四年级奥数题第8讲 巧妙求和(一)

合集下载

四上.8巧妙求和

四上.8巧妙求和

第八周:巧妙求和
通项公式: 第n项=首项+(项数-1)×公差 项数公式: 项数=(末项-首项)÷公差+1 求和公式: 总和=(首项+末项) ×项数÷2
例题一:求项数
有一个数列:4、10、16、22· · · · · · 52,
这个数列共有多少项?
分析: 项数=(末项-首项)÷公差+1 公差=10-4=6 末项=52 首项=4 项数=(末项-首项)÷公差+1 =(52-4)÷6+1 = 9(项)
练习4:求总和
总和=(首项+项数)×项数÷2 第1题:2+6+10+14+18+22 总和=(2+22)×6÷2=72 第2题: 5+10+15+20· · · · · · +195+200 项数=(200-5)÷(10-5)+1 =40 总和=(5+200)×40÷2 =4100
第3题:9+18+27+36· · · · · · +261+270
项数=(270-9)÷(18-9)+1 =30 总和=(9+270)×30÷2 =4185
例题五:求总和的应用
计算: (2+4+6+ · · · · · ·+100)- (1+3+5+ · · · · · ·+99) 减数 被减数 分析: 先分别求出被减数和减数 被减数 =(2+100)×50÷2 =2550 减数 =(1+99)×50÷2 =2500
第1题:1+2+3+4· · · · · · +49+50

四年级数学培优专题:巧妙求和(一),典型题型方法思维精讲精炼.doc

四年级数学培优专题:巧妙求和(一),典型题型方法思维精讲精炼.doc

四年级数学培优专题:巧妙求和(一),典型题型方法思维精讲精炼巧妙求和(一)一、方法思维若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:通项公式和项数公式。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。

项数=(52-4)÷6+1=9,即这个数列共有9项。

【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?【思路导航】这个等差数列的首项是3.公差是4,项数是100。

要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。

第100项=3+4×(100-1)=399.【例题3】有这样一个数列:1.2.3.4,…,99,100。

请求出这个数列所有项的和。

【思路导航】如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。

1+2+3+…+99+100=(1+100)×100÷2=5050【例题4】求等差数列2,4,6,…,48,50的和。

【思路导航】这个数列是等差数列,我们可以用公式计算。

要求这一数列的和,首先要求出项数是多少:项数=(末项-首项)÷公差+1=(50-2)÷2+1=25首项=2.末项=50,项数=25等差数列的和=(2+50)×25÷2=650.【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)【思路导航】容易发现,被减数与减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。

四年级上册奥数第8讲 巧妙求和(一)

四年级上册奥数第8讲  巧妙求和(一)

第8周巧妙求和(一)专题简析:若干个数排成一列,称为数列。

数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

数列中数的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

例如:3,6,9,…,96,这是一个首项为3,末项为96,项数为32,公差为3的等差数列。

这一周,我们将学习“等差数列求和”。

为了更好地掌握此类问题,我们需要记住三个公式:通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)X 项数÷2在等差数列中,只要知道首项、末项、公差、及总和这五个量中的三个,就可以利用通项公式、项数公式及求和公式求其余两个量。

例1:等差数列4,10,16,22,…,52共有多少项?练习一:1、等差数列中,首项=1,末项=39,公差=2。

这个等差数列共有多少项?2、等差数列2,5,8,11,…,101共有多少项?3、已知一个等差数列的首项是11,末项是101,总和是504,这个数列共有多少项?例2:已知等差数列3,7,11,15,…,则该等差数列的第100项是多少?练习二:1、一个等差数列的首项=3,公差=2,项数=10,则它的末项是多少?2、已知等差数列1,4,7,10,…,则该等差数列的第30项是多少?3、已知等差数列2,6,10,14,…,则该等差数列的第100项是多少?例3:有这样的一个列数1,2,3,4,…,99,100,请你求出这列数各项相加的和。

练习三:计算下面各题。

1、1+2+3+4+…+49+502、6+7+8+9+…+753、100+99+98+…+61+60例4:求等差数列2,4,6,…,48,50的和。

练习四:计算下面各题。

1、2+6+10+14+19+222、5+10+15+20+…+195+2003、9+18+27+36+…+261+270例5:如果一个等差数列的第4项为21,第6项为33,那么它的第8项是多少?练习五:1、如果一个等差数列的第5项是19,第8项是61,那么它的第11项是多少?2、如果一个等差数列的第3项是10,第7项是26,那么它的第12项是多少?3、如果一个等差数列的第2项是10,第6项是18,那么它的第110项是多少?1、有一个等差数列:9,12,15,18,…,2004,这个数列共有多少项?2、已知等差数列:1000,993,986,979,…,20,这个数列共有多少项?3、求等差数列:1,6,11,16,…的第61项。

苏教版数学四年级上册第8讲巧妙求和(一)金品

苏教版数学四年级上册第8讲巧妙求和(一)金品

第2讲巧妙求和(一)工欲善其事,必先利其器。

《论语·卫灵公》原创不容易,【关注】,不迷路!一、知识要点若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。

二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?练习1:1、等差数列中,首项=1,末项=39,公差=2.这个等差数列共有多少项?2、有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?练习2:1、一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2、求1,4,7,10……这个等差数列的第30项。

【例题3】有这样一个数列:1.2.3.4,…,99,100。

请求出这个数列所有项的和。

练习3:计算下面各题。

(1)1+2+3+…+49+50(2)6+7+8+…+74+75【例题4】求等差数列2,4,6,…,48,50的和。

练习4:计算下面各题。

(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)练习5:用简便方法计算下面各题。

(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)三、课后作业1、已知等差数列11,16,21,26,…,1001.这个等差数列共有多少项?2、求等差数列2,6,10,14……的第100项。

四年级奥数巧妙求和(一)

四年级奥数巧妙求和(一)

巧妙求和(一)专题简析:若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?练习:1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?1练习:1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2,求1,4,7,10……这个等差数列的第30项。

3,求等差数列2,6,10,14……的第100项。

例3:有这样一个数列:1,2,3,4,…,99,100。

请求出这个数列所有项的和。

练习:计算下面各题。

(1)1+2+3+…+49+50(2)6+7+8+…+74+75(3)100+99+98+…+61+60例4:求等差数列2,4,6,…,48,50的和。

2练习:计算下面各题。

(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200(3)9+18+27+36+…+261+270例5:计算(2+4+6+...+100)-(1+3+5+ (99)练习:用简便方法计算下面各题。

(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)(3)(1+3+5+...+1999)-(2+4+6+ (1998)例6:如果一个等差数列第4项为21,第6项为33,求他的第8项。

小学四年级奥数巧妙求和

小学四年级奥数巧妙求和

四年级奥数专题巧妙求和(一)专题简析:若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

这一周学习“等差数列求和”。

需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。

项数=(52-4)÷6+1=9,即这个数列共有9项。

练习一1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?分析与解答:这个等差数列的首项是3,公差是4,项数是100。

要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。

第100项=3+4×(100-1)=399练习二1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2,求1,4,7,10……这个等差数列的第30项。

3,求等差数列2,6,10,14……的第100项。

例3:有这样一个数列:1,2,3,4,…,99,100。

请求出这个数列所有项的和。

分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。

四年级奥数第8讲:巧妙求和-教案

四年级奥数第8讲:巧妙求和-教案

(四年级)备课教员:* * *第八讲巧妙求和一、教学目标:知识目标1.认识等差数列及各个相关名称。

2.利用规律来简便求出等差数列的项数。

能力目标根据实际情况会判断所求的总和是否是求等差数列的总和。

情感目标善于发现善思考,提高计算能力。

培养良好的审题习惯和思维习惯。

二、教学重点:利用规律来简便求出等差数列的项数。

三、教学难点:理解等差数列的意义,知道等差数列中各部分的名称,掌握求尾项和项数的公式。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:故事引入,提高学生学习兴趣。

】师:今年上课前,老师要给大家讲一个数学家高斯的故事。

高斯7岁那年开始上学。

10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。

数学教师是布特纳,他对高斯的成长也起了一定作用。

一天,老师布置了一道题,1+2+3……这样从1一直加到100等于多少。

高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:"你一定是算错了,回去再算算。

”高斯说出答案就是5050,高斯是这样算的1+100=101,2+99=101……1加到100有50组这样的数,所以50×101=5050。

布特纳对他刮目相看。

他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。

”接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。

他们一起学习,互相帮助,高斯由此开始了真正的数学研究。

师:听了故事后,你有什么感想?生:学生回答。

师:高斯是利用什么方法去求1至100这100个数的和?生:分组的方法。

师:是的,就是把头尾两两分组。

为什么要这样分组呢?生:因为这样分组后,每组的和都是一样的。

师:这位同学讲的太棒了!是的,这样分组,刚好每组的两个数的和是一样的。

这也是我们在计算中一种重要的方法,也就是分组法。

接下来我们就要用这种方法去解答我们数学问题。

四年级奥数讲义之精讲精练第8讲巧妙求和一

四年级奥数讲义之精讲精练第8讲巧妙求和一

第2讲巧妙求和〔一〕一、知要点假设干个数排成一列称数列。

数列中的每一个数称一。

其中第一称首,最后一称末,数列中的个数称数。

从第二开始,后与其相的前之差都相等的数列称等差数列,后与前的差称公差。

在一章要用到两个非常重要的公式:“通公式〞和“数公式〞。

通公式:第n=首+〔数-1〕×公差数公式:数=〔末-首〕÷公差+1等差数列和=〔首+末〕×数÷2个公式也叫做等差数列求和公式。

二、精精【例1】有一个数列:4,10,16,22.⋯,52.个数列共有多少?1:1、等差数列中,首=1,末=39,公差=2.个等差数列共有多少?2、有一个等差数列:,8,11.⋯,101.个等差数列共有多少?【例2】有一等差数列:,,⋯⋯,个等差数列的第100是多少?2:1、一等差数列,首=3.公差=2.数=10,它的末是多少?2、求1,4,7,10⋯⋯个等差数列的第30。

【例3】有一个数列:,⋯,99,100。

求出个数列所有的和。

3:1/6算下面各。

1〕1+2+3+⋯+49+502〕6+7+8+⋯+74+75【例4】求等差数列2,4,6,⋯,48,50的和。

4:算下面各。

1〕2+6+10+14+18+222〕5+10+15+20+⋯+195+200【例5】算〔2+4+6+⋯+100〕-〔1+3+5+⋯+99〕5:用便方法算下面各。

1〕〔2001+1999+1997+1995〕-〔2000+1998+1996+1994〕2〕〔2+4+6+⋯+2000〕-〔1+3+5+⋯+1999〕三、后作1、等差数列11,16,21,26,⋯,1001.个等差数列共有多少?2、求等差数列2,6,10,14⋯⋯的第100。

3、100+99+98+⋯+61+604、〔1+3+5+⋯+1999〕-〔2+4+6+⋯+1998〕5、100+95+90+⋯+15+10+56、4+7+10+13+⋯+298+301+298+⋯+10+7+4+137、2021-2021+2021-2021+⋯+3-2+12/68、影院有座位假设干排,第一排有25个座位,以后每一排比前一排多3个座位,最后一排有94个座位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲巧妙求和(一)
一、知识要点
若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
等差数列总和=(首项+末项)×项数÷2
这个公式也叫做等差数列求和公式。

二、精讲精练
【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?
练习1:
1、等差数列中,首项=1,末项=39,公差=2.这个等差数列共有多少项?
2、有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?
【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?
练习2:
1、一等差数列,首项=3.公差=2.项数=10,它的末项是多少?
2、求1,4,7,10……这个等差数列的第30项。

【例题3】有这样一个数列:1.2.3.4,…,99,100。

请求出这个数列所有项的和。

练习3:
计算下面各题。

(1)1+2+3+…+49+50
(2)6+7+8+…+74+75
【例题4】求等差数列2,4,6,…,48,50的和。

练习4:
计算下面各题。

(1)2+6+10+14+18+22
(2)5+10+15+20+…+195+200
【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)
练习5:
用简便方法计算下面各题。

(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)
三、课后作业
1、已知等差数列11,16,21,26,…,1001.这个等差数列共有多少项?
2、求等差数列2,6,10,14……的第100项。

3、100+99+98+…+61+60
4、(1+3+5+...+1999)-(2+4+6+ (1998)
5、100+95+90+…+15+10+5
6、4+7+10+13+…+298+301+298+…+13+10+7+4
7、 2013-2012+2011-2010+…+3-2+1
8、影剧院有座位若干排,第一排有25个座位,以后每一排比前一排多3个座位,最后一排有94个座位。

问:这个影剧院共有多少个座位?
一、知识要点
若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
二、精讲精练
【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?
【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。

项数=(52-4)÷6+1=9,即这个数列共有9项。

练习1:
1.等差数列中,首项=1.末项=39,公差=
2.这个等差数列共有多少项?
2.有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?
3.已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项?
【答案】1.(39-1)÷2+1=20项
2.(101-2)÷3+1=34项
3.(1001-11)÷5+1=199项
【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?
【思路导航】这个等差数列的首项是3.公差是4,项数是100。

要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。

第100项=3+4×(100-1)=399.
练习2:
1.一等差数列,首项=3.公差=
2.项数=10,它的末项是多少?
2.求1.4,7,10……这个等差数列的第30项。

3.求等差数列2.6,10,14……的第100项。

【答案】1.末项是21 2.1+(30-1)×3=88 3.2+(100-1)×4=398
【例题3】有这样一个数列:1.2.3.4,…,99,100。

请求出这个数列所有项的和。

【思路导航】如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。

1+2+3+…+99+100=(1+100)×100÷2=5050
上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:等差数列总和=(首项+末项)×项数÷2
这个公式也叫做等差数列求和公式。

练习3:
计算下面各题。

(1)1+2+3+…+49+50
(2)6+7+8+…+74+75
(3)100+99+98+…+61+60
【答案】(1)1275(2)2835(3)3280
【例题4】求等差数列2,4,6,…,48,50的和。

【思路导航】这个数列是等差数列,我们可以用公式计算。

要求这一数列的和,首先要求出项数是多少:项数=(末项-首项)÷公差+1=(50-2)÷2+1=25
首项=2.末项=50,项数=25
等差数列的和=(2+50)×25÷2=650.
练习4:
计算下面各题。

(1)2+6+10+14+18+22
(2)5+10+15+20+…+195+200
(3)9+18+27+36+…+261+270
【答案】(1)72(2)4100(3)4185
【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)
【思路导航】容易发现,被减数与减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。

进一步分析还可以发现,这两个数列其实是把1 ~ 100这100个数分成了奇数与偶数两个等差数列,每个数列都有50个项。

因此,我们也可以把这两个数列中的每一项分别对应相减,可得到50个差,再求出所有差的和。

(2+4+6+...+100)-(1+3+5+ (99)
=(2-1)+(4-3)+(6-5)+…+(100-99)
=1+1+1+…+1
=50
练习5:
用简便方法计算下面各题。

(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)
(3)(1+3+5+...+1999)-(2+4+6+ (1998)
【答案】(1)4(2)1000(3)1000。

相关文档
最新文档