板式塔设备机械设计说明

合集下载

第八章 塔设备的机械设计(化工技术)

第八章 塔设备的机械设计(化工技术)

塔壁间的密封
碳钢制塔板与 塔盘圈厚度,一 般3-4mm,用不锈 钢时取2-3mm
2
分块式塔盘第八章图\分块塔板一.rm 第八 章图\分块塔板二.rm
塔身为焊制的整体圆筒,塔盘分成数块, 由人孔送入塔内,安装到塔盘固定件上。
塔径在800~900mm以上时建议采用
特点:
1)结构简单,装拆方便 2)制造方便,模具简单
二 裙座设计 结构: 1)座体 2)基础环 3)螺栓座 4)管孔
1
座体设计
初选座体有效厚度δes,然后验算危险
截面应力。
1)
基底为危险截面时,应满足
操作时,
0 0 M max m0 g Fv0 0 t min KB; K S Z sb Asb


水压试验时,
0.3 M


水压试验时,
0.3 M M e m g min 0.9 K s ; KB Z sm Asm
1 1 w 1 1 max
2
基础环设计
基础环尺寸的确定
1)
Dob Dis 160 ~ 400 mm Dib Dis 160 ~ 400 mm

7)稳定条件

ii max
cr
4
塔体拉应力校核
1)假设有效厚度δei
2)计算最大组合轴向拉应力
内压,正常操作时 外压,非操作时
max 1
i i 2
ii 3
max
ii 3

ii 2
• 3)强度校核条件

ii max
K
5)最大组合轴向压应力
外压,正常操作时 max 1

板式塔(筛板塔)设计教材

板式塔(筛板塔)设计教材
f
u
0.2
u f C f 20 20
式中
f
L V V

0.5
—— 气体负荷因子, m/s;可由 u
查取 图3
C f 20—— 液相表面张力,mN/m
V 、 L 是以塔内气体流通面积,即塔的横截面积减去降 注意: uAfT –Af )为依据计算的。 液管面积(
4. 塔和塔板主要尺寸的设计
4.1 塔和塔板设计的主要依据
进行塔和塔板设计时,所依据的主要参数是: 汽相 流量 VS ( m³ /s ), 密度 ρV ( kg/m³) 液相 流量 LS ( m³ /s ), 密度 ρL ( kg/m³) 表面张力 σ ( mN/m ) 注意:由于各块塔板的组成和温度不同,所以各块塔板 上的上述参数均不同,设计时应取平均值。具体方法如下: (1) 若V、L变化不大,可以精馏段或提馏段的平均值为 代表进行设计. (2) 若V、L变化较大,应分段处理,各段分别取平均值 进行设计。
4.2塔板的设计参数
筛板塔设计必须确定的主要结构参数有(参阅 图 2 ): (1)塔板直径D; (2)板间距HT; (3)溢流堰的型式,长度 lW 和高度 hw; (4)降液管型式、降液管底部与塔板间的距离ho; (5)液体进、出口安定区的宽度Ws’、Ws ,边缘 区宽度Wc; (6)筛孔直径do,孔间距t。
3.2 回流比的选定
选择原则:使塔的设备费用和操作费用的总和最低,
同时应考虑到操作时的调节弹性。
选择方法:
(1) 参考生产现场所提供的回流比数据; (2) 回流比取最小回流比Rmin的1.2~2倍; (3) 先求最少理论板数 Nmin , 以理论板数为Nmin 的两倍求取回流比R; (4) 作出回流比R和理论板数N的曲线图,在曲线 图上确定合适的回流比R。

塔设备的机械设计

塔设备的机械设计

阶梯环:一头为鲍尔环,一头翻卷,由于不对 称,装入塔内可减少填料环相互重叠,使填料 表面得以充分利用,同时增大了空隙,使压降 降低,传质效率提高。
鞍形填料:这种填料重迭部分少,空隙率大,利 用率高。它有两种形式,一种是矩鞍环,一种是 弧鞍环,都是敞开式填料,这种填料比拉西环传 质效率的波纹成45°,盘与盘之间成90°排列,结 构紧凑,比表面积大。传质好,且可根据物料温 度及腐蚀情况采用不同的材料。
一、 喷淋装置
液体喷淋装置设计的不合理,将导致液体 分布不良,减少填料的润湿面积,增加沟流和 壁流现象,直接影响填料塔的处理能力和分离 效率。液体喷淋装置的结构设计要求是:能使 整个塔截面的填料表面很好润湿,结构简单, 制造维修方便。
塔径DN=300~500mm时,塔节高度L=800~ 1000mm;塔径DN=600~700mm时,塔节高度 L=1200~1500mm。 为方便安装,每个塔节中的塔盘数为5-6块。
降液管的结构有弓形和圆形两类
另设溢流堰圆形降液管
圆形降液管伸出塔盘表面兼作流堰的圆形降液管
图6-5弓形降液管结构
图6-6弓形降液管的液封槽
塔盘结构有整块式和分块式两种。当塔径 在800~900 mm以下时,建议采用整块式塔盘。 当塔径在800~900 mm以上时,人可以在塔内 进行装拆,一般采用分块式塔盘。
1. 整块式塔盘
此种塔的塔体由若干塔节组成,塔节与塔 节之间则用法兰连接。每个塔节中安装若干块 层层叠置起来的塔盘。塔盘与塔盘之间用管子 支承,并保持所需要的间距。图为定距管式支 承塔盘结构。
2.分块式塔盘
在直径较大的板式塔中,如果仍然用整块式 塔盘,则由于刚度的要求,势必要增加塔盘板 的厚度,而且在制造、安装与检修等方面都很 不方便。因此,当塔径在800 ~900 mm以上 时,都采用分块式塔盘。此时塔身为一焊制整 体圆筒,不分塔节 。

第八章-塔设备的机械设计

第八章-塔设备的机械设计

Fi hi
i 1
对于等直径、等壁厚塔器的底截面 地震弯矩为:
M
00 E
16 35
1m0
gH
(N mm)
风载荷
风对塔体的作用之一是造成风弯矩,在迎风面的塔壁 和裙座体壁引起拉应力,背风面一侧引起压应力;作 用之二是气流在风的背向引起周期性旋涡,即卡曼涡 街,导致塔体在垂直于风的方向产生周期振动,这种 情况仅仅出现在H/D较大,风速较大时比较明显,一般 不予以考虑。
M
ii max
/
0.785Di2
S
e
2
式中M
ii max
maxM M
ii W
ii E
Me
25%M
ii W
M e
稳定条件:
组合轴向压应 力要满足:
ii m a x压
[ ]cr
KB
minK[ ]t
式中K——载荷组合系数,取K=1.2; B——见书p172。
4 塔体拉应力验算
依前述,假设一有效壁厚Se3。 计算σ1,σ2,σ3,并进行组合,满足如下强度条件:
m0 m01 m02 m03 m04 m05 ma me
(8-1)
塔设备在水压试验时的最大质量
mmax m01 m02 m03 m04 mw ma me (8-2)
塔设备在吊装时的最小质量
mmin m01 0.2m02 m03 m04 ma me (8-3)
地震载荷
(5)水压试验验算。
8.2 裙座设计
四个部分: 1.座体---承受并传
递塔体载荷。 2.基础环---将载荷
传递到基础上。 3.螺栓座---固定塔
于基础上。 4.管孔---人孔、排
气孔、引出管孔。

第六章 塔设备的机械设计

第六章 塔设备的机械设计

自支承式塔设备的塔体除承受工作介质压力 之外,还承受自重载荷、风载荷、地震载荷及 偏心载荷的作用。
(1)塔设备自重载荷的计算

塔设备的操作质量:
(kg) (6-2) 塔设备水压试验时的质量,这时设备质量最大, 简称设备最大质量 m0 m01 m02 m03 m04 mw ma me (kg) (6-3) 设备吊装时的质量,这时设备质量最小,简称 设备最小质量: m0 m01 0.2m02 m03 m04 ma me (kg) (6-4)
M
00 E
8CZ 1 m0 g (10 H 3.5 14 H 2.5 h 4h3.5 ) 175H 2.5
(Nmm)

底部截面的地震弯矩 16 I I M E CZ 1 mo gH 35
(Nmm)
(3)风载荷的计算

图6-31所示为自支承式塔设备受风压作用 的示意图。塔体会因风压而发生弯曲变形。吹 到塔设备迎风面上的风压值,随设备高度的增 加而增加。为了计算简便,将风压值按设备高 度分为几段,假设每段风压值各自均布于塔设 备的迎风面上,如图所示。
Fk Cz α1k mk g (N )



式中 Cz—— 结构综合影响系数,对圆筒形 直立设备取Cz=0. 5; α1—— 对应于塔器基本自振周期T(利用图630查取α1值时,应使T =T1)的地震影响系数 α值; ηk—— 基本震型参与系数;

关于 α—— 地震影响系数,按图6-30确定;图中曲 Tg 0.9 线部分按公式

(6-19)
(4 )偏心载荷的计算


有些塔设备在顶部悬挂有分离器、热交换 器、冷凝器等附属设备,这些附属设备对塔体 产生偏心载荷。偏心载荷所引起的弯矩为: Me=me g e (6-20) 式中 me—— 偏心质量Kg e—— 偏心质量的重心至塔设备中心线的距离, mm

板式塔设备机械设计说明

板式塔设备机械设计说明

1 板式塔设备机械设计任务书1.1 设计任务及操作条件试进行一蒸馏塔与裙座的机械设计已知条件为:塔体径mm D i 2000=,塔高m 30,工作压力为MPa 2.1,设计温度为300℃,介质为原油,安装在郊区,地震强度为7度,塔安装55层浮阀塔板,塔体材料选用16MnR ,裙座选用A Q -235。

1.2 设计容(1)根据设计条件选材;(2)按设计压力计算塔体和封头壁厚; (3)塔设备质量载荷计算; (4)风载荷与风弯矩计算; (5)地震载荷与地震弯矩计算; (6)偏心载荷与偏心弯矩计算; (7)各种载荷引起的轴向应力;(8)塔体和裙座危险截面的强度与稳定校核; (9)塔体水压试验和吊装时的应力校核; (10)基础环设计; (11)地脚螺栓计算; (12)板式塔结构设计。

1.3.设计要求:(1)进行塔体和裙座的机械设计计算; (2)进行裙式支座校核计算; (3)进行地脚螺栓座校核计算; (4)绘制装备图(A3图纸)2 塔设备已知条件及分段示意图已知设计条件分段示意图塔体径i D 2000mm 塔体高度H 30000mm 设计压力P 1.2MPa 设计温度t300℃ 塔 体材料16MnR 许用应力[σ]170MPa [σ]t144MPa设计温度下弹性模量E MPa 51086.1⨯常温屈服点s σ 345MPa 厚度附加量C 2mm 塔体焊接接头系数φ0.85介质密度ρ 3/800m kg塔盘数N55 每块塔盘存留介质层高度w h100mm 基本风压值0q 500N/㎡ 地震设防烈度 7度 场地土类别 II 类 地面粗糙度 B 类 偏心质量e m 4000kg 偏心距e 2000mm 塔外保温层厚度s δ 100mm保温材料密度2ρ 3/300m kg材料 Q235-A 裙许用应力t s ][σ 86MPa 常温屈服点s σ235MPa3 塔设备设计计算程序及步骤3.1 按设计压力计算塔体和封头厚度3.2 塔设备质量载荷计算3.3 自振周期计算3.4 地震载荷与地震弯距计算mgH3.5 风载荷与风弯距计算3.6 偏心弯距3.7 最大弯距3.8 圆筒轴向应力校核和圆筒稳定校核3.12 地脚螺栓计算3.13 计算结果4 计算结果总汇1 按设计压力计算塔体和封头厚度4 后记本设计的任务是进行一蒸馏塔与裙座的机械设计。

第六章-塔设备的机械设计PPT参考课件

第六章-塔设备的机械设计PPT参考课件
29
二、 液体再分布器
当液体流经填料层时,液体有流向器壁造 成“壁流”的倾向,使液体分布不均,降低了 填料塔的效率,严重时可使塔中心的填料不能 润湿而成“干锥”。因此在结构上宜采取措施, 使液体流经一段距离后再行分布,以便在整个 高度内的填料都得到均匀喷淋。
在液体再分配器中,分配锥是最简单的,如 图6-25(a)所示,沿壁流下的液体用分配锥再将 它导至中央。
截面大致相等; (3)槽板扁钢条之间的距离约为填料外径的60%~80
%; (4)栅板可以制成整块的或分块的。
32
33
34
第四节 塔体与裙座的机械设计
一 塔体厚度的计算 自支承式塔设备一般都很高,且承受多种载
荷的作用。塔体除应满足强度条件外,还需满 足稳定条件。 1.按计算压力计算塔体及封头厚度 按第4章“内压薄壁圆筒与封头的强度设计” 的有关规定,计算塔体及封头的有效厚度S。 和S<a,
第六章 塔设备的机械设计
第一节 概述
塔设备可划分为板式塔和填料塔 塔设备的机械设计要求做到: ①选材立足国内; ②结构安全可靠,满足工艺要求; ③制造、安装、使用、检修方便。
1
第二节 板式塔
2
3
4
填料塔和填料
5
6
一、 总体结构
1.塔体与裙座结构 这是所有塔设备的基本工作结构和支撑结构。 2.塔盘结构 这是塔设备完成化工过程和操作的主要结构部分。它包括塔盘板、
9
10
降液管的结构有弓形和圆形两类
图6-3 一般圆形降液管
图6-4 带有滋流堰的圆形降液管
பைடு நூலகம்
图6-5弓形降液管结构
图6-6弓形降液管的液封槽
11
2.分块式塔盘

塔设备机械设计说明

塔设备机械设计说明

第一章绪论1.1塔设备概述塔设备是石油、化工、轻工等各工业生产中仅次与换热设备的常见设备。

在上述各工业生产过程中,常常需要将原料中间产物或粗产品中的各个组成部分(称为组分)分离出来作为产品或作为进一步生产的精制原料,如石油的分离、粗酒精的提纯等。

这些生产过程称为物质分离过程或物质传递过程,有时还伴有传热和化学反应过程。

传质过程是化学工程中一个重要的基本过程,通常采用蒸馏、吸收、萃取。

以及吸附、离子交换、干燥等方法。

相对应的设备又可称为蒸馏塔、吸收塔、萃取塔等。

在塔设备中所进行的工艺过程虽然各不相同,但从传质的必要条件看,都要求在塔内有足够的时间和足够的空间进行接触,同时为提高传质效果,必须使物料的接触尽可能的密切,接触面积尽可能大。

为此常在塔内设置各种结构形式的内件,以把气体和液体物料分散成许多细小的气泡和液滴。

根据塔内的内件的不同,可将塔设备分为填料塔和板式塔。

在板式塔中,塔内装有一定数量的塔盘,气体自塔底向上以鼓泡喷射的形式穿过塔盘上的液层,使两相密切接触,进行传质。

两相的组分浓度沿塔高呈阶梯式变化。

不论是填料塔还是板式塔,从设备设计角度看,其基本结构可以概括为:(1)塔体,包括圆筒、端盖和联接法兰等;(2)内件,指塔盘或填料及其支承装置;(3)支座,一般为裙式支座;(4)附件,包括人孔、进出料接管、各类仪表接管、液体和气体的分配装置,以及塔外的扶梯、平台、保温层等。

塔体是塔设备的外壳。

常见的塔体是由等直径、等壁厚的圆筒及上、下椭圆形封头所组成。

随着装置的大型化,为了节省材料,也有用不等直径、不等壁厚的塔体。

塔体除应满足工艺条件下的强度要求外,还应校核风力、地震、偏心等载荷作用下的强度和刚度,以及水压试验、吊装、运输、开停车情况下的强度和刚度。

另外对塔体安装的不垂直度和弯曲度也有一定的要求。

支座是塔体的支承并与基础连接的部分,一般采用裙座。

其高度视附属设备(如再沸器、泵等)及管道布置而定。

它承受各种情况下的全塔重量,以及风力、地震等载荷,因此,应有足够的强度和刚度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

m04
4
Di
2n
2
2B2
Di
2n
2 2
1 2
nq
p
qF HF
2.0 2 0.014 2 0.1 2 0.92 2.0 2 0.014 2 0.12 4
1 6150 40 29 2
5410
40
80
1606.6
1726.6
1686.8
m05
4
m03 '—封头保温层质量,k g
0
146.2
1469.9
2071.6
1785.3
计算内容
计算公式及数据
0~1
1~2
2~3
3~4
平台质量 q N 150kg / m 2 笼式扶梯质量 qN 40kg / m
4~顶
平台数量 n=6 笼式扶梯总高 H F 29m
平台,扶梯质量 m04, kg 操作时塔内物料质量 m05, kg
55 100mm
500N/㎡ 7度 II 类 B类
4000kg 2000mm 100mm
分段示意图
保温材料密度 2
材料
许用应力[ ]ts

常温屈服点 s
座 设计温度下弹性模量 Es 厚度附加量 Cs
人孔,平台数
材料
地 许用应力 脚 螺
栓 腐蚀裕量 C2
个数 n
[ ]bt
300 kg / m3
Q235-A 86MPa 235MPa
Di2
hwN h0
1 Vf 1
2.02 (0.1 55 0) 800 1.1257 800 14723.6 4
0
900.6
2764.63 6031.92 5026.6
按经验取附件质量为:
人孔、接管、法兰等附件质量 ma 0.25m01 0.25 21286 .45 5321 .6 ma , kg
m3 695 3 2085
m01 m1 m2 m3 18229 .85 971 .6 2085 21286 .45
695
1875.8
4865
6950
m02
4
Di2
N qN
4
2.02
55 75 12959
6900.65
(浮伐塔盘质量 qN 75kg / m2 )
0
0
173.75
468.95
1216.25
1737.5
1725.16
充液质量 mw, kg
mw
4
Di 2 H 0 w
2V f
w
2.02 26.231000 2 1.12571000 84655.4 4
偏心质量 me, kg 操作质量 m0, kg 最小质量 mmin , kg 最大质量 mmax, kg
1.3.设计要求:
(1)进行塔体和裙座的机械设计计算; (2)进行裙式支座校核计算; (3)进行地脚螺栓座校核计算; (4)绘制装备图(A3 图纸)
2 塔设备已知条件及分段示意图
已知设计条件
塔体内径 Di
塔体高度 H
设计压力 P
设计温度 t
材料
[ ]
塔 许用应力 体
[ ]t
2000mm
30000mm 1.2MPa 300℃ 16MnR 170MPa
c C 9.9 2 11.9
圆筒名义厚度n, mm 圆筒有效厚度 e, mm
封头计算厚度 h, mm
n 14 n C 12 h pc Di / (2[ ]t 0.5 p) 1.2 2000/(2 144 0.85 0.51.2) 9.8mm
封头设计厚度hc , mm 封头名义厚度hn , mm 封头有效厚度he , mm
1.2 设计内容
(1)根据设计条件选材; (2)按设计压力计算塔体和封头壁厚; (3)塔设备质量载荷计算; (4)风载荷与风弯矩计算; (5)地震载荷与地震弯矩计算; (6)偏心载荷与偏心弯矩计算; (7)各种载荷引起的轴向应力; (8)塔体和裙座危险截面的强度与稳定校核; (9)塔体水压试验和吊装时的应力校核; (10)基础环设计; (11)地脚螺栓计算; (12)板式塔结构设计。
144MPa
设计温度下弹性模量 E 1.86 105 MPa
常温屈服点 s
厚度附加量 C
塔体焊接接头系数
345MPa 2mm 0.85
介质密度
塔盘数 N
每块塔盘存留介质层高度 hw
基本风压值 q0
地震设防烈度 场地土类别 地面粗糙度
偏心质量 me
偏心距 e
塔外保温层厚度 s
800 kg / m3
0
1125.7
23116.9 32541.7 27871.1
hc h C 9.8 2 11.8 hn 14 he hn C 14 2 12
3.2 塔设备质量载荷计算
计算内容
塔段内直径 Di , mm 塔段名义厚度ni , mm 塔段长度 li , mm 塔体高度 H1, mm 单位筒体质量 m1m , kg / m
筒体高度 H1, mm 筒体质量 m1, kg 封头质量 m2 , kg 裙座高度 H3, mm
1 板式塔设备机械设计任务书
1.1 设计任务及操作条件
试进行一蒸馏塔与裙座的机械设计 已知条件为:塔体内径 Di 2000 mm ,塔高 30m ,工作压力为1.2MPa,设
计温度为 300℃,介质为原油,安装在广州郊区,地震强度为 7 度,塔内安装 55 层浮阀塔板,塔体材料选用 16MnR,裙座选用 Q235 A 。
裙座质量 m3, kg 塔体质量 m01, kg
塔段内件质量 m02, kg
计算公式及数据
0~1
1~2
2~3
3~4
4~顶
2000
14
1000
2000
7000
10000
10000
30000
695
26230
m1 695 26.23 18339 .85 m2 485 .8 2 971 .6
3000
2mm 6
Q235-A 147MPa
3 32
3 塔设备设计计算程序及步骤
3.1 按设计压力计算塔体和封头厚度
计算内容
计算压力 pc , MPa
Pc=1.2Mpa
计算公式及数据
圆筒计算厚度 , mm
pc Di 1.2 2000 9.9 2[ ]t pc 2 144 0.85 1.2
+圆筒设计厚度 c , mm
2591.7
5654.9
4712.4
保温层质量 m03, kg
m03
4 [(Di
2 n
2 s )2
(Di
2 n )2 ]H 0 2

2m03
2.0 2 0.014 2 0.12 2.0 2 0.0142 4
26.63 300 2 1.35 1.13 300
=5473
相关文档
最新文档