[推荐学习]高中数学 1.1 空间几何体结构练习(无答案)新人教版A版必修2
高中数学人教课标实验A版必修2第一章《空间几何体的结构》同步练习(附答案)

《空间几何体的结构》同步练习一、考点分析三视图是新课程改革中出现的内容,是新课程高考的热点之一,几乎每年都考,同学们要予以足够的重视.在高考中经常以选择、填空题的形式出现,属于基础或中档题,但也要关注三视图以提供信息为目的,出现在解答题中.这部分知识主要考查学生的空间想象能力与计算求解能力.二、典型例题知识点一:柱、锥、台、球的结构特征例1.下列叙述正确的是()①有两个面平行,其余各面都是平行四边形的几何体叫棱柱.②两个底面平行且相似,其余各面都是梯形的多面体是棱台.③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.④直角三角形绕其一条边旋转得到的旋转体是圆锥.⑤直角梯形以它的一条垂直于两底边的腰所在的直线为旋转轴,其余三边旋转形成的面围成的旋转体叫圆台.⑥用一个平面去截圆锥,底面和截面之间的部分是圆台.⑦通过圆锥侧面上一点,有无数条母线.⑧以半圆的直径所在直线为旋转轴,半圆面旋转一周形成球体.A.①②③④⑤⑥⑧B.①③④⑦⑧C.①②⑤⑧D.⑤思路分析:遇到概念判断问题,一定要在理解透彻相关概念的基础上,仔细分析,如果判断它是正确的,必须能紧扣定义,而不是模棱两可地去作判断;如果判断它是错误的,只需找到一个反例即可.解答过程:如图所示,由图(1)可知①是错误的;由图(2)可知②③是错误的;由图(3)可知④是错误的;由图(4)可知⑥是错误的.因为通过圆锥侧面上一点和圆锥的顶点只能连一条射线,所以“通过圆锥侧面上一点,有无数条母线.”是错误的,即⑦是不正确的.以半圆的直径所在直线为旋转轴,半圆旋转一周形成的应该是球面,半圆面旋转一周形成的才是球体.所以⑧是错误的.所以只有⑤是正确的.故应选D.解题后的思考:在作判断的时候没有严格的根据定义进行多角度分析,而是只抓住定义中的某一点就作出判断,容易导致错误.知识点二:组合体例2.如图,下列组合体是由哪几种简单几何体组成的?解答过程:(1)由一个三棱锥和一个四棱锥组成,为左右结构(2)由两个三棱锥组成,为上下结构(3)由圆锥和圆台组成,为上下结构知识点三:柱、锥的侧面展开图例3.小明在一个正方体盒子的每个面都写有一个字母,分别是:A、B、C、D、E、F,其平面展开图如图所示,那么在该正方体盒子中,和“A”相对的面所写的字母是哪一个?思路分析:在每个格子中标明你所想象的面的位置,如将A 格标明“上”,将B格标明“前”等等.解答过程:为字母“E”解题后的思考:本题突出考查了学生将正方体各面展开图复原为正方体的空间想象能力.例4.如图所示,为一个封闭的立方体,在它的六个面上标出A ,B ,C ,D ,E ,F 这六个字母,现放成下面三种不同的位置,所看见的表面上的字母已标明,则字母A ,B ,C 对面的字母分别是( )A .D ,E ,FB .F ,D ,EC .E ,F ,D D .E ,D ,F思路分析:本题处理方法比较灵活,要将几个图结合起来一起分析.解答过程:由(1)(2)两个图知,A 与B ,C ,D 相邻,结合第(3)个图知,B ,C 与F 共顶点,所以A 的对面为F ,同理B ,C 的对面分别为D ,E ,故选择B .解题后的思考:本题考查推理能力以及空间想象能力.也可先结合图(1)(3)进行判断.例5.用长和宽分别是π3和π的矩形硬纸卷成圆柱的侧面,求圆柱的底面半径?思路分析:要注意哪条边是圆柱的母线,哪条边是圆柱底面的圆周.解答过程:设圆柱底面圆的半径为r ,由题意可知矩形长为底面圆的周长时,r ππ23=,解得23=r .矩形宽为底面圆的周长时,r ππ2=,解得21=r .故圆柱的底面半径为23或21.解题后的思考:本题学生经常会丢解,即主观认为只有图中所示的情况,即以π3作为底面周长,而忽视了它也可作为母线这种情况.知识点四 旋转体中的有关计算例6. 一个圆台的母线长cm 12,两底面面积分别为24cm π和225cm π,求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.思路分析:通过作截得此圆台的圆锥的轴截面,构造直角三角形与相似三角形求解.解答过程:(1)作OA H A ⊥1242=∴=r r ππ 5252=∴=R R ππ3=∴AH153312221=-=∴H A(2)11O VA ∆ 与O VA ∆相似 AO O A VA VA 111=∴20=∴VA解题后的思考:通过构造旋转体的轴截面,将立体问题转化为平面问题.例7.已知球的两个平行截面的面积分别为π5和π8,且距离为3,求这个球的半径.思路分析:两截面的相互位置可能出现两种情况,一种是在球心O 的同侧,另一种是在球心O 的异侧.解答过程:(1)当两截面在球心O 的同侧时,如图所示,设这两个截面的半径分别为21,r r ,球心O 到截面的距离分别为21,d d ,球的半径为R .8,5,8,522212221==∴=⋅=⋅r r r r ππππ .又222221212d r d r R +=+= ,321222221=-=-∴r r d d ,即3))((2121=+-d d d d .又321=-d d ,⎩⎨⎧=+=-∴,1,32121d d d d 解得⎩⎨⎧-==.1,221d d又∴>,02d 这种情况不成立.(2)当两截面在球心O 的异侧时,321=+d d , 由上述解法可知3))((2121=+-d d d d ,⎩⎨⎧=-=+∴,1,32121d d d d 解得⎩⎨⎧==.1,221d d 3452121=+=+=∴d r R .综上所述,这个球的半径为3.解题后的思考:同学们要注意不要只对同侧的情况进行讨论,而忽略对另一种位置关系的讨论.知识点五:画几何体的三视图例8.画出如图所示的三棱柱的三视图.思路分析:在正视图中,中间的竖线看不到,应画成虚线;侧视图是从左侧看三棱柱投射到竖直的正对着的平面上的正投影,所以不是三棱柱的一个侧面,而应该是过底面正三角形的一条高线的矩形.解答过程:解题后的思考:画三视图的时候要做到“长对正、宽相等、高平齐”,还要注意实线与虚线的区别.知识点六:三视图中的推测问题例9.根据下列三视图,说出各立体图形的形状.思路分析:三视图是从三个不同的方向看同一物体得到的三个视图.正视图反映物体的主要形状特征,主要体现物体的长和高,不反映物体的宽.而俯视图和正视图共同反映物体的长相等.侧视图和俯视图共同反映物体的宽相等.据此就不难得出该几何体的形状.解答过程:(1)圆台;(2)正四棱锥;(3)螺帽.解题后的思考:三视图的画法里要注意“长对正”,“高平齐”,“宽相等”,另外,还要熟悉基本空间几何体的三视图.知识点七:直观图的还原与计算问题例10.已知△A′B′C′是水平放置的边长为a 的正三角形ABC 的斜二测水平直观图,那么△A′B′C′的面积为_________.思路分析:先根据题意,画出直观图,然后根据△A′B′C′直观图的边长及夹角求解.解答过程:如图甲、乙所示的实际图与直观图.a OC C O a AB B A 4321,==''==''.在图乙中作C′D′⊥A′B′于D′,则a C O D C 8622=''=''.所以2166862121a a a D C B A S C B A =⨯⨯=''⋅''='''∆.故填2166a . 解题后的思考:该题求直观图的面积,因此应在直观图中求解,需先求出直观图的底和高,然后用三角形面积公式求解.本题旨在考查同学们对直观图画法的掌握情况.例11.如图所示,正方形O′A′B′C′的边长为cm 1,它是水平放置的一个平面图形的直观图,则原图形的周长是____________.思路分析:先根据题意,由直观图画出原图形解答过程:逆用斜二测画法的规则画出原图如下图所示,由BC//OA 且BC=OA ,易知OABC 为平行四边形.在上图中,易求O′B′=2,所以OB =22.又OA =1,所以在Rt △BOA 中,31)22(22=+=AB .故原图形的周长是)cm (8)13(2=+⨯,应填cm 8.解题后的思考:该题考查的是直观图与原图形之间的关系,及逆用斜二测画法的规则.。
人教版A版高中数学必修2课后习题解答

第一章空间几何体1.1 空间几何体的结构练习(第7 页)1.(1)圆锥;(2)长方体;(3)圆柱与圆锥组合而成的组合体;(4)由一个六棱柱挖去一个圆柱体而得到的组合体。
2.(1)五棱柱;(2)圆锥3.略习题1.1A组1.(1) C;(2)C;(3)D;(4) C2.(1)不是台体,因为几何体的“侧棱”不相交于一点,不是由平等于“底面”的平面截棱锥得到的。
(2)、(3)也不是台体,因为不是由平行与棱锥和圆锥底面的平面截得的几何体。
3.(1)由圆锥和圆台组合而成的简单组合体;(2)由四棱柱和四棱锥组合而成的简单组合体。
4.两个同心的球面围成的几何体(或在一个球体内部挖去一个同心球得到的简单组合体)。
5.制作过程略。
制作过程说明平面图形可以折叠成立体图形,立体图形可以展开为平面图形。
B组1.剩下的几何体是棱柱,截去的几何体也是棱柱;它们分别是五棱柱和三棱柱。
2.左侧几何体的主要结构特征:圆柱和棱柱组成的简单组何体;中间几何体的主要结构特征:下部和上部都是一个圆柱截去一个圆柱组成的简单组何体;右侧几何体的主要结构特征:下部是一个圆柱体,上部是一个圆柱截去一个圆柱组成的简单组何体。
1.2 空间几何体的三视图和直观图练习(第15 页)1.略2.(1)四棱柱(图略);(2)圆锥与半球组成的简单组合体(图略);(3)四棱柱与球组成的简单组合体(图略);(4)两台圆台组合而成的简单组合体(图略)。
3.(1)五棱柱(三视图略);(2)四个圆柱组成的简单组合体(三视图略);4.三棱柱练习(第19 页)1.略。
2.(1)√(2)×(3)×(4)√3.A4.略5.略习题1.2A组1.略2.(1)三棱柱(2)圆台(3)四棱柱(4)四棱柱与圆柱组合而成的简单组合体3~5.略B组1~2.略3.此题答案不唯一,一种答案是由15个小正方体组合而成的简单组合体,如图。
1.3 空间几何体的表面积与体积。
人教A版高中数学必修2《1.1 空间几何体的结构 习题1.1》_4

教学设计数学人教A版必修二习题1.1一.教材分析1.教材的地位和作用本节学习与传统“立几”先研究点,直线,平面之间的位置关系,再研究由它们组成的几何体不同。
通过展示大量几何体的实物、模型、图片等,让学生感受空间几何体的整体结构,然后再引导学生抽象出空间几何体的结构特征。
先从整体上认识空间几何体,再深入到细节(点、线、面的位置关系)的认识,更符合学生的认知规律。
由于没有点、线、面的有关知识(如面面平行)等,所以本节学习不能建立在严格的定义,需要增强学生的直观感受,引导学生概况出它们的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
本节学习主要在初学者先了解空间几何体的结构特征,建立相关空间几何体的概念,为后续深入研究空间几何体位置关系奠定基础。
2.教材处理习题1.1的处理原则:充分发挥学生的自主学习能力和小组学习功能,在学生认识了相关概念的基础上,布置课前学生预习完成,课堂分小组解答,互纠。
以“柱,锥,台,球”的结构特征作为准绳,让学生在具体模型的判断上不断强化对四大空间几何体结构的认识,并与生活实际相联系,理解生活中的简单组合体2.教材重点、难点教材重点:让学生感受大量空间实物及模型,概括出“柱,锥,台,球”的结构特征教材难点:“柱,锥,台,球”的结构特征的概括和理解二.学情分析:1.对象:立几教学安排在高一下期,经过高一上期的学习,学生对高中数学的学习方式,方法和老师的教学方法基本适应,求知欲旺盛2.学情:学生已经储备了高中数学学习的基本知识:函数,三角,向量,数列。
对立几的学习充满好奇,一些同学存在畏惧心理,学生个体差异明显,有一部分学生空间感较差。
三. 教学目标分析1.知识目标:使学生理解“柱,锥,台,球”的结构特征,能运用结构特征判断相应简单几何体和简单组合体2、能力目标:培养运用归纳类比的方法去发现并解决问题的能力。
初步建立空间想象能力3、情感目标:使学生通过自主练习,互相探究,展示问题的学习过程,体验进一步理解和强化概念的乐趣,提高自主学习意识四、教学策略分析:、1、教学方法:探究式教学法,示错分析法,讲练结合法2、教学手段:提前预习练习增强课堂效率,多媒体直观感受提高课堂有效性。
高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。
人教A版高中数学必修2第一章 空间几何体1.1 空间几何体的结构习题(2)

必修2 1.1空间几何体的结构(练习题)一、选择题1.在棱柱中()A.只有两个面平行 B.所有的棱都平行C.所有的面都是平行四边形 D.两底面平行,且各侧棱也互相平行2.将图1所示的三角形线直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形()3.如图一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面3个不同的位置,则数字l、2、3对面的数字是()A.4、5、6 B.6、4、5 C.5、4、6 D.5、6、44.如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B.A1B l=1,AB=2,B l C l=1.5,BC=3,A1C1=2,AC=3C.A l B l=1,AB=2,B1C l=1.5,BC=3,A l C l=2,AC=4D.AB=A1B1,BC=B1C1,CA=C1A15.有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的.其中正确的是()A.(1)(2) B.(2)(3) C.(1)(3) D.(2)(4)6.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆D.圆锥所有的轴截面是全等的等腰三角形7.图1是由图2中的哪个平面图旋转而得到的()二、填空题8.如图,长方体ABCD—A1B l C l D1中,AD=3,AA l=4,AB=5,则从A点沿表面到C l的最短距离为______.9.在三棱锥S—ABC中,SA=SB=SC=1,∠ASB=∠ASC=∠BSC=30°,如图,一只蚂蚁从点A出发沿三棱锥的表面爬行一周后又回到A点,则蚂蚁爬过的最短路程为_____.10.高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是____.11图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D与点M与点R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是____.(注:把你认为正确的命题的序号都填上)三、解答题12.察以下几何体的变化,通过比较,说出他们的特征.13.一个圆锥截成圆台,已知圆台的上下底面半径的比是1∶4,母线长为10cm,求圆锥的母线长____.设地球的半径为R,在北纬45°圈上有两个点A、B. A在西经40°,B在东经50°,求A、B两点间纬线圈的劣弧长及A、B两点间的球面距离.在地球北纬60°圈上有A、B两点,它们的经度相差180°,A、B两地沿纬线圈的弧长与A、B两点的球面距离之比为()A.3:2 B.2:3 C.1:3 D.3:15.把地球看成一个半径为R的球,地球上的两点A、B的纬度都是45°,A、B两R,若A点在东经20°处,求B点的位置.点间的球面距离为3必修二 1.1空间几何体的结构练习题参考答案一、选择题1.D 2. B 3C 4C 5D 6。
人教新课标A版 必修二 1.1空间几何体的结构A卷(练习)

人教新课标A版必修二 1.1空间几何体的结构A卷(练习)姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)如图,E、F分别是正方形SD1DD2的边D1D,DD2的中点,沿SE、SF、EF将它折成一个几何体,使D1,D,D2重合,记作D,给出下列位置关系:①SD面EFD ;②SE面EFD;③DF SE;④EF面SE其中成立的有()A . ①与②B . ①与③C . ②与③D . ③与④2. (2分) (2015高一上·扶余期末) 如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A . 棱柱B . 棱台C . 棱柱与棱锥的组合体D . 不能确定3. (2分) (2020高一下·崇礼期中) 下列图形所表示的几何体中,不是棱锥的为()A .B .C .D .4. (2分) (2018高一上·岳阳期中) 有一长方体木块,其顶点为,,,,一小虫从长方体木块的一顶点A绕其表面爬行到另一顶点,则小虫爬行的最短距离为A .B .C .D .5. (2分)如下图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()A . (1)(2)B . (2)(3)C . (3)(4)D . (1)(4)6. (2分)已知空间4个球,它们的半径均为2,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为()A .B .C .D .7. (2分)已知三棱锥A-BCD内接于球O,AB=AD=AC=BD=,∠BCD=60°,则球O的表面积为()A .B .C .D .8. (2分) (2016高二上·杭州期中) 如图是由哪个平面图形旋转得到的()A .B .C .D .9. (2分)下列说法错误的是()A . 棱柱的两个底面互相平行B . 圆台与棱台统称为台体C . 棱柱的侧棱垂直于底面D . 圆锥的轴截面是一个等腰三角形10. (2分) (2018高三上·河北月考) 利用一半径为4cm的圆形纸片(圆心为O)制作一个正四棱锥.方法如下:⑴以O为圆心制作一个小的圆;(2)在小的圆内制作一内接正方形ABCD;(3)以正方形ABCD的各边向外作等腰三角形,使等腰三角形的顶点落在大圆上(如图);(4)将正方形ABCD作为正四棱锥的底,四个等腰三角形作为正四棱锥的侧面折起,使四个等腰三角形的顶点重合,问:要使所制作的正四棱锥体积最大,则小圆的半径为()A .B .C .D .11. (2分) (2019高二上·信丰月考) 在一个封闭的直三棱柱内有一个体积为V的球,若,,, ,则球的体积的最大值为()A .B .C .D .12. (2分)(2020·新乡模拟) 如图,在正四棱柱中,,分别为的中点,异面直线与所成角的余弦值为,则()A . 直线与直线异面,且B . 直线与直线共面,且C . 直线与直线异面,且D . 直线与直线共面,且二、多选题 (共1题;共3分)13. (3分)(2021·八省联考) 下图是一个正方体的平面展开图,则在该正方体中()A .B .C .D .三、填空题 (共4题;共4分)14. (1分) (2018高二上·淮安期中) 已知圆柱M的底面半径为3,高为2,圆锥N的底面直径和高相等,若圆柱M和圆锥N的体积相同,则圆锥N的高为________.15. (1分)若圆锥的底面周长为2π,侧面积也为2π,则该圆锥的体积为________ .16. (1分) (2020高三上·启东期中) 在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”,已知三棱柱是一个“堑堵”,其中,,,则这个“堑堵”的外接球的表面积为________.17. (1分) (2020高三上·威海期末) 已知三棱锥为中点,侧面底面,则三棱锥外接球的表面积为________,过点的平面截该三棱锥外接球所得截面面积的取值范围为________四、解答题 (共6题;共50分)18. (5分) (2016高二上·襄阳开学考) 如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的表面积(其中∠BAC=30°)及其体积.19. (5分) (2020高一上·兰州期末) 如图,在四边形中,,,,,,求四边形绕直线旋转一周所成几何体的表面积及体积.20. (5分)根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.21. (15分) (2015高二下·集宁期中) 如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2 ,E、F 分别是AB、PD的中点.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求四面体PEFC的体积.22. (10分)一个长、宽、高分别为a、b、c长方体的体积是8cm2 ,它的全面积是32cm2 ,且满足 b2=ac,求这个长方体所有棱长之和.23. (10分) (2020高二上·遵义期中) 长方体的底面是边长为1的正方形,其外接球的表面积为 .(1)求该长方体的表面积;(2)求异面直线与所成角的余弦值.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、多选题 (共1题;共3分)答案:13-1、考点:解析:三、填空题 (共4题;共4分)答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:四、解答题 (共6题;共50分)答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:第21 页共21 页。
人教新课标A版高中数学必修2第一章空间几何体1.1空间几何体的结构同步训练(II)卷

人教新课标A版高中数学必修2 第一章空间几何体 1.1空间几何体的结构同步训练(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2017高二上·汕头月考) 若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积的2倍,则圆台的母线长是()A . 2B . 2.5C . 5D . 102. (2分) (2018高二上·东至期末) 在四棱锥中,底面,底面为矩形,,是上一点,若,则的值为()A .B .C .D . 43. (2分)过正棱台两底面中心的截面一定是()A . 直角梯形B . 等腰梯形C . 一般梯形或等腰梯形D . 矩形4. (2分) (2019高一上·中山月考) 下列说法正确的是()A . 在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;B . 底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;C . 棱台的上、下底面可以不相似,但侧棱长一定相等.D . 以直角三角形的一边所在直线为轴旋转所得的旋转体是圆锥.5. (2分)两个正方体M1、M2 ,棱长分别a、b,则对于正方体M1、M2有:棱长的比为a:b,表面积的比为a2:b2 ,体积比为a3:b3 .我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是()A . 两个球B . 两个长方体C . 两个圆柱D . 两个圆锥6. (2分)如图,正方形ABCD中,E,F分别是BC,CD的中点,M是EF的中点,现在沿AE,AF及EF把这个正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,则在四面体A﹣PEF中必有()A . PM⊥△AEF所在平面B . AM⊥△PEF所在平面C . PF⊥△AEF所在平面D . AP⊥△PEF所在平面7. (2分)(2017·肇庆模拟) 在棱长为1的正方体ABCD﹣A1B1C1D1中,AC∩BD=O,E是线段B1C(含端点)上的一动点,则①OE⊥BD1;②OE∥面A1C1D;③三棱锥A1﹣BDE的体积为定值;④OE与A1C1所成的最大角为90°.上述命题中正确的个数是()A . 1B . 2C . 3D . 48. (2分)将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括()A . 一个圆台、两个圆锥B . 一个圆柱、两个圆锥C . 两个圆台、一个圆柱D . 两个圆柱、一个圆台9. (2分)现有边长分别为三角形2个;边长分别为的三角形4个,边长分别为的三角形8个,边长分别为的三角形6个,用这些三角形(每个三角形至多出现在一个四面体中)为面拼成四面体,最多可以拼()A . 5个B . 4个C . 3个D . 2个10. (2分)下列命题正确的个数是()(1)有两个面互相平行,其余各面都是平行四边形的几何体是棱柱(2)棱柱的底面一定是平行四边形(3)棱锥被平面分成的两部分不可能都是棱锥(4)用平行于圆锥底面的平面去截这个圆锥,所得几何体叫做圆台.A . 0B . 1C . 2D . 311. (2分)已知某几何体的三视图如图所示,则该几何体体积为()A . 4+πB . 4+πC . 4+D . 4+3π12. (2分)三棱锥P﹣ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且这四个顶点都在半径为2的球面上,PA=2PB,则这个三棱锥的三个侧棱长的和的最大值为()A . 16B .C .D . 3213. (2分)点P是底边长为,高为2的正三棱柱表面上的动点,MN是该棱柱内切球的一条直径,则取值范围是()A . [0,2]B . [0,3]C . [0,4]D . [—2,2]14. (2分) (2016高二上·安徽期中) 圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A . 7B . 6C . 5D . 315. (2分)三角形ABC中,,AB=3,BC=1 ,以边AB所在直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体的体积为()A .B .C . .D .二、填空题 (共5题;共5分)16. (1分) (2019高一上·周口期中) 一个几何体的主视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.17. (1分) (2018高一下·衡阳期末) 已知长方体内接于球,底面是边长为的正方形,为的中点,平面,则球的表面积为________.18. (1分)正多面体只有________种,分别为________19. (1分) (2016高二上·湖南期中) 一个多面体内接于一个旋转体,其正视图、侧视图及俯视图都是一个圆的正中央含一个正方形,如图,若正方形的边长是1,则该旋转体的表面积是________.20. (1分)两个相同的正四棱锥组成如图所示的几何体,可放入棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有________ 个.三、解答题 (共5题;共25分)21. (5分)请给以下各图分类22. (5分)已知圆C和y轴相切,圆心在直线x﹣3y=0上,且被直线y=x截得的弦长为(1)求圆C的方程.(2)若圆心在第一象限,求过点(6,5)且与该圆相切的直线方程.23. (5分)一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h1 , h2 ,h3 ,求h1:h2:h3的值.24. (5分)如图所示是一个三棱台ABC-A1B1C1 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.25. (5分)如图,在正四棱台内,以小底为底面.大底面中心为顶点作一内接棱锥.已知棱台小底面边长为b,大底面边长为a,并且棱台的侧面积与内接棱锥的侧面面积相等,求这个棱锥的高,并指出有解的条件.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、答案:略6-1、答案:略7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、答案:略15-1、二、填空题 (共5题;共5分)16-1、答案:略17-1、18-1、答案:略19-1、20-1、三、解答题 (共5题;共25分) 21-1、答案:略22-1、23-1、答案:略24-1、答案:略25-1、答案:略第11 页共11 页。
高中数学1.1空间几何体结构练习新人教版A版必修2【含答案】

【1.1空间几何体结构】【选择题】:1.下列说法中,正确的个数是()<1>用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台<2>两个底面平行且相似,其余各面都是梯形的多面体是棱台<3>有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台A 0B 1C 2D 32.一个棱柱是正四棱柱的条件是()A 底面是正方形,有两个侧面是矩形B 底面是正方形,有两个侧面垂直于底面C 底面是正方形,相邻的两个侧面是矩形D 每个侧面都是全等的矩形的四棱柱3.截一个几何体,各个截面都是圆面,则这个几何体一定是()A 圆柱B 圆锥C 球D 圆台4.下列说法中正确的是()A 正方形绕一边旋转得到的旋转体是圆柱B 夹在圆柱的两个平行截面间的几何体还是一个旋转体C 圆锥截去一个小圆锥后剩余部分是圆柱D 通过圆台侧面上一点,有无数条母线5.下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成6.下列命题中不正确的是()A 用平行于圆锥底面的平面截圆锥,截面与底面之间的部分是圆台B 以直角梯形的一腰为轴,另一腰为母线的旋转面是圆台的侧面C 圆柱、圆锥、圆台的底面相似D 圆台的母线延长后交于一点7.圆台轴截面的两条对角线互相垂直,上、下底面的半径之比为3:4,高为142,则母线的长为()A 103B 25C 102D 208.给出下列命题:○1圆柱的底面是圆○2经过圆柱任意两条母线的截面是一个矩形○3连接圆柱上、下底面圆周上两点的线段是圆柱的母线○4圆柱的任意两条母线互相平行;其中正确的命题个数是( )A 1B 2C 3D 49.下列命题:○1各侧面都是全等的等腰三角形的三棱锥必是正三棱锥;○2三条侧棱都相等的 棱锥是正三棱锥○3底面是正三角形的棱锥是正三棱锥○4顶点在底面上的投影既是底面三角形的内心又是外心的棱锥是正三棱锥,其中正确的是( ) A 0个 B 1个 C 2个 D 3个10.正五棱柱中,不同在任何侧面而且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数有( ) A 20 B 15 C 12 D 10【填空题】11.一个圆锥的高为2,母线与轴的夹角为300,则圆锥的母线长为________12.如图,球O 的半径为2,圆O 1是一个小圆,O O 1 =2,A 、B 是圆O 上的两点, 若A 、B 两点间的球面距离是32π,则∠A O 1 B=________13.在半径等于13cm 的球内有一个截面,它的面积是25πcm 2,求球心到 这个截面的距离为_________.【计算题】14.圆台的上下底面半径分别为5cm 、10cm,母线长AB=20cm,从圆台母线 AB 的中点M 拉一条绳子绕圆台侧面转到A 点,求: (1)绳子的最短长度(2)在绳子最短时,上底圆周上的点到绳子的最短距离A15.已知正四棱锥V-ABCD的底面积为16,斜高为22,求它的高和侧棱长C第15题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【1.1空间几何体结构】
【选择题】:
1.下列说法中,正确的个数是()
<1>用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台
<2>两个底面平行且相似,其余各面都是梯形的多面体是棱台
<3>有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台
A 0
B 1
C 2
D 3
2.一个棱柱是正四棱柱的条件是()
A 底面是正方形,有两个侧面是矩形
B 底面是正方形,有两个侧面垂直于底面
C 底面是正方形,相邻的两个侧面是矩形
D 每个侧面都是全等的矩形的四棱柱
3.截一个几何体,各个截面都是圆面,则这个几何体一定是()
A 圆柱
B 圆锥
C 球
D 圆台
4.下列说法中正确的是()
A 正方形绕一边旋转得到的旋转体是圆柱
B 夹在圆柱的两个平行截面间的几何体还是一个旋转体
C 圆锥截去一个小圆锥后剩余部分是圆柱
D 通过圆台侧面上一点,有无数条母线
5.下列说法错误的是()
A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成
B 一个圆台可以由两个圆台拼合而成
C 一个圆锥可以由两个圆锥拼合而成
D 一个四棱台可以由两个四棱台拼合而成
6.下列命题中不正确的是()
A 用平行于圆锥底面的平面截圆锥,截面与底面之间的部分是圆台
B 以直角梯形的一腰为轴,另一腰为母线的旋转面是圆台的侧面
C 圆柱、圆锥、圆台的底面相似
D 圆台的母线延长后交于一点
7.圆台轴截面的两条对角线互相垂直,上、下底面的半径之比为3:4,高为142,则母线的长为()
A 103
B 25
C 102
D 20
8.给出下列命题:○1圆柱的底面是圆○2经过圆柱任意两条母线的截面是一个矩形○3连接圆柱上、下底面圆周上两点的线段是圆柱的母线○4圆柱的任意两条母线互相平行;
最新K12
最新K12
其中正确的命题个数是( )
A 1
B 2
C 3
D 4
9.下列命题:
○
1各侧面都是全等的等腰三角形的三棱锥必是正三棱锥;○2三条侧棱都相等的 棱锥是正三棱锥○3底面是正三角形的棱锥是正三棱锥○4顶点在底面上的投影
既是底面三角形的内心又是外心的棱锥是正三棱锥,其中正确的是( ) A 0个 B 1个 C 2个 D 3个
10.正五棱柱中,不同在任何侧面而且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数有( ) A 20 B 15 C 12 D 10
【填空题】
11.一个圆锥的高为2,母线与轴的夹角为300
,则圆锥的母线长为________
12.如图,球O 的半径为2,圆O 1是一个小圆,O O 1 =2,A 、B 是圆O 上的两点, 若A 、B 两点间的球面距离是
3
2π
,则∠A O 1 B=________
13.在半径等于13cm 的球内有一个截面,它的面积是
这个截面的距离为_________.
【计算题】
14.圆台的上下底面半径分别为5cm 、10cm,母线长AB=20cm,从圆台母线 AB 的中点M 拉一条绳子绕圆台侧面转到A 点,求: (1)绳子的最短长度
(2)在绳子最短时,上底圆周上的点到绳子的最短距离
A
15.已知正四棱锥V-ABCD的底面积为16,斜高为22,求它的高和侧棱长
C
第15题
最新K12。