(完整版)1空间几何体的结构练习题

合集下载

高中数学人教课标实验A版必修2第一章《空间几何体的结构》同步练习(附答案)

高中数学人教课标实验A版必修2第一章《空间几何体的结构》同步练习(附答案)

《空间几何体的结构》同步练习一、考点分析三视图是新课程改革中出现的内容,是新课程高考的热点之一,几乎每年都考,同学们要予以足够的重视.在高考中经常以选择、填空题的形式出现,属于基础或中档题,但也要关注三视图以提供信息为目的,出现在解答题中.这部分知识主要考查学生的空间想象能力与计算求解能力.二、典型例题知识点一:柱、锥、台、球的结构特征例1.下列叙述正确的是()①有两个面平行,其余各面都是平行四边形的几何体叫棱柱.②两个底面平行且相似,其余各面都是梯形的多面体是棱台.③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.④直角三角形绕其一条边旋转得到的旋转体是圆锥.⑤直角梯形以它的一条垂直于两底边的腰所在的直线为旋转轴,其余三边旋转形成的面围成的旋转体叫圆台.⑥用一个平面去截圆锥,底面和截面之间的部分是圆台.⑦通过圆锥侧面上一点,有无数条母线.⑧以半圆的直径所在直线为旋转轴,半圆面旋转一周形成球体.A.①②③④⑤⑥⑧B.①③④⑦⑧C.①②⑤⑧D.⑤思路分析:遇到概念判断问题,一定要在理解透彻相关概念的基础上,仔细分析,如果判断它是正确的,必须能紧扣定义,而不是模棱两可地去作判断;如果判断它是错误的,只需找到一个反例即可.解答过程:如图所示,由图(1)可知①是错误的;由图(2)可知②③是错误的;由图(3)可知④是错误的;由图(4)可知⑥是错误的.因为通过圆锥侧面上一点和圆锥的顶点只能连一条射线,所以“通过圆锥侧面上一点,有无数条母线.”是错误的,即⑦是不正确的.以半圆的直径所在直线为旋转轴,半圆旋转一周形成的应该是球面,半圆面旋转一周形成的才是球体.所以⑧是错误的.所以只有⑤是正确的.故应选D.解题后的思考:在作判断的时候没有严格的根据定义进行多角度分析,而是只抓住定义中的某一点就作出判断,容易导致错误.知识点二:组合体例2.如图,下列组合体是由哪几种简单几何体组成的?解答过程:(1)由一个三棱锥和一个四棱锥组成,为左右结构(2)由两个三棱锥组成,为上下结构(3)由圆锥和圆台组成,为上下结构知识点三:柱、锥的侧面展开图例3.小明在一个正方体盒子的每个面都写有一个字母,分别是:A、B、C、D、E、F,其平面展开图如图所示,那么在该正方体盒子中,和“A”相对的面所写的字母是哪一个?思路分析:在每个格子中标明你所想象的面的位置,如将A 格标明“上”,将B格标明“前”等等.解答过程:为字母“E”解题后的思考:本题突出考查了学生将正方体各面展开图复原为正方体的空间想象能力.例4.如图所示,为一个封闭的立方体,在它的六个面上标出A ,B ,C ,D ,E ,F 这六个字母,现放成下面三种不同的位置,所看见的表面上的字母已标明,则字母A ,B ,C 对面的字母分别是( )A .D ,E ,FB .F ,D ,EC .E ,F ,D D .E ,D ,F思路分析:本题处理方法比较灵活,要将几个图结合起来一起分析.解答过程:由(1)(2)两个图知,A 与B ,C ,D 相邻,结合第(3)个图知,B ,C 与F 共顶点,所以A 的对面为F ,同理B ,C 的对面分别为D ,E ,故选择B .解题后的思考:本题考查推理能力以及空间想象能力.也可先结合图(1)(3)进行判断.例5.用长和宽分别是π3和π的矩形硬纸卷成圆柱的侧面,求圆柱的底面半径?思路分析:要注意哪条边是圆柱的母线,哪条边是圆柱底面的圆周.解答过程:设圆柱底面圆的半径为r ,由题意可知矩形长为底面圆的周长时,r ππ23=,解得23=r .矩形宽为底面圆的周长时,r ππ2=,解得21=r .故圆柱的底面半径为23或21.解题后的思考:本题学生经常会丢解,即主观认为只有图中所示的情况,即以π3作为底面周长,而忽视了它也可作为母线这种情况.知识点四 旋转体中的有关计算例6. 一个圆台的母线长cm 12,两底面面积分别为24cm π和225cm π,求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.思路分析:通过作截得此圆台的圆锥的轴截面,构造直角三角形与相似三角形求解.解答过程:(1)作OA H A ⊥1242=∴=r r ππ 5252=∴=R R ππ3=∴AH153312221=-=∴H A(2)11O VA ∆ 与O VA ∆相似 AO O A VA VA 111=∴20=∴VA解题后的思考:通过构造旋转体的轴截面,将立体问题转化为平面问题.例7.已知球的两个平行截面的面积分别为π5和π8,且距离为3,求这个球的半径.思路分析:两截面的相互位置可能出现两种情况,一种是在球心O 的同侧,另一种是在球心O 的异侧.解答过程:(1)当两截面在球心O 的同侧时,如图所示,设这两个截面的半径分别为21,r r ,球心O 到截面的距离分别为21,d d ,球的半径为R .8,5,8,522212221==∴=⋅=⋅r r r r ππππ .又222221212d r d r R +=+= ,321222221=-=-∴r r d d ,即3))((2121=+-d d d d .又321=-d d ,⎩⎨⎧=+=-∴,1,32121d d d d 解得⎩⎨⎧-==.1,221d d又∴>,02d 这种情况不成立.(2)当两截面在球心O 的异侧时,321=+d d , 由上述解法可知3))((2121=+-d d d d ,⎩⎨⎧=-=+∴,1,32121d d d d 解得⎩⎨⎧==.1,221d d 3452121=+=+=∴d r R .综上所述,这个球的半径为3.解题后的思考:同学们要注意不要只对同侧的情况进行讨论,而忽略对另一种位置关系的讨论.知识点五:画几何体的三视图例8.画出如图所示的三棱柱的三视图.思路分析:在正视图中,中间的竖线看不到,应画成虚线;侧视图是从左侧看三棱柱投射到竖直的正对着的平面上的正投影,所以不是三棱柱的一个侧面,而应该是过底面正三角形的一条高线的矩形.解答过程:解题后的思考:画三视图的时候要做到“长对正、宽相等、高平齐”,还要注意实线与虚线的区别.知识点六:三视图中的推测问题例9.根据下列三视图,说出各立体图形的形状.思路分析:三视图是从三个不同的方向看同一物体得到的三个视图.正视图反映物体的主要形状特征,主要体现物体的长和高,不反映物体的宽.而俯视图和正视图共同反映物体的长相等.侧视图和俯视图共同反映物体的宽相等.据此就不难得出该几何体的形状.解答过程:(1)圆台;(2)正四棱锥;(3)螺帽.解题后的思考:三视图的画法里要注意“长对正”,“高平齐”,“宽相等”,另外,还要熟悉基本空间几何体的三视图.知识点七:直观图的还原与计算问题例10.已知△A′B′C′是水平放置的边长为a 的正三角形ABC 的斜二测水平直观图,那么△A′B′C′的面积为_________.思路分析:先根据题意,画出直观图,然后根据△A′B′C′直观图的边长及夹角求解.解答过程:如图甲、乙所示的实际图与直观图.a OC C O a AB B A 4321,==''==''.在图乙中作C′D′⊥A′B′于D′,则a C O D C 8622=''=''.所以2166862121a a a D C B A S C B A =⨯⨯=''⋅''='''∆.故填2166a . 解题后的思考:该题求直观图的面积,因此应在直观图中求解,需先求出直观图的底和高,然后用三角形面积公式求解.本题旨在考查同学们对直观图画法的掌握情况.例11.如图所示,正方形O′A′B′C′的边长为cm 1,它是水平放置的一个平面图形的直观图,则原图形的周长是____________.思路分析:先根据题意,由直观图画出原图形解答过程:逆用斜二测画法的规则画出原图如下图所示,由BC//OA 且BC=OA ,易知OABC 为平行四边形.在上图中,易求O′B′=2,所以OB =22.又OA =1,所以在Rt △BOA 中,31)22(22=+=AB .故原图形的周长是)cm (8)13(2=+⨯,应填cm 8.解题后的思考:该题考查的是直观图与原图形之间的关系,及逆用斜二测画法的规则.。

专题14 空间几何体的结构、面积与体积(练)【解析版】

专题14 空间几何体的结构、面积与体积(练)【解析版】

第一篇热点、难点突破篇专题14空间几何体的结构、面积与体积(练)【对点演练】一、单选题1.(2022秋·北京·高三统考阶段练习)已知圆柱的上、下底面的中心分别为1O,2O,过直O O的平面截该圆柱所得的截面是面积为12的正方形,则该圆柱的体积为()线12A.B.12πC.D.则该圆台的体积为()A.36πB.40πC.42πD.45πOO的长度===,1O为ABC的外接圆的圆心,球O的表面积为64π,则1AB BC AC为()B.2C.D.3A【答案】C【分析】由已知求得球O的半径4r=,即可求R=,根据正弦定理求出ABC外接圆半径2出结果.O的半径为r,球O的半径为R.【详解】设圆1依题意得ABC 为等边三角形,则由正弦定理得O 的表面积为如图,根据球的截面性质得2d OA ==的扇形,则该圆锥的侧面积为( ) A .π B .3π2C D .点作球O 的截面,则最小截面的面积为( ) A .3π B .4πC .5πD .6π子,其形状可以看成一个正四面体.广东流行粽子里放蛋黄,现需要在四角状粽子内部放入一个蛋黄,蛋黄的形状近似地看成球,当这个蛋黄的表面积是9π时,则该正四面体的高的最小值为()A.4B.6C.8D.10实物图,石碾子主要由碾盘、碾滚(圆柱形)和碾架组成.碾盘中心设竖轴(碾柱),连碾架,架中装碾滚,以人推或畜拉的方式,通过碾滚在碾盘上的滚动达到碾轧加工粮食作物的目的.若推动拉杆绕碾盘转动2周,碾滚的外边缘恰好滚动了5圈,碾滚与碾柱间的距离忽略不计,则该圆柱形碾滚的高与其底面圆的直径之比约为()A.3:2B.5:4C.5:3D.4:3一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥.若一个直角圆锥的侧面积为,则该圆锥的体积为( )A .B .C .D .9π中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为h (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),若458h r =,则S 占地球表面积的百分比约为( ) A .26% B .34% C .42% D .50%【答案】C【分析】设C 表示卫星,过CO 作截面,截地球得大圆O ,过C 作圆O 的切线,CA CB ,线段CO 交圆O 于E ,得AOC α∠=,在直角三角形中求出cos α后,可计算两者面积比.【详解】设C 表示卫星,过CO 作截面,截地球得大圆O ,过C 作圆O 的切线,CA CB ,线段CO 交圆O 于E ,如图,则AOC α∠=,r OE =,CE h =,OA CA ⊥,二、填空题10.(2022秋·江苏徐州·高三期末)已知圆柱的高为8,该圆柱内能容纳半径最大的球的表面积为36π,则圆柱的体积为______.【答案】72π【分析】先分析半径最大的球不可能为圆柱的内切球,所以此球是与圆柱侧面与下底面相切的球,就能求出圆柱底面半径,然后根据圆柱的体积公式可得.【详解】圆柱内能容纳半径最大的球的表面积为36π,设此球半径为r,则24π36π3r r=⇒=如果圆柱有内切球,又因为圆柱的高为8,所以内切球半径为43>,说明这个圆柱内能容纳半径最大的球,与圆柱侧面和下底面相切,与上底面相离,易得圆柱底面半径为3,圆柱的体积为2π3872π⋅⨯=故答案为:72π【冲刺提升】一、单选题1.(2022秋·广东东莞·高三统考期末)已知一个装满水的圆台形容器的上底半径为6,下底半径为1,高为,若将一个铁球放入该容器中,使得铁球完全没入水中,则可放入的铁球的体积的最大值为()A.B.C D.108π【答案】B【分析】作出体积最大时的剖面图,分析出此时圆与上底,两腰相切,建立合适直角坐标系,()53,05<<t=-533)32332=模拟预测)某工厂要生产容积为为侧面成本的2倍,为使成本最小,则圆柱的高与底面半径之比应为()A.1B.1C.2D.4 2圆柱上下底的总面积为3.(2022·浙江·模拟预测)如图,正方体1111的棱长为1,,E F 分别为棱BC ,11的中点,则三棱锥1B AEF -的体积为( )A .524B .316C .29D .181AB ES =因为正方体ABCD A B C D -的棱长为1, 所以111(,1,0),(0,1,1),(1,22AE AB AF =-==-的法向量为(,,)n x y z =112n AE x n AB y z ⎧⋅=-⎪⎨⎪⋅=+⎩所以(2,1,1)n =-,F 平面1AB E 的距离为2AF n n-+⋅=又因为1AB =,121122AB EAB S⎫==⋅⎪⎭所以三棱锥故选:AF ,G ,H 分别是SA ,SB ,BC ,AC 的中点,则四边形EFGH 面积的取值范围是( ) A .()0,∞+ B .⎫∞⎪⎪⎝⎭ C .⎫+∞⎪⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭【答案】B【分析】画出图形,求出,EF HG ,说明EFHG 是矩形,结合图形,说明S 点在ABC 平面时,面积最小,求出即可得到范围 【详解】如图所示:由正三棱锥S ABC -的底面边长是2,因为E 、F 、G 、H 分别是SA 、SB 、BC 、AC 的中点,设ABC 的中心为SC OA >=所以EFGH 所以四边形且4BC =,6BD =,面ABC 与面BCD 夹角正弦值为1,则空间四边形ABCD 外接球与内切球的表面积之比为( )A B C D 【答案】C【分析】根据空间四边形ABCD 的线面关系可得DB ⊥平面ABC ,则空间四边形ABCD 可以内接于圆柱中,根据圆柱的外接球半径求得空间四边形ABCD 的外接球半径R ,又根据内切球的几何性质用等体积法可求得空间四边形ABCD 的内切球半径r ,即可得空间四边形ABCD 外接球与内切球的表面积之比.【详解】解:面ABC 与面BCD 夹角正弦值为1,∴面ABC ⊥面BCD ,又面ABC ⋂面BCD BC =,DB BC DB ⊥⊂面BCD ,DB ∴⊥平面ABC ,则空间四边形ABCD 可以内接于圆柱12O O 中,如下图所示:点在上底面圆周上,ABC三个顶点在下底面圆周上,则圆柱O O的外接球即空间四边连接OA,则球心为为正ABC4sin6032BC=︒1111333ABC ABD ADC BCDS r S r S r S r⋅+⋅+⋅+⋅,,所以()22142132832ADCS=⨯⨯-=,44612ABC ABD ADC BCDS S S S⨯⨯⨯=+++⨯外接球与内切球的表面积之比为6.(2022秋·湖南长沙·高三长郡中学校考阶段练习)三棱锥A BCD -中,AB BC AD CD BD AC ======,则三棱锥A BCD -的外接球的表面积为( )A .20πB .28πC .32πD .36π23AB AD ==且E 为BD 中点,AE BD ∴⊥,AE AB ∴=又AE CE =120, 过BCD △的外心作平面同理过ABD △l l O ''=,易知连接O E ',O 为BCD △又在OO E '中,603=,∴得27O C O O ''=,即外接球半径7=,故外接球表面积28π=.故选:B7.(2022秋·天津河东·高三统考期末)一个球与一个正三棱柱(底面为等边三角形,侧棱与底面垂直)的两个底面和三个侧面都相切,若棱柱的体积为)A.16πB.4πC.8πD.32π8.(2022秋·黑龙江牡丹江·高三牡丹江一中校考期末)如图截角四面体是一种半正八面体,可由四面体经过适当的截角,即截去四面体的四个顶点所产生的多面体.如图,将棱长为3的正四面体沿棱的三等分点作平行于底面的截面得到所有棱长均为1的截角四面体.则该截角四面体的表面积是______.正六边形每个内角均为2π111A B C 中,点P 在棱1BB 上,且1PA PC ⊥,当1APC 的面积取最小值时,三棱锥-P ABC 的外接球的表面积为______.【答案】28π时,1APC 面积取得最小值,补形后三棱锥的外接球,求出外接球半径和表面积【详解】由勾股定理得:AB =,则16PA =(7x y ++1APC S =2169y +,即2x =其中长方体的外接球的直径为,平面PAB ⊥平面PCD ,则P ABCD -体积的最大值为__________.PO ⊥平面ABCD ,PE CD⊥CD平面POE∴⊥,CD OE底面ABCD是边长为∴⊥,CD BCOE⊂平面ABCD OE BC∴,同理可得:OF∥O E F三点共线故,,∥,且有EF BC设平面PAB⋂平面∥AB CD AB,∴∥∥l AB⊥PE CD平面PAB∴⊥平面PEPF⊂平面∴⊥PE PF不妨设PE22∴+x y且2OP=-即2y m11.(2023·广西梧州·统考一模)边长为1的正方形ABCD 中,点M ,N 分别是DC ,BC 的中点,现将ABN ,ADM △分别沿AN ,AM 折起,使得B ,D 两点重合于点P ,连接PC ,得到四棱锥P AMCN -.(1)证明:平面APN ⊥平面PMN ;(2)求四棱锥P AMCN -的体积. ,所以PMN 为直角三角形,即PMN S=111111222AMN ABN ADM CMN ABCD S S S S S =---=-⨯⨯⨯-⨯正方形设点P 到平面AMN 的距离为h ,由A PMN P V V --=1133PMN AMN S PA S h ⋅=⋅△△,即13188h ⨯=,得h =)AMN MCN S S h +=AMCN 的体积为全国·高三对口高考)如题图,是圆锥底面的圆心,ABC 是底面的内接正三角形.P 为DO 上一点,90APC ∠=︒.(1)求证:PC ⊥平面PAB ;(2)若DO =.求三棱锥-P ABC 的体积. 因为ABC 是底面的内接正三角形,CO AB ⊥,PO OC ⋂AB ⊥平面PC ⊂平面AB PC ⊥,PA AB A =,⊥平面PAB(2)解:设圆锥的母线为l,底面半径为r,则圆锥的侧面积为ππ,即,=603所以,在等腰直角三角形APC。

数学(文)专题提分训练:空间几何体的结构、三视图和直观图(含答案解析)

数学(文)专题提分训练:空间几何体的结构、三视图和直观图(含答案解析)

空间几何体的结构、三视图和直观图高考试题考点一 空间几何体的结构1.(2013年辽宁卷,文10)已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB=3,AC=4,AB ⊥AC,AA 1=12,则球O 的半径为( ) (A )3172(B)210 (C )132(D)310解析:如图所示,由题得BC=5,BO 2=52,OO 2=6,则球O 的半径 22562⎛⎫+ ⎪⎝⎭1694132. 故选C.答案:C2.(2012年福建卷,文4)一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( )(A )球 (B )三棱锥 (C )正方体 (D )圆柱 解析:球、正方体的三视图形状都相同,大小均相等,首先排除选项A 和C;当三棱锥的三条侧棱两两垂直且相等时,其三视图的形状都相同,大小均相等,故排除选项B,不论圆柱如何放置,其三视图的形状都不会完全相同。

答案:D3.(2010年辽宁卷,文16)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为 .解析:由三视图知多面体为四棱锥,底面为边长为2的正方形,有一条长度为2的侧棱垂直于底面,因此最长的一条棱长为()222222++=23.答案:23考点二空间几何体的三视图与直观图2. (2013年山东卷,文4)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥侧面积和体积分别是()(A)45,8 (B)45,83(C)4(5+1),83(D)8,8解析:如图所示,四棱锥的直观图,分别取底边AD、BC中点E、F,则△PEF即对应正视图,由正视图数据知,四棱锥高h=2。

则V=13×2×2×2=83,侧面△PBC底边BC上高5则S△PBC=12×2×55即四棱锥侧面积为45。

故选B。

答案:B2.(2013年新课标全国卷Ⅱ,文9)一个四面体的顶点在空间直角坐标系O xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )解析:在空间直角坐标系中作出四面体OABC的直观图如图所示,作顶点A、C在zOx平面的投影是A′,C′,可得四面体的正视图。

第8章第1节 空间几何体及结构特征练习和答案

第8章第1节 空间几何体及结构特征练习和答案

第 1 节 空间几何体及结构特征
1. C 2. C 3. C 4. A 5. D 6. D 7.ABD 由圆锥、圆台、圆柱的定义可知 AB 两选项不正确,C 正 确.对于选项 D,只有用平行于圆锥底面的平面去截圆锥, 才能得到一个圆锥和一个圆台,故 D 不正确. 8.ABC 平行六面体的两个相对侧面也可能是矩形,故 A 错;对等腰三 角形的腰是否为侧棱未作说明(如图),故 B 错;若底面不是矩 形,则 C 错;由线面垂直的判定,可知侧棱垂直于底面,故 D 正确.综上,命题 ABC 不正确. 9. 2 2 10. ②③④ 11. 12 由直观图画法规则,可得△AOB 是一个直角三角形,直角边 OA=OA′=6,OB=2O′B′=4,∴S△AOB=12OA·OB=12×6×4=12. 12. 2+ 2
△OAB 的直观图,则△OAB 的面积是________.
12.(2019·河北)一块多边形的菜地,它水平放置的平面图形的斜二测直观图是直角 梯 形 ( 如 图 ), ∠ ABC = 45° , AB = AD = 1 , DC ⊥ BC , 则 这 块 菜 地 的 面 积 为 _________.
6. 如图,一个水平放置的平面图形的直观图(斜二测画法) 是一个底角为 45°、腰和上底长均为 2 的等腰梯形,则这 个平面图形的面积是( ) A.2+ 2 B.1+ 2 C.4+2 2 D.8+4 2 二、多项选择题 7.以下选项中不正确的有( ) A.以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥; B.以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台; C.圆柱、圆锥、圆台的底面都是圆面; D.一个平面截圆锥,得到一个圆锥和一个圆台. 8. 下列四个命题中不正确的有( ) A.有两个侧面是矩形的立体图形是直棱柱; B.侧面都是等腰三角形的棱锥是正棱锥; C.侧面都是矩形的直四棱柱是长方体; D.底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱. 三、填空题 9.一水平放置的平面四边形 OABC,用斜二测画法画出它的直观图 O′A′B′C′如图所 示,此直观图恰好是一个边长为 1 的正方形,则原平面四边形 OABC 面积为 ________.

8.1 空间几何体的结构、三视图和直观图 练出高分(含答案解析)

8.1  空间几何体的结构、三视图和直观图  练出高分(含答案解析)

§8.1空间几何体的结构、三视图和直观图A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.给出四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是() A.0 B.1 C.2 D.3答案 A解析反例:①直平行六面体底面是菱形,满足条件但不是正棱柱;②底面是等腰梯形的直棱柱,满足条件但不是长方体;③④显然错误,故选A.2.(2012·福建)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱答案 D解析考虑选项中几何体的三视图的形状、大小,分析可得.球、正方体的三视图形状都相同、大小均相等,首先排除选项A和C.对于如图所示三棱锥O-ABC,当OA、OB、OC两两垂直且OA=OB=OC时,其三视图的形状都相同,大小均相等,故排除选项B.不论圆柱如何设置,其三视图的形状都不会完全相同,故答案选D.3.(2011·课标全国)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()答案 D解析由几何体的正视图和俯视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形,故应选D.4.如图是一个物体的三视图,则此三视图所描述物体的直观图是()答案 D解析由俯视图可知是B和D中的一个,由正视图和侧视图可知B错.二、填空题(每小题5分,共15分)5.一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案6 2解析由斜二测画法,知直观图是边长为1的正三角形,其原图是一个底为1,高为6的三角形,所以原三角形的面积为6 2 .6. 如图所示,E 、F 分别为正方体ABCD —A 1B 1C 1D 1的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面DCC 1D 1上的投 影是________.(填序号)答案 ②解析 四边形在面DCC 1D 1上的投影为②,B 在面DCC 1D 1上的投影为C ,F 、E 在面DCC 1D 1上的投影应在边CC 1与DD 1上,而不在四边形的内部,故①③④错误. 7. 图中的三个直角三角形是一个体积为20 cm 3的几何体的三视图,则h =________cm.答案 4解析 如图是三视图对应的直观图,这是一个三棱锥,其中SA ⊥平面ABC , BA ⊥AC .由于V =13S △ABC ·h =13×12×5×6×h =5h ,∴5h =20,∴h =4.三、解答题(共22分)8. (10分)一个几何体的三视图及其相关数据如图所示,求这个几何体的表面积.解 这个几何体是一个圆台被轴截面割出来的一半.根据图中数据可知圆台的上底面半径为1,下底面半径为2,高为3,母线长为2,几何体的表面积是两个半圆的面积、圆台侧面积的一半和轴截面的面积之和,故这个几何体的表面积为S =12π×12+12π×22+12π×(1+2)×2+12(2+4)×3=11π2+3 3.9. (12分)已知一个正三棱台的两底面边长分别为30 cm 和20 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,正三棱台ABC —A1B 1C 1中,O 、O 1分别为两底面中 心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高. 由题意知A 1B 1=20,AB =30, 则OD =53,O 1D 1=1033,由S 侧=S 上+S 下,得12×(20+30)×3DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中,O 1O =DD 21-(OD -O 1D 1)2=43, 所以棱台的高为4 3 cm.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2011·山东)右图是长和宽分别相等的两个矩形,给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、 俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的 个数是( )A .3B .2C .1D .0答案 A解析 底面是等腰直角三角形的三棱柱,当它的一个矩形侧面放置在水平面上时,它的正视图和俯视图可以是全等的矩形,因此①正确;若长方体的高和宽相等,则存在满足题意的两个相等的矩形,因此②正确;当圆柱侧放时(即侧视图为圆时),它的正视图和俯视图可以是全等的矩形,因此③正确.2. 一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为()答案 C解析依题意可知该几何体的直观图如下图所示,故其俯视图应为C.3.在棱长为1的正方体ABCD—A1B1C1D1中,过对角线BD1的一个平面交AA1于E,交CC1于F,得四边形BFD1E,给出下列结论:①四边形BFD1E有可能为梯形;②四边形BFD1E有可能为菱形;③四边形BFD1E在底面ABCD内的投影一定是正方形;④四边形BFD1E有可能垂直于平面BB1D1D;⑤四边形BFD1E面积的最小值为6 2 .其中正确的是()A.①②③④B.②③④⑤C.①③④⑤D.①②④⑤答案 B解析四边形BFD1E为平行四边形,①显然不成立,当E、F分别为AA1、CC1的中点时,②④成立,四边形BFD1E在底面的投影恒为正方形ABCD.当E、F分别为AA1、CC1的中点时,四边形BFD1E的面积最小,最小值为6 2 .二、填空题(每小题5分,共15分)4. 在如图所示的直观图中,四边形O′A′B′C′为菱形且边长为2 cm,则在xOy坐标系中,四边形ABCO为________,面积为________ cm2.答案矩形8解析由斜二测画法的特点,知该平面图形的直观图的原图,即在xOy坐标系中,四边形ABCO 是一个长为4 cm ,宽为2 cm 的矩形,所以四边形ABCO 的面积为8 cm 2. 5. 用半径为r 的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高是________.答案32r 解析 由题意可知卷成的圆锥的母线长为r ,设卷成的圆锥的底面半径为r ′,则2πr ′=πr ,所以r ′=12r ,所以圆锥的高h =r 2-⎝⎛⎭⎫12r 2=32r .6. 如图,点O 为正方体ABCD —A ′B ′C ′D ′的中心,点E 为面B ′BCC ′的中心,点F 为B ′C ′的中点,则空间四边形D ′OEF 在 该正方体的各个面上的投影可能是________(填出所有可能的序号).答案 ①②③解析 空间四边形D ′OEF 在正方体的面DCC ′D ′上的投影是①;在面BCC ′B ′上的投影是②;在面ABCD 上的投影是③,故填①②③. 三、解答题7. (13分)已知正三棱锥V —ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积. 解 (1)直观图如图所示:(2)根据三视图间的关系可得BC =23,∴侧视图中VA =42-⎝⎛⎭⎫23×32×232=23,∴S △VBC =12×23×23=6.。

2023年高考数学一轮复习精讲精练(新高考专用)专题33:空间几何体(练习版)

2023年高考数学一轮复习精讲精练(新高考专用)专题33:空间几何体(练习版)

专题33:空间几何体精讲温故知新一.空间几何体的结构1.多面体一般地,由若干个平面多边形围成的几何体叫做多面体。

围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。

2.旋转体一条平面曲线,包括直线,绕它所在平面内的一条定直线旋转所成的曲面叫做旋转面。

封闭的旋转面围成的几何体叫做旋转体。

这条定直线叫做旋转体的轴。

3.棱柱一般地,有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

在棱柱中,两个互相平行的面叫做棱柱的底面,它们是全等的多边形,其余各面叫做棱柱的侧面,它们都是平行四边形,相邻两边的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点。

棱柱的底面可以是三角形、四边形、五边形,我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱。

一般地,我们把侧面垂直于底面的棱柱叫做直棱柱,侧面不垂直于底面的棱柱叫做斜棱柱,底面是正多边形的,直棱柱叫做正棱柱,底面是平行四边形的四棱柱,也叫做平行六面体。

4.棱锥一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

这个多边形面叫做棱锥的底面,有公共顶点的各个三角形面叫做棱锥的侧面,相邻两边的公共边叫做棱锥的侧棱,这侧面的公共顶点叫做棱锥的顶点。

棱锥,用表示顶点和各面各顶点的字母来表示,其中三棱锥又叫四面体,底面是正多边形并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥。

5.棱台用一个平行于圆锥底面的平面去截棱锥,我们把底面和截面之间那部分多面体叫做棱台。

在棱台中,原棱锥的底面和截面分别叫做棱台的下底面和上底面面,类似于棱柱、棱锥,棱台也有侧面、侧棱和顶点。

6.圆柱与矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体叫做圆柱。

旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面,叫做圆柱的底面,平行的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,平行于轴的边叫做圆柱侧面的母线。

空间几何体的结构练习题

空间几何体的结构练习题

空间几何体的结构1.图中的几何体可由一平面图形绕轴旋转360°形成,该平面图形是A .B .C .D .2.一个多边形沿垂直于它所在平面的方向平移一段距离可以形成的几何体是A.棱锥B.棱柱C.平面D.长方体3.六棱台是由一个几何体被平行于底面的一个平面截得而成,这个几何体是A.六棱柱B.六棱锥 C.长方体D.正方体4.若一个棱锥的各棱长均相等,则该棱锥一定不是A.三棱锥B.四棱锥C.五棱锥D.六棱锥5.给出下列命题:①有一条侧棱与底面两边垂直的棱柱是直棱柱;②底面为正多边形的棱柱为正棱柱;③顶点在底面上的射影到底面各顶点的距离相等的棱维是正棱锥;④A、B为球面上相异的两点,则通过A、B的大圆有且只有一个.其中正确命题的个数是()A.0个B.1个C.2个D.3个6.下列关于棱柱的说法中正确的是A.只有两个面相互平行B.所有棱都相等C.所有面都是四边形 D.各侧面都是平行四边形7.一长方体木料,沿下图所示平面EFGH截长方体,若AB⊥CD,那么以下四个图形是截面的是A .B .C .D .8.半圆以它的直径为旋转轴,旋转一周所成的曲面是A.半球B.球C.球面D.半球面9.轴截面为正三角形的圆锥称为等边圆锥,则等边圆锥的侧面积是底面积的倍.A.4 B.3 C.2 D .210.下列说法:①任何一个几何体都必须有顶点、棱和面;②一个几何体可以没有顶点;③一个几何体可以没有棱;④一个几何体可以没有面.其中正确的个数是A.1 B.2 C.3 D.411.直线绕一条与其有一个交点但不垂直的固定直线转动可以形成A.平面B.曲面C.直线D.锥面12.正方形绕其一条对角线所在直线旋转一周形成的几何体是A .B .C .D .13.若一个棱锥的每条侧棱在底面上的射影相等,每个侧面与底面所成的角也相等,则此棱锥为()A.正四面体B.正棱锥C.不是正棱锥D.不一定正棱锥14.下列命题中正确的是A.四棱柱是平行六面体B.直平行六面体是长方体C.六个面都是矩形的六面体是长方体D.底面是矩形的四棱柱是长方体15.下列说法正确的是A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱两个平行截面间的几何体还是一个旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面一点,有无数条母线16.一个棱柱至少有__个面,面数最少的棱柱,有_条棱,有__条侧棱,有_个顶点.17.圆柱、圆锥、圆台的轴截面分别是_____________、_____________、___________.18.下列命题中,正确的是_____________.(填序号)①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.19.一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为_____________.20.下列不正确的命题的序号是_____________.①有两个面平行,其余各面都是四边形的几何体叫棱柱②有两个面平行,其余各面都是平行四边形的几何体叫棱柱③有一个面是多边形,其余各面都是三角形的几何体叫棱锥④有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥.21.下列命题中错误的个数为①矩形绕任何一条直线旋转都可以围成圆柱;②圆柱的母线是连接圆柱上底面上一点和下底面上一点的直线;③圆柱的轴是过圆柱上、下底面圆的圆心的直线;④矩形任意一条边所在的直线都可以作为轴,其他边绕其旋转形成圆柱.A.1 B.2 C.3 D.4 22.在棱长为a的正方体中,与AD成异面直线且距离等于a的棱共有A.2条B.3条C.4条D.5条23.下述棱柱中为长方体的是A.各个面都是平行四边形的直棱柱B.对角面是全等矩形的四棱柱C.侧面都是矩形的直四棱柱D.底面是矩形的直棱柱24.在下列命题中正确命题的个数是(1)平行于圆锥某一母线的截面是等腰三角形;(2)平行于圆台某一母线的截面是等腰三角形;(3)过圆锥顶点的截面是等腰三角形;(4)过圆台上底面中心的截面是等腰三角形.A.4个B.3个C.2个D.1个25.下列说法中正确的是A.有两个面互相平行,其余各面都是平行四边形的几何体是棱柱B.用一个平面去截一个圆锥,只能得到一个圆锥和一个圆台C.有一个面是多边形,其余面都是三角形的几何体是棱锥D.将一个直角三角形绕其一条直角边旋转一周,所得圆锥母线长等于斜边长26.如图是一个无盖的正方体盒子展开后的平面图,A,B,C展开图是上的三点,则在正方体盒子中,∠ABC=_____________.27.一个红色的棱长为4cm的正方体,将其分割成64个棱长为1cm的小正方体,则得到的两面涂色和三面涂色的小正方体的总数为___________.。

空间几何体的结构特征习题(绝对物超所值)

空间几何体的结构特征习题(绝对物超所值)

空间几何体的结构特征1.在下列四个几何体中,它们的三视图(主视图、左视图、俯视图)中有且仅有两个相同,而一 个不同的几何体是( )A .(1)(2)(3)B .(2)(3)(4)C .(1)(3)(4)D .(1)(2)(4)2.如图,已知圆锥的底面半径为10r =,点Q 为半圆弧AB 的中点,点P 为母线SA 的中点.若PQ 与SO 所成角为4π,则此圆锥的全面积与体积分别为( )A .100051006,3ππB .10005100(16),3ππ+ C .100031003,3ππ D .10003100(13),3ππ+3.已知曲线24y x =-与x 轴的交点为,A B ,分别由,A B 两点向直线作垂线,垂足为,沿直线将平面折起,使ACD BCD ⊥平面平面,则四面体ABCD 的外接球的表面积为 ( )A .16πB .12πC .8πD .6π 4.多面体的三视图如图所示,则该多面体的体积为( )(单位cm ) A .3216 B .332C .216D . 32 5.如图,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是( ) A .13 B .7 C .433 D .3326.在四棱锥ABCD V -中,1B ,1D 分别为侧棱VB ,VD 的中点,则四面体11CD AB 的体积与四棱锥ABCD V -的体积之比为( )A .6:1B .5:1C .4:1D .3:1ACD y x =,C D y x=PSAQOBAV CB7.一个组合体的主视图和左视图相同,如图,其体积为,则图中的为A.4B.4.5C.5D.8.已知棱长为2的正方体的俯视图是一个面积为2的正方形,则该正方体的正视图的面积不可能等于 A.21- B.2 C.21+ D.22 9.已知直线l ,平面,,αβγ,则下列能推出//αβ的条件是 A.l α⊥,//l β B.//l α,//l β C.α⊥γ,γβ⊥ D.//αγ,//γβ10.如图,已知某品牌墨水瓶的外形三视图和尺寸,则该墨水瓶的容积为(瓶壁厚度忽见解析不计)A .π8+B .π48+C .π16+D .π416+11.已知某几何体的三视图如图所示,则该几何体的体积为 ( ) A . B . C . D . 12.多面体MN ABCD -的底面ABCD 矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为 ( )A .163B .6C .203 D .613.几何体的三视图如下,则它的体积是( )A.B .C .D .14.若三角形内切圆半径为r ,三边长分别为c b a ,,,则三角形的面积为)(21c b a r s ++=,根据类比思想,若四面体内切球半径为R ,四个面的面积分别为4321,,,S S S S ,则这个四面体的体积为( )A .)(614321S S S S R V +++=B .)(414321S S S S R V +++= C .)(314321S S S S R V +++= D .)(214321S S S S R V +++=373a π331612a π+3712a π333a π+332112 5.5x 22πx3415.若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( ) A .若//,,l n αβαβ⊂⊂,则//l n B .若,l n m n ⊥⊥,则//l m C .若,l αβα⊥⊂,则l β⊥ D .若,//l l αβ⊥,则αβ⊥16.三棱锥ABC -S 中,底面ABC 为等腰直角三角形,2,BC BA == 侧棱32SC SA ==,二面角B -AC -S 的余弦值为55,则此三棱锥外接球的表面积为( ) A.π16 B.π12 C.π8 D.π417.已知c b ,,a 是三条不同的直线,命题:“a ∥b 且c b c a ⊥⇒⊥”是真命题,如果把c b ,,a 中的两条直线换成两个平面,在所得3个命题中,真命题的个数为( ) A.0 B.1 C.2 D.319.三棱柱111ABC A B C -的侧棱与底面垂直,11AA AB AC ===,AB AC ⊥,N 是BC 的中点,点P 在11A B 上,且满足111A P A B λ=,直线PN 与平面ABC 所成角θ的正切值取最大值时λ的值为( ) A.12 B.22C.32D.255 20.在四面体ABCD 中,AB AD ⊥,1AB AD BC CD ====,且平面ABD ⊥平面BCD ,M 为AB 中点,则CM 与平面ABD 所成角的正弦值为( ) A.22B.33C.32D.6321.在长方体1111ABCD A B C D -中,13,4,5AB AD AA ===,O 为1D C 与1DC 的交点,则三棱锥O ABC -的体积为( )A.5 B.10 C.15 D.3022.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( ) A . B . C . D .(2428)π-3cm 24.若是互不相同的空间直线,是不重合的平面,则下列命题正确的是( ) A. B.C. D. 26.一个几何体的三视图如图,则该几何体的体积为 A .π B .π2 C .π3 D .π6,//l l αβαβ⊥⇒⊥,//l n m n l m ⊥⊥⇒,l l αβαβ⊥⊂⇒⊥//,,//l n l n αβαβ⊂⊂⇒,αβ,,l m n 3cm (1828)π-3cm (2420)π-3cm (1820)π-侧视图正视图俯视图11221=R28.某几何体的三视图如图所示,则该几何体的体积为A.π2 B.2π2 C.3πD.23π29.已知三角形所在平面与矩形所在平面互相垂直,,,若点都在同一球面上,则此球的表面积等于A. B.. C.π12 D.π2030.某几何体三视图如图所示,其中三角形的三边长与圆的直径均为2,则该几何体体积为()A.32833π+B.3233π+C.4333π+D.433π+31.一个几何体的三视图如图所示,其中俯视图是一个正方形,则这个几何体的体积是()A.64 B.32 C.16 D.833.如图,网格纸上小正方形的边长为,粗线画出的是某多面体的三视图,则该多面体的体积为()A. B. C. D.34.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是A.|BM|是定值 B.点M在某个球面上运动C.存在某个位置,使DE⊥A1 C D.存在某个位置,使MB//平面A1DE35.如图所示是一个几何体的三视图,则这个几何体外接球的表面积为()A.8π B.16π C.32π D.64π36.一个几何体的三视图如图所示,那么这个几何体的体积为()A.16πB.6πC.4πD.864332336432313π43πP A B C D、、、、90APD︒∠=2PA PD AB===ABCDPAD俯视12411侧视12411主视37.某三棱锥的正视图如图所示,则在下列图①②③④中,所有可能成为这个三棱锥的俯视图的是( )① ② ③ ④(A )①②③ (B )①②④ (C )②③④ (D )①②③④ 39.设m 、n 是两条不同的直线,α、β是两个不同的平面,则( ) A .若n m ⊥,α//n ,则α⊥m B .若β//m ,αβ⊥,则α⊥mC .若β⊥m ,β⊥n ,α⊥n ,则α⊥mD .若n m ⊥,β⊥n ,αβ⊥,则α⊥m 40.如图,是一个几何体的三视图,其中主视图、左视图是直角边长为2的等腰直角三角形,俯视图为边长为2的正方形,则此几何体的表面积为( ). (A )8+42 (B )8+43 (C )662+ (D )8+22+2341.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为( ).(A )38 (B )34(C )34 (D )3242.已知直线m 和平面α,β,则下列四个命题中正确的是(A )若αβ⊥,m β⊂,则m α⊥ (B )若//αβ,//m α,则//m β (C )若//αβ,m α⊥,则m β⊥ (D )若//m α,//m β,则//αβ 43.某四棱锥的三视图如图所示,其中正(主)视图是等腰直角三角形,侧(左)视图是等腰三角形,俯视图是正方形,则该四棱锥的体积是 (A )23 (B )43 (C )53 (D )8344.设三棱柱的侧棱垂直于底面,所有棱长都a ,顶点都在一个球面上,则该球的表面积大小为( ) (A )2a π(B )273a π(C )2113a π(D )25a π 45.已知一个几何体的三视图是三个全等的边长为1的正方形,如图所示,则它的体积为( )(A )16 (B )13 (C )23 (D )56正视图主视图 左视图俯视图俯视图正视图 侧视图46.如图,四棱柱1111D C B A ABCD -中,E 、F 分别是1AB 、1BC 的中点.下列结论中,正确的是( ) A .1BB EF ⊥ B .//EF 平面11A ACC C .BD EF ⊥D .⊥EF 平面11B BCC47.一个四面体如图,若该四面体的正视图(主视图)、侧视图(左视图)和俯视图都是直角边长为1的等腰直角三角形,则它的体积=V ( ) A .21 B .31 C .61 D .12148.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( ) A .22 B .6 C .3 D .2350.一个几何体的三视图如右图所示,则该几何体的表面积为( ) A .32 B .6262++ C .12 D .3262++ 51.如图所示是一个几何体的三视图,则该几何体的表面积为( )A .4+2B .2+C .2+2D .4+ 52.点A 、B 、C 、D 在同一球面上,D A ⊥平面C AB ,D C 5A =A =,3AB =,C 4B =,则该球的表面积为( ) A .252π B .12523πC .50πD .503π 53.已知某锥体的正视图和侧视图如图2,其体积为233,则该锥体的俯视图可以是( )54.已知球O 的直径4=PQ ,C B A ,,是球球面上的三点,是正三角形,且,则三棱锥ABC P -的体积为 ( ) A .B .C .D . 55.一个四面体的顶点在空间直角坐标系o xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的主视图时,以zox 平面为投影面,则得到主视图可以为( )56.若某几何体的三视图如图所示,则此几何体的体积等于( ) A .752B .30C .75D .15 57.某几何体的三视图如图所示,其中正视图是两底边长分别为1,2的直角梯形,俯视图是斜边为3的等腰直角三角形,该几何体的体积是( ) A .1 B .2 C .47 D .49 58.一个几何体的三视图如图所示,则该几何体的外接球的体积为( )A .32πB .92πC .43πD .83π221俯视图左视图 主视图AB CDEFGH4327233439433 30=∠=∠=∠CPQ BPQ APQ ABC ∆O59.一只蚂蚁从正方体 1111ABCD A B C D -,的顶点A 处出发,经正方体的表面,按最短路线爬行到达顶点1C 位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是A .①②B .①③C .②④D .③④ 60.如图是一个几何体的三视图,则该几何体的体积是( )(A )54 (B )27 (C )18 (D ) 961.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是( ) A .若//,//,m n αα则//m n B .若,,,m m αββα⊥⊥⊄则//m α C .若,,m αβα⊥⊂则m β⊥ D .若,,//,//,m n m n ααββ⊂⊂则//αβ62.已知三条直线若和b 是异面直线,b 和c是异面直线,那么直线a 和的位置关系是( )A .平行B .相交C .异面D .平行、相交或异面63.四棱锥的三视图如图所示,则最长的一条侧棱的长度是( )A. B . C . D . 64.一个空间几何体的三视图如图所示,则该几何体的体积为A.403 B .803C .40D .80 65.如图,四棱锥ABCD P -中,,, 和都是等边三角形,则异面直线与所成角的大小为( )A .B .C . 60D . 4575 90BDCPAPB CD PAD ∆PAB ∆AD BC 2= 90=∠=∠BAD ABC 2213529c a ,,,a b c βαn m66. 给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题: ①若α⊂m ,A l =α ,点m A ∉,则l 与m 不共面;② 若m 、l 是异面直线,α//l ,α//m ,且l n ⊥,m n ⊥,则α⊥n ; ③ 若α//l ,β//m ,βα//,则m l //;④ 若,,,,,则, 其中为真命题的是( )A .①③④B .②③④C .①②④D .①②③ 67.某几何体三视图如图所示,则该几何体的体积为( ) A .23 B .1 C .43 D .3269.某几何体的三视图如图所示,则该几何体的体积为 ( ) A.61 B.21 C.32 D.65 70.如图,在正方形ABCD 中,F E ,分别是CD BC ,的中点,沿EF AF AE ,,把正方形折成一个四面体,使D C B ,,三点重合,重合后的点记为P ,点P 在AEF ∆内的射影为.则下列说法正确的是( )A.O 是AEF ∆的垂心B.O 是AEF ∆的内心C.O 是AEF ∆的外心D.O 是AEF ∆的重心71.某几何体的三视图如图所示,则该几何体的体积为( ) A.61 B.21 C.32 D.65 72.设,l m 是两条不同的直线,,αβ是两个不同的平面,则下列命题为真命题的是( ) A .若//,//,//m l m l αα则 B .若,,//m l m l αα⊥⊥则C .若//,,//,l m l m αβαβ⊥⊥则D .若,//,,//,//m m l l αββααβ⊂⊂则O βα//β//m β//l A m l = α⊂m α⊂l 112正视图侧视图俯视图正视侧视俯视111正视图侧视图俯视图11174.一个几何体的三视图如图所示,则该几何体的体积的是( )(A ) (B ) (C )(D )75.一个四棱锥的三视图如图所示,其中侧视图为正三角形,则该四棱锥的体积是 ,四棱锥侧面中最大侧面的面积是 . 76.若3,),,3,1(),0,2,2(π>=<==b a z b a ,则z 等于( )A.B.C.D.77.已知向量)3,2,1(=a ,点)(0,1,0A ,若a AB 2-=,则点B 的坐标是( )A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6) 78.对于空间的一条直线m 和两个平面,αβ,下列命题中的真命题是( ) A .若//,//,m m αβ则//αβ B .若//,//,m m αβ则αβ⊥ C .若,,m m αβ⊥⊥则//αβ D .若,,m m αβ⊥⊥则αβ⊥79.一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的表面积是( )A .24πB .16πC .12πD .8π 80.已知,m n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若,m m n α⊥⊥,则//n α B .若,m n αα⊥⊂,则m n ⊥ C .若//,m m n α⊥,则n α⊥ D .若//,//m n αα,则//m n81.设,l m 是两条不同的直线,,αβ是两个不同的平面,则下列命题为真命题的是( )A .若//,//,//m l m l αα则B .若,,//m l m l αα⊥⊥则C .若//,,//,l m l m αβαβ⊥⊥则D .若,//,,//,//m m l l αββααβ⊂⊂则7152233476侧(左)视图正(主)视图俯视图211122 11111 1 正视图侧视图俯视图正视俯视左视82.下图为一个几何体的三视图,尺寸如图所示,则该几何体的体积为A. B. C. D. 83.如图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( ).A .20+3πB .24+3πC .20+4πD .24+4π84.已知三棱锥的三视图如图所示,则它的外接球的表面积为( ).A .4πB .8πC .12πD .16π86. 一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是( )A .3B .25C .21D .23 87.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥侧面积和体积分别是( )A .B .C .D .8,8 88.平面四边形中,,,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的体积为 ( )A .32πB .3πC .23π D .2π 89.设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:①⊥,∥,则⊥; ②若⊥,⊥,则∥;③若∥,∥, ⊥,则⊥; ④若m αγ⋂=,=,∥ ,则∥.其中正确命题的序号是A .①和③B .②和③C .③和④D .①和④βαn m n γ⋂βγm αm γββαβαγβγαn m αn αm γβαn m 2BD =1AB AD CD ===ABCD 84(51),3+845,345,8435327π+35327π+433327π+32327π+90.如图,已知正方体的棱长为4,点,分别是线段,上的动点,点P 是上底面内一动点,且满足点P 到点F 的距离等于点P 到平面的距离,则当点P 运动时,的最小值是( )A .5B .4C .42D .2592.如下图所示是一个几何体的三视图,则该几何体的表面积为( )A .B .C .D .93.一个几何体的三视图如图所示,则该几何体的体积等于( )A 、263π+B 、463π+C 、283π+D 、483π+94.已知某几何体的三视图如图,则该几何体的表面积是( ) A.24 B.3662+ C.36 D.95.一个简单几何体的正视图、侧视图如右图所示,则其俯视图不可能为....①长方形;②正方形;③圆;④椭圆.中的( )A.①②B.②③C.③④D.①④96.如图,正三棱柱111C B A ABC -的正视图是边长为4的正方形,则此正三棱柱的侧视图的面积为( )A .16B .32C .34D .3836122+2222主视图 左视图2俯视图 64+622+62+624+PE 11ABB A 1111A B C D 11C D AB F E 1111ABCD A B C D -AB C 1A 1B 1C 2 2 4 主视图97.一个锥体的主视图和左视图如下图所示,下面选项中,不可能是该锥体的俯视图的是( )98.设α,β,γ为平面,m ,n 为直线,则m β⊥的一个充分条件是( )A .αβ⊥,n αβ= ,m n ⊥B .m αγ= ,αγ⊥,βγ⊥C .αβ⊥,βγ⊥,m α⊥D .n α⊥,n β⊥,m α⊥99.在直三棱柱中,,,则点到平面的距离为A. B . C . D .3 102.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A .B . C. D.104.关于直线,及平面,,下列命题中正确的是A .若,,则B .若,,则C .若,,则D .若,,则105.某几何体的三视图如图所示,其中俯视图是半圆,则该几何体的表面积为A .3π32+B .π3+C .3π2D .5π32+ 106.三棱锥P ABC -中,PA PB PC ==,456AB BC CA ===,,,若ABC ∆的外接圆恰好是三棱锥P ABC -外接球O 的一个大圆,则三棱锥P ABC -的体积为( )A .10B .20C .30D .40107.已知某几何体的三视图如图所示,其中,正视图和侧视图都是由三角形和半圆组成,俯视图是由圆和内接三角形组成,则该几何体体积为( )m α⊥l m ⊥//l ααβ⊥//l βl α⊥//l m //m α//l α//l m m αβ= //l αβαm l 6327336312俯视图侧视图正视图33433432341A BC A 11AA =2AB AC BC ===111ABC A B C -A .21+32πB .21+66π C .41+36π D .21+32π 108.已知某几何体的三视图如图所示,其中网格纸的小正方形的边长是1,则该几何体 的表面积为( )A .4B .4+42C .8+42D .8+22109.一个几何体的三视图如图所示,则该几何体的体积为( )A .412π+B .124π+C .1212π+D .44π+110.设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题:①若//m n ,//m α,则//n α; ②若αβ⊥,//m α,则m β⊥;③若αβ⊥,m β⊥,则//m α; ④若m n ⊥,m α⊥,n β⊥,则αβ⊥.其中假命题的个数是( )A .1B .2C .3D .4111.一块橡胶泥表示的几何体的三视图如图所示,将该橡胶泥揉成一个底面边长为8的正三角形的三棱锥,则这个三棱锥的高为( )A .33B .63C .93D .183112.如图所示的三个直角三角形是一个体积为20cm 3的几何体的三视图,则h=( )cmA .4B .2C .1D .12113.已知正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A .23 B .33 C .23D .13114.已知四面体OABC 各棱长为1,D 是棱OA 的中点,则异面直线BD 与AC 所成角的余弦值( ) A.33 B.14 C.36 D.283224116.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是( )A.若则B.若则C .若则 D.若则117.已知三条直线若和是异面直线,和是异面直线,那么直线和的位置关系是( )A.平行B.相交C.异面D.平行、相交或异面119.半径为的半圆卷成一个圆锥,圆锥的体积为( ) A. B . C . D . 120.如图,正方体的棱长为,线段上有两个动点,且,则下列结论中错误..的是( )A .B .平面C .三棱锥的体积为定值D .的面积与的面积相等BEF ∆AEF ∆BEF A -ABCD //EF BE AC ⊥EBD1B 1C1D FC A 1A21=EF E F 、11D B 11111D C B A ABCD -316R π3324R π336R π333R πR c a c b b a ,,,a b c //αβ,,//,//,m n m n ααββ⊂⊂m β⊥,,m αβα⊥⊂//m α,,,m m αββα⊥⊥⊄//m n //,//,m n ααβαn m本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1空间几何体的结构练习题
1、在棱柱中()
A.只有两个面平行B.所有的棱都平行
C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行
2、下列说法错误的是()
A:由两个棱锥可以拼成一个新的棱锥B:由两个棱台可以拼成一个新的棱台
C:由两个圆锥可以拼成一个新的圆锥D:由两个圆台可以拼成一个新的圆台
3、下列说法正确的是()
A:以直角三角形的一边为轴旋转而成几何体是圆锥B:圆柱、圆锥、圆台的底面都是圆面
C:以直角梯形的一腰为轴旋转成的是圆台
D:圆锥的侧面展开图为扇形,这个扇形所在的圆的半径等于圆锥底面圆的半径
4、下列关于长方体的叙述不正确的是()
A:长方体的表面共有24个直角B:长方体中相对的面都互相平行
C:长方体中某一底面上的高的长度就是两平行底面间的距离:
D;两底面间的棱互相平行且相等的六面体是长方体
5、将图1所示的三角形线
直线l旋转一周,可以得到
如图2所示的几何体的是哪
一个三角形()
6、如图一个封闭的立方体,它6个表面各标出1、
2、3、4、5、6这6个数字,现放成下面3个不同
的位置,则数字l、2、3对面的数字是()
A.4、5、6 B.6、4、5 C.5、4、6 D.5、6、4
7、如图,能推断这个几何体可能是三棱台的是()
A.A1B1=2,AB=3,B1C1=3,BC=4
B.A1B l=1,AB=2,B l C l=1.5,BC=3,A1C1=2,AC=3
C.A l B l=1,AB=2,B1C l=1.5,BC=3,A l C l=2,AC=4
D.AB=A1B1,BC=B1C1,CA=C1A1
8、有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点
的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆
锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的;其中正确的是()
A.(1)(2) B.(2)(3) C.(1)(3) D.(2)(4)
9、下列命题中错误的是()
A.圆柱的轴截面是过母线的截面中面积最大的一个 B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆面 D.圆锥所有的轴截面是全等的等腰三角形
10、图1是由图2中的哪个平面图旋转而得到的()
1.2空间几何体的三视图和直观图练习题
1.若一个几何体的三视图都是等腰三角形,则这个几何体可能是 ( )
A .圆锥
B .正四棱锥
C .正三棱锥
D .正三棱台
2.说出下列三视图表示的几何体是( )
A .正六棱柱
B .正六棱锥
C .正六棱台
D .正六边形
3.下列说法正确的是( )
A .互相垂直的两条直线的直观图一定是互相垂直的两条直线
B .梯形的直观图可能是平行四边形
C .矩形的直观图可能是梯形
D .正方形的直观图可能是平行四边形
4.如右图所示,该直观图表示的平面图形为( )
A .钝角三角形
B .锐角三角形
C .直角三角形
D .正三角形
5.下列几种说法正确的个数是( )
①相等的角在直观图中对应的角仍然相等
②相等的线段在直观图中对应的线段仍然相等
③平行的线段在直观图中对应的线段仍然平行
④线段的中点在直观图中仍然是线段的中点
A .1
B .2
C .3
D .4
6.哪个实例不是中心投影( )
A .工程图纸
B .小孔成像
C .相片
D .人的视觉
7.关于斜二测画法画直观图说法不正确的是 ( )
A .在实物图中取坐标系不同,所得的直观图有可能不同
B .平行于坐标轴的线段在直观图中仍然平行于坐标轴
C .平行于坐标轴的线段长度在直观图中仍然保持不变
D .斜二测坐标系取的角可能是135°
8.下列几种关于投影的说法不正确的是( )
A .平行投影的投影线是互相平行的
B .中心投影的投影线是互相垂直的影
C .线段上的点在中心投影下仍然在线段上
D .平行的直线在中心投影中不平行
9.在一个倒置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是( )
A B C D
10.一个三角形在其直观图中对应一个边长为1正三角形,原三角形的面积为( )
A .46
B .43
C .23
D .26。

相关文档
最新文档