小学奥数题巧妙求和技巧

合集下载

加减法(奥数)的巧算

加减法(奥数)的巧算

奥数加减法的巧算我们在进行速算时,要根据题目的具体情况灵活运用有关定律和法则,选择合理的方法。

下面介绍在整数加减法运算中常用的几种速算方法。

一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。

如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。

又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。

对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。

如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。

2.互补数先加。

例1 巧算下面各题:36+87+64 ①②99+136+101③ 1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。

例2 ①188+873 ②548+996 ③9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。

二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去例 3① 300-73-27② 1000-90-80-20-10解:①式= 300-(73+ 27)=300-100=200②式=1000-(90+80+20+10)=1000-200=8002.先减去那些与被减数有相同尾数的减数。

奥数知识点速算和巧算

奥数知识点速算和巧算

奥数知识点速算和巧算奥数是指奥林匹克数学竞赛,是一项国际性的数学竞赛。

在竞赛中,学生需要运用数学知识进行问题求解,并且通常要在短时间内给出答案。

因此,在奥数竞赛中,速算和巧算是非常重要的技巧。

下面是一些奥数中常用的速算和巧算的知识点。

一、速算速算是指在有限的时间内,用快捷的方法得到近似值或精确值。

速算在奥数竞赛中非常有用,可以帮助学生快速计算出结果。

以下是一些常用的速算技巧:1.快速乘法:快速乘法是一种用于快速计算两个数乘积的方法。

其中一种常用的方法是竖式乘法,即将两个数分别按位相乘,然后将结果相加。

另外,还有一些其他的快速乘法方法,比如俄式乘法、中国乘法等。

2.快速除法:快速除法是一种用于快速计算两个数商的方法。

其中一种常用的方法是长除法,即将除数和被除数进行竖式计算。

另外,还有一些其他的快速除法方法,比如不动小数点法、移位法等。

3.快速开方:快速开方是一种用于快速计算一个数的平方根的方法。

其中一种常用的方法是牛顿迭代法,即通过迭代求解来逼近平方根的值。

4.快速三角函数计算:在奥数竞赛中,需要经常计算三角函数的值。

为了节省时间,可以使用一些快速计算三角函数的公式,比如正弦和余弦的半角公式、正弦和余弦的和差公式等。

二、巧算巧算是指用巧妙的方法解决问题的技巧。

巧算可以使解题过程更加简洁和高效。

以下是一些常用的巧算技巧:1.数字规律:在奥数竞赛中,许多问题都存在一定的数字规律。

通过观察数字的规律,可以快速求解问题。

比如,找出数列中的规律、发现数字的对称性等。

2.圆与方的关系:圆和正方形是两个常见的图形。

在解决与这两个图形相关的问题时,可以利用圆与正方形的特性进行巧算。

比如,利用圆的对称性和正方形的边长等。

3.分解与组合:一些数学问题可以通过分解与组合的方法进行巧算。

比如,将一个复杂的问题分解为多个简单的问题进行求解,然后将结果进行组合得到最终答案。

4.数量关系:在解决与数量关系相关的问题时,可以运用一些巧妙的方法进行巧算。

小学五年级奥数速算与技巧包含与排除

小学五年级奥数速算与技巧包含与排除

在小学五年级的奥数中,速算与技巧是很重要的一部分。

通过掌握一些速算技巧,孩子们能够更加高效地解决数学问题,提高计算速度。

首先,我要介绍的是加法的速算技巧。

当我们进行两个两位数相加的时候,可以通过分解其中一个数来简化计算。

例如,73+57,我们可以将57分解成50和7,然后将50加到73上得到123,最后再加7,结果是130。

这样的速算技巧可以节省计算的步骤,提高计算的效率。

接下来是减法的速算技巧。

当我们进行两个两位数相减的时候,也可以通过借位来简化计算。

例如,68-27,我们可以先将27变成30然后减去68,得到2、这样比一步一步借位计算要快。

此外,还有一种减法口诀,借十退一,借百退十,可以帮助孩子们更快地进行减法运算。

除了加法和减法的速算技巧,还有一些其他的技巧也很有用。

例如,乘法的速算技巧。

当我们进行两个两位数相乘的时候,可以通过交叉相乘再相加的方法来简化计算。

例如,36乘以48,我们可以先将6和48相乘得到288,然后将3和48再相乘得到144,最后将这两个结果相加得到432、这个方法虽然需要一些计算,但是相比于一位一位相乘的方法要快速一些。

另外,对于除法,我们也可以通过一些技巧来简化计算。

例如,除以5的倍数的时候,我们可以将被除数的末尾一位数去掉,然后再除以5、例如,45除以5,我们可以先去掉5的倍数的末尾一位得到4,然后再将4除以5,结果是0.8、这样的计算方法可以减少计算的步骤。

除了速算技巧外,包含与排除也是很重要的思维方法。

在解决一些问题的时候,我们可以通过包含与排除的思维来缩小范围,找到正确的答案。

例如,解决一个数的问题的时候,我们可以从最小的可能性开始尝试,逐渐增加,不断排除不符合条件的数,最终找到符合条件的数。

这样的思维方法可以帮助孩子们更加有条理地解决问题。

总之,在小学五年级的奥数中,速算与技巧以及包含与排除是很重要的内容。

通过掌握一些速算技巧,孩子们可以更加高效地计算,提高解决问题的能力。

巧解小学数学求和奥数题

巧解小学数学求和奥数题

巧解小学数学求和奥数题
为了培养小学部分拔尖学生,小学课程里安排了一些难度较大的数学题(奥数题),如何快速、准确地解答,是我们小学数学教师要着力解决的问题。

其中以小学数学求和问题最为普遍,而解答小学数学求和问题的关键是要巧算,方法得当,计算就会迅速、准确。

我在此介绍几种小学数学求和问题的巧算方法。

1 裂项抵消法
裂项抵消法就是用数学算式中的一部分分数拆散互相抵消,从而使计算简化。

如:
2 同一相约法
同一相约法就是用数学算式分子中的每两个数相加和得同一结果,再与分母进行约分,从而使计算简化。

如:
3 借来还去法
借来还去法就是有时为了计算方便,先要借用一个数求和,最后又要减(还)
掉这个借来的数。

如:
4 错位相减法
先观察数字,如果后面数字和前面数字存在倍数关系,可以把原式看作一个整体,先乘倍数,再减去原式。

如:
通过观察,相邻的两个数,后面的数字是前面的数字的两倍。

可用此方法解答。

5 加数相约法
在一个数学算式中,为了使计算简便,让分子分母能约分,可以使分子或分母相加同一个数。

如:
通过观察,分子中,如果每个数均加1,那么就与分母完全相同,这样就使计算简便。

总之,解答小学数学求和奥数题方法很多,我们不妨在实践中去不断摸索,去发现一些很好的解题方法。

四年级数学培优专题:巧妙求和(一),典型题型方法思维精讲精炼.doc

四年级数学培优专题:巧妙求和(一),典型题型方法思维精讲精炼.doc

四年级数学培优专题:巧妙求和(一),典型题型方法思维精讲精炼巧妙求和(一)一、方法思维若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:通项公式和项数公式。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。

项数=(52-4)÷6+1=9,即这个数列共有9项。

【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?【思路导航】这个等差数列的首项是3.公差是4,项数是100。

要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。

第100项=3+4×(100-1)=399.【例题3】有这样一个数列:1.2.3.4,…,99,100。

请求出这个数列所有项的和。

【思路导航】如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。

1+2+3+…+99+100=(1+100)×100÷2=5050【例题4】求等差数列2,4,6,…,48,50的和。

【思路导航】这个数列是等差数列,我们可以用公式计算。

要求这一数列的和,首先要求出项数是多少:项数=(末项-首项)÷公差+1=(50-2)÷2+1=25首项=2.末项=50,项数=25等差数列的和=(2+50)×25÷2=650.【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)【思路导航】容易发现,被减数与减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。

小学数学奥数解题技巧(36)连续数求和的速算

小学数学奥数解题技巧(36)连续数求和的速算

36、连续数求和的速算苦干个连续整数求和的问题,可以分为“连续自然数求和”、“连续奇数求和”与“连续偶数求和”三类。

【连续自然数求和】几个连续的自然数相加,可以把它们的首项和末项相加,把所得的结果除以2以后,再乘以项数,得到的便是这几个连续自然数的和。

例如,13+14+15+16+17+18+19+20+21+22=(13+22)÷2×10=17.5×10=175如果加数的个数(项数)是奇数(单数),也可以直接用排列在正中间的数(中间项)乘以项数,去求它们的和。

例如=15×9 (中间项)=135【连续奇数求和】连续奇数的求和,也可以用上面介绍的“连续自然数求和的速算”方法去速算。

例如3+5+7+ 9+11+13+ 15+17+19=(3+19)÷2×9=11×9=99=11(中间项)×9(项数)=99如果是从1开始的几个连续奇数求和,则可以用这些奇数的个数自乘,便得到这几个连续奇数的和。

例如1+3+5+ 7+9+11=6×6=36(奇数个数是6)1+3+5+7+9+11+13+15+17+19+21=11×11=121。

(奇数个数是11)【连续偶数求和】连续偶数的求和,同样可以用“连续自然数求和的速算”方法速算。

例如8+10+12+14+16+18+20+22+24=(8+24)÷2×9=144如果连续偶数是从2开始的,即求从2开始的连续偶数之和,则可以用这些偶数的个数乘以个数加1之和,就得到这几个连续偶数的和。

例如2+4+6+8+10=5×(5+1)(偶数个数是5)=302+4+6+8+10+12+14+16+18+20+22+24+26=13×(13+1)(偶数个数是13)=182。

奥数加减法巧算

奥数加减法巧算

奥数加减法巧算在数学的学习中,加减法的巧算方法能够帮助我们快速、准确地得出计算结果,尤其是在奥数的学习中,掌握这些巧算技巧更是如虎添翼。

接下来,就让我们一起来探索加减法巧算的奇妙世界吧!一、凑整法凑整法是加减法巧算中最常用的方法之一。

所谓凑整,就是把一些数凑成整十、整百、整千的数,这样可以使计算变得更加简便。

例如:23 + 48 + 77 =(23 + 77)+ 48 = 100 + 48 = 148 ,在这个式子中,我们将 23 和 77 先相加凑成 100,再与 48 相加,计算就变得简单多了。

再比如:187 56 44 = 187 (56 + 44)= 187 100 = 87 ,这里把56 和 44 相加凑成 100,然后用 187 减去它们的和,大大简化了计算。

二、带符号搬家法在加减法运算中,我们可以带着数字前面的符号一起“搬家”,这样可以改变运算顺序,使计算更加简便。

比如:154 + 78 54 = 154 54 + 78 = 100 + 78 = 178 ,通过将+ 78 和 54 的位置交换,先计算 154 54 ,再加上 78 ,计算轻松了不少。

三、基准数法当遇到多个相近的数相加时,可以选择一个基准数,先计算出每个数与基准数的差,再将这些差相加,最后加上基准数与个数的乘积。

例如:计算 98 + 102 + 97 + 101 + 99 ,我们可以选择 100 作为基准数,那么原式就可以转化为:(100 2)+(100 + 2)+(100 3)+(100 + 1)+(100 1)= 100×5 +( 2 + 2 3 + 1 1)=500 3 = 497 。

四、拆数法把一个数拆分成两个或多个数,然后再进行计算,有时会使计算变得简单。

比如:28 + 99 = 28 + 100 1 = 128 1 = 127 ,把 99 拆分成 1001 。

再比如:167 98 = 167 100 + 2 = 67 + 2 = 69 ,把 98 拆分成100 2 。

四年级升五年级奥数综合讲义第1讲-巧妙求和

四年级升五年级奥数综合讲义第1讲-巧妙求和

第一讲巧妙求和一、专题简析:数列中从第二项起,后项与其相邻的前项之差都相等的数列称为等差数列。

其中第一项称为首项,最后一项称为末项。

数列中数的个数称为项数。

通项公式:第n项=首项+(项数—1)×公差项数公式:项数=(末项—首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2二、典型例题例1:等差数列4,10,16,22,……,52共有多少项?练一练:1.等差数列2,5,8,11,……,101共有几项?2.有一堆粗细均匀的圆木,最上面有4根,每一层都比上一层多1根,最下面一层有25根,这堆圆木共有几层?例2:已知等差数列3,7,11,15,……,则该等差数列的第100项是多少?练一练:1.已知等差数列1,4,7,10,……,则该等差数列的第30项是多少?2.已知等差数列2,6,10,14,……,则该等差数列的第100项是多少?,例3:有这样一个数列1,2,3,4,……,99,100,请求出这个数列各项相加的和?练一练: 1+2+3+4……+49+50 6+7+8+9+……+75100+99+98+97+……+60 120+119+118+……+2+1例4.琳琳读一部小说,第一天读了40页,从第二天起,每天读的页数都比前一天多5页,共花10天读完,这本书共有多少页?练一练:1.一个堆放铅笔的V形架的最下面一层放1支铅笔,往上每一层都比它下面一层多放一支,最上面一层是120支,这个V形架上共放着多少支铅笔?2.按一定规律排列的算式:4+2,5+8,6+14,7+20,……,那么第100个算式是什么?三、熟能生巧1、有一个等差数列:9,12,15,18,……,2004,这个数列共有多少项?2、求等差数列1,6,11,16,……,的第61项。

3、1—2+3—4+5—6……+2009—2010+2011 160+154+148+……+16 5+10+15+20+……+195+200 9+18+27+……+261+270(2+4+6+……+100)—(1+3+5+7+……+99)880—3—6—9—…—572+3—4+5+6—7+8+9—10+11+12—13+……+101+102—1034.5个连续自然数的和是225,求第一个数是多少?5.有30把锁的钥匙都搞乱了,为了使每把锁都被打开,至多要开多少次?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数题巧妙求和技巧
一、知识要点
某些问题,可以转化为求假设干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。

如果是等差数列求和,才可用等差数列求和公式。

在解决自然数的数字问题时,应根据题目的详细特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。

二、精讲精练
【例题1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。

这本书共有多少页?
【思路导航】根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。

要求这本书共多少页也就是求出这列数的和。

这列数是一个等差数列,首项=30,末项=60,项数=11.因此可以很快得解:
(30+60)×11÷2=495(页)
想一想:如果把“第11天”改为“最后一天”该怎样解答?
练习1:
1.刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。

这批零件共有多少个?
2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。

最后一天读了50页恰好读完,这本书共有多少页?
3.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。

丽丽在这些天中学会了多少个英语单词?
【例题2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?
【思路导航】开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它翻开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等翻开第29把锁,剩下的最后一把不用试,一定能翻开。

所以,至多需试 29+28+27+…+2+1=(29+1)×29÷2=435(次)。

练习2:
1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?
2.有一些锁的钥匙搞乱了,至多要试28次,就能使每把锁都配上自己的钥匙。

一共有几把锁的钥匙搞乱了?
3.有10只盒子,44只羽毛球。

能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?
【例题3】某班有51个同学,毕业时每人都和其他的每个人握一次手。

那么共握了多少次手?
【思路导航】假设51个同学排成一排,第一个人依次和其他人握手,一共握了50次,第二个依次和剩下的人握手,共握了49次,第三个人握了48次。

依次类推,第50个人和剩下的一人握了1次手,这样,他们握手的次数和为:
50+49+48+…+2+1=(50+1)×50÷2=1275(次).
练习3:
1.学校进展乒乓球赛,每个选手都要和其他所有选手各赛一场。

如果有21人参加比赛,一共要进展多少场比赛?
2.在一次同学聚会中,一共到43位同学和4位老师,每一位同学或老师都要和其他同学握一次手。

那么一共握了多少次手?
3.假期里有一些同学相约每人互通两次,他们一共打了78次,问有多少位同学相约互通?
【例题4】求1 ~ 99 这99个连续自然数的所有数字之和。

【思路导航】首先应该弄清楚这题是求99个连续自然数的数字之和,而不是求这99个数之和。

为了能方便地解决问题,我们不妨把0算进来(它不影响我们计算数字之和)计算0~99这100个数的数字之和。

这100个数头尾两配对后每两个数的数字之和都相等,是9+9=18,一共有100÷2=50对,所以,1~99这99个连续自然数的所有数字之和是18×50=900。

练习4:
1.求1~199这199个连续自然数的所有数字之和。

2.求1~999这999个连续自然数的所有数字之和。

3.求1~3000这3000个连续自然数的所有数字之和。

【例题5】求1~209这209个连续自然数的全部数字之和。

【思路导航】不妨先求0~199的所有数字之和,再求200~209的所有数字之和,然后把它们合起来。

0~199的所有数字之和为(1+9×2)×(200÷2)=1900,200~209的所有数字之和为
2×10+1+2+…+9=65。

所以,1~209这209个连续自然数的全部数数字之和为1900+65=1965。

练习5:
1.求1~308连续自然数的全部数字之和。

2.求1~xx连续自然数的全部数字之和。

3.求连续自然数2000~5000的全部数字之和。

相关文档
最新文档