1996年到xx 年共减少工业废弃垃圾4×99.3=397.2(万吨),∴从1996年到xx 年共节约:≈3 平方公里.8.解:(1)当n ≥3时,xn=;a a x x x x x x x a a x x x x x x x a a x x a 41)21(21)(212,21)(212,)2(2332334212212232121=--=--=-+=-=-=--=-+=-==-=由此推测an=(-)n-1a(n ∈N)证法一:因为a1=a >0,且 1111121)(2122----+-=-=-=-+=-=n n n n n n n n n n n a x x x x x x x x x a (n ≥2) 所以an=(-)n-1a.证法二:用数学归纳法证明:(ⅰ)当n=1时,a1=x2-x1=a=(-)0a,公式成立;(ⅱ)假设当n=k 时,公式成立,即ak=(-)k -1a 成立.那么当n=k+1时,ak+1=xk+2-xk+1=k k k k k k a x x x x x 21)(212111-=--=-++++ .)21()21(21111公式仍成立a a )(k k -+--=--=据(ⅰ)(ⅱ)可知,对任意n ∈N ,公式an=(-)n-1a 成立.(3)当n ≥3时,有xn=(xn -xn -1)+(xn -1-xn -2)+…+(x2-x1)+x1 =an -1+an -2+…+a1,由(2)知{an}是公比为-的等比数列,所以a.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题06 数列的综合(一)专题点拨1.①若{a n }是公差为d 的等差数列,则d >0时,{a n }是递增数列;0d < 时,{a n }是递减数列;d =0时,{a n }是常数列.①等差数列的通项公式a n =a 1+(n -1)d (n ≥1)可推广为数列通项公式a n =a m +(n -m )d (m ,n ①N *且n >m ). ①若m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ①N *),当{a n }是有穷数列,则与首末两项等距离的两项之和,等于首末两项之和.①项数成等差数列,则相应的项也成等差数列,即a k ,a k +m ,a k +2m ,…(k ,m ①N *)成等差数列. 2.设S n 是等差数列{a n }的前n 项和,则①S k ,S 2k -S k ,S 3k -S 2k ,…构成的数列是等差数列;①⎩⎨⎧⎭⎬⎫S n n 也是一个等差数列;真题赏析1.(2016·上海)已知数列{a n }和{b n },其中a n =n 2,n ①N *,{b n }的项是互不相等的正整数,若对于任意n ①N *,{b n }的第a n 项等于{a n }的第b n 项,149161234lg lg b b b b b b b b =__________.2.(2016·上海)无穷数列由k 个不同的数组成,S n 为的前n 项和.若对任意n ①N *,S n ①{2,3},则k 的最大值为__________.3.(2017·上海)已知S n 和T n 分别为数列与数列的前n 项和,且a 1=e 4,S n =e S n +1-e 5,a n =e b n (n ①N *),则当T n 取得最大值时,n 的值为________.4.(2018·上海)给定无穷数列{a n },若无穷数列{b n }满足:对任意n①N *,都有|b n ﹣a n |≤1,则称{b n }与{a n }“接近”.(1)设{a n }是首项为1,公比为的等比数列,b n =a n+1+1,n①N *,判断数列{b n }是否与{a n }接近,并说明理由;(2)设数列{a n }的前四项为:a 1=1,a 2=2,a 3=4,a 4=8,{b n }是一个与{a n }接近的数列,记集合M={x|x=b i ,i=1,2,3,4},求M 中元素的个数m.例题剖析【例1】在等差数列{a n }中,若a 1+a 2+a 3+a 4=30,则a 2+a 3=________.【变式训练1】已知{a n }为等差数列,S n 为其前n 项和,若a 1=6,a 3+a 5=0,则S 6=________.【例2】等差数列{}n a 的前n 项和为n S ,2110a =,3144S =,则n S 取得最大值时n 的为( )A . 25B . 27C . 25 或 26D . 26 或 27【变式训练2】已知n S 是数列{}n a 的前n 项和,12a =,24a =,36a =,数列12{}n n n a a a ++++是公差为2的等差数列,则25(S = )A .233B .282C .466D .650【例3】在等差数列{}n a 中,13515a a a ++=,61a l =. (1) 求数列{}n a 的通项公式;(2) 对任意*m N ∈,将数列{}n a 中落入区间1(2m +,212)m +内的项的个数记为{}m b ,记数列{}m b 的前m项和m S ,求使得2018m S >的最小整数m ; (3) 若*n N ∈,使不等式1111(21)n n nn a n a a a λ+++++成立, 求实数λ的取值范围 .【变式训练3】已知数列{}a n 的前n 项和S n =3n 2+8n ,{}b n 是等差数列,且a n =b n +b n +1.(1)求数列{}b n 的通项公式;(2)令c n =(a n +1)n +1(b n +2)n. 求数列{}c n 的前n 项和T n .【例4】(2019·普陀区二模)设数列{a n }满足:a 1=2,2a n +1=t ⋅a n+1(其中t 为非零实常数). (1)设t =2,求证:数列{a n }是等差数列,并求出通项公式;(2)设t =3,记b n =|a n+1−a n |,求使得不等式b 1+b 2+b 3+⋯+b k ≥3940成立的最小正整数k ;(3)若t ≠2,对于任意的正整数n ,均有a n <a n+1,当a p+1、a t+1、a q+1依次成等比数列时,求t 、p 、q 的值.巩固训练一、填空题1.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.2.设等比数列{}a n 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.3.已知函数()2xf x a b =+的图象过点(2,9)和点(4,45),若数列{}n a 的前n 项和()n S f n =,数列2{}3na log 的前n 项和为n T ,则使得55n T 成立的最小正整数n = . 4.已知数列{}n a 满足1223n n na a a +=+-,其首项1a a =,若数列{}n a 是单调递增数列, 则实数a 的取值范围是 . 二、选择题5.记数列{}n a 的前n 项和为n S . 已知11a =,*1()2()n n n n S S a n N +-=∈,则2018(S = )A .10093(21)-B .10093(21)2- C .20183(21)-D .20183(21)2- 6.对于数列1x ,2x ,若使得0n m x ->对一切*n N ∈成立的m 的最小值存在,则称该最小值为此数列的“准最大项”,设函数()sin ()f x x x x R =+∈及数列1y ,2y ,且1006()y y y R =∈,若111()()(*)()()22n n n n n n n f y y y y n N f y y y ππ-+-⎧⎪=∈⎨+-<⎪⎩,则当01y =时,下列结论正确的应为( )A .数列1y ,2y ,的“准最大项”存在,且为2πB .数列1y ,2y ,的“准最大项”存在,且为3π C .数列1y ,2y ,的“准最大项”存在,且为4π D .数列1y ,2y ,的“准最大项”不存在7.已知数列{}n a 是等差数列, 数列{}n b 是等比数列, 且满足20172019a a π+=,10114b b =,2018120(2a tanb b =+则 )A .2B .2C .3D 三、解答题8.等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }各项均为正数,b 1=1,且b 2+S 2=12,{b n }的公比q =S 2b 2.(1)求a n 与b n ; (2)求1S 1+1S 2+…+1S n.9.已知数列{a n }的前n 项和为S n ,a 1=0,a 1+a 2+a 3+…+a n +n =a n +1,n ①N *.(1)求证:数列{a n +1}是等比数列;(2)设数列{b n }的前n 项和为T n ,b 1=1,点(T n +1,T n )在直线x n +1-y n =12上,若不等式b 1a 1+1+b 2a 2+1+…+b n a n +1≥m -92+2a n对于n ①N *恒成立,求实数m 的最大值.10.已知数列{}n a ,{}n b 均为各项都不相等的数列,n S 为{}n a 的前n 项和,*11()n n n a b S n N +=+∈.(1) 若11,2n na b ==,求4a 的值; (2) 若{}n a 是公比为(1)q q ≠的等比数列, 求证: 数列11n b q ⎧⎫+⎨⎬-⎩⎭为等比数列; (3) 若{}n a 的各项都不为零,{}n b 是公差为d 的等差数列, 求证:2a ,3a ,⋯,n a ,⋯成等差数列的充要条件是12d =.11.已知数列中,为它前项之和,且(),.(1)设,求证为等比数列;(2)设,求证为等差数列;(3)求数列的通项公式及前项之和的公式.新题速递1.(2020•虹口区一模)设等差数列{}n a 的前n 项和n S ,若2712a a +=,48S =,则n a = . 2.(2020•浦东新区一模)设{}n a 是等差数列,且13a =,3518a a +=,则n a = .3.(2020•宝山区一模)已知{}n a 、{}n b 均是等差数列,n n n c a b =,若{}n c 前三项是7、9、9,则10c = . 4.(2020•松江区一模)已知数列{}n a 满足:①*()n a N n N ∈∈;②当*2()k n k N =∈时,2n na =;③当*2()k n k N ≠∈时,1n n a a +<,记数列{}n a 的前n 项和为n S .(1)求1a ,3a ,9a 的值; (2)若2020n S =,求n 的最小值;(3)求证:242n n S S n =-+的充要条件是*211()n a n N +=∈.5.(2020•静安区一模)设{}n a 是等差数列,公差为d ,前n 项和为n S . (1)设140a =,638a =,求n S 的最大值;(2)设*11,2()n a n a b n N ==∈,数列{}n b 的前n 项和为n T ,且对任意的*n N ∈,都有20n T ,求d 的取值范围.。