四年级上册数学奥数习题-巧妙求和-全国通用
4年级奥数举一反三专题 第十六周 巧妙求和(二)

第十六周巧妙求和(二)专题简析:某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。
如果是等差数列求和,才可用等差数列求和公式。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
例1:刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?分析与解答:根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。
要求这本书共多少页也就是求出这列数的和。
这列数是一个等差数列,首项=30,末项=60,项数=11,因此可以很快得解:(30+60)×11÷2=495(页)想一想:如果把“第11天”改为“最后一天”该怎样解答? 练习一1,刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。
这批零件共有多少个?2,胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了50页恰好读完,这本书共有多少页?3,丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?例2:30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?分析与解答:开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。
所以,至多需试29+28+27+…+2+1=(29+1)×29÷2=435(次)。
练习二1,有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2,有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
四年级数学拔高之 巧妙求和(一)

巧妙求和(一)1.有一个数列:4,10,16,22.…,52.这个数列共有多少项?2.等差数列中,首项=1,末项=39,公差=2.这个等差数列共有多少项?3.有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?4.有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?5.一等差数列,首项=3.公差=2.项数=10,它的末项是多少?6.求1,4,7,10……这个等差数列的第30项。
7.有这样一个数列:1.2.3.4,…,99,100。
请求出这个数列所有项的和。
计算下面各题。
(1)1+2+3+…+49+50(2)6+7+8+…+74+75求等差数列2,4,6,…,48,50的和。
计算下面各题。
(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200计算(2+4+6+...+100)-(1+3+5+ (99)用简便方法计算下面各题。
(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)1、已知等差数列11,16,21,26,…,1001.这个等差数列共有多少项?2、求等差数列2,6,10,14……的第100项。
3、100+99+98+…+61+604、(1+3+5+...+1999)-(2+4+6+ (1998)5、100+95+90+…+15+10+56、4+7+10+13+…+298+301+298+…+13+10+7+47、 2013-2012+2011-2010+…+3-2+18、影剧院有座位若干排,第一排有25个座位,以后每一排比前一排多3个座位,最后一排有94个座位。
问:这个影剧院共有多少个座位?。
小学奥数 数列求和 巧妙求和 含答案

第16讲巧妙求和一、知识要点某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。
如果是等差数列求和,才可用等差数列求和公式。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
二、精讲精练【例题1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?【思路导航】根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。
要求这本书共多少页也就是求出这列数的和。
这列数是一个等差数列,首项=30,末项=60,项数=11.因此可以很快得解:(30+60)×11÷2=495(页)想一想:如果把“第11天”改为“最后一天”该怎样解答?练习1:1.刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。
这批零件共有多少个?2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了50页恰好读完,这本书共有多少页?3.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?【例题2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?【思路导航】开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。
所以,至多需试29+28+27+…+2+1=(29+1)×29÷2=435(次)。
练习2:1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
四年级奥数巧妙求和

巧妙求和
基本概念
1 数列:若干个数排成一列,称为数列
2 项:数列中的每一个数
首项:数列中的第一项
末项:数列中的最后一项
项数:数列中项的个数
3 等差数列:从第二项开始,后项与前项之差都相等的数列
公差:后项与前项的差
4 等差数列求和
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
求和公式:总和=(首项+末项)×项数÷2
例1:数列4,10,16,22…52共有多少项?
例2:等差数列9,12,15,18…,2004,这个数列共有多少项?
例3:等差数列1000,993,986,979,…20,这个数列共有多少项?
例4:已知等差数列3,7,11,15,…,则该等差数列第100项是多少?
例5:求等差数列1,6,11,16,…的第61项。
例6:求等差数列307,304,301,298,…第99项。
例7:有这样一列数:1,2,3,4,…98,99,100.请求出这列数各项相加之和。
例8:求等差数列2,4,6,…48,50的和。
例9:用简便方法计算(100+102+104+...+200)-(1+5+9+13+ (97)
作业:
1.3+5+7+9+…+63
2.100+110+120+…+350
3.160+154+148+…+16
4.2+3-4+5+6-7+8+9-10+11+12-13+…+101+102-103。
小学奥数 巧妙求和 知识点+例题+练习 (分类全面)

巩固(1) 21+23+25+27+29+31 (2) 108+128+148+168+188
例3、有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层有17根,……下面每层比上层多一两点钟敲2下,……二十四点钟敲24下,这个钟一昼夜敲多少下?
教学内容
巧妙求和、图形计数、容斥原理
教学目标
掌握巧妙求和、图形计数、容斥原理
重点
巧妙求和、图形计数、容斥原理
难点
巧妙求和、图形计数、容斥原理
教
学
过
程
课堂精讲
1、巧妙求和
例1、高斯求和
1+2+3+4+……+9+10=
巩固(1) 1+2+3+4+……+99+100 (2) 21+22+23+24+……+100
例4、计算991+992+993+994+995+996+997+998+999。
巩固:(1) 9997+9998+9999 (2) 100-1-3-5-7-9-11-13-15-17-19
课后作业
1、 1+2+3+4+5+……+20
2、48+50+52+54+56+58+60+62
3、体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,……这个体育馆东区共有多少个座位?
小学四年级奥数巧妙求和

四年级奥数专题巧妙求和(一)专题简析:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
这一周学习“等差数列求和”。
需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
练习一1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?分析与解答:这个等差数列的首项是3,公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399练习二1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2,求1,4,7,10……这个等差数列的第30项。
3,求等差数列2,6,10,14……的第100项。
例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。
四年级奥数课后分层作业-第8讲 巧妙求和(一) 通用版

=(2005+1004)×(2005-1004+1)÷2-2×(2003+1004)×[(2003-1004)÷3+1)÷2
=1507509-1004338
=503171
这个数列共141项
3、求等差数列:1,6,11,16…,的第61项。
a1=1 d=6-1=5则an=1+5(n-1)=5n-4
则a61=5×61-4=301
4、求等差数列:307、304、301、298、……的第99项。
由题意可知:
首项:a1=307
公差:d=304-307=-3
则第99项为:
a99=a1+98d
=307-98x3
=307-294
=13
5、计算:4+5+6+7+8+……+80
=(4×77÷2
=6468÷2
=3234
6、计算:11+12+13+……+200
原式=(200-11+1)(11+200)÷2
=190×211÷2
=20045
提高卷
1、计算:3+5+7+9+……+93
,和=(3+93)×(93-1) ÷2 ÷2
=2208
2、计算:100+110+120+……+350
(首项+末项)乘项数除以2=5850
3、计算:160+154+148+……+16
四年级奥数题第16讲 巧妙求和(二)

第16讲巧妙求和一、知识要点某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。
如果是等差数列求和,才可用等差数列求和公式。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
二、精讲精练【例题1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?练习1:1.刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。
这批零件共有多少个?2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了50页恰好读完,这本书共有多少页?【例题2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?练习2:1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
一共有几把锁的钥匙搞乱了?【例题3】某班有51个同学,毕业时每人都和其他的每个人握一次手。
那么共握了多少次手?练习3:1.学校进行乒乓球赛,每个选手都要和其他所有选手各赛一场。
如果有21人参加比赛,一共要进行多少场比赛?2.在一次同学聚会中,一共到43位同学和4位老师,每一位同学或老师都要和其他同学握一次手。
那么一共握了多少次手?【例题4】求1 ~ 99 这99个连续自然数的所有数字之和。
练习4:1.求1~199这199个连续自然数的所有数字之和。
2.求1~999这999个连续自然数的所有数字之和。
【例题5】求1~209这209个连续自然数的全部数字之和。
练习5:1.求1~308连续自然数的全部数字之和。
2.求1~2009连续自然数的全部数字之和。
三、课后作业1.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巧妙求和
【一】求1~20这20个连续自然数的所有数字之和。
练习
1、求1~50这50个连续自然数的所有数字之和。
2、求3~19连续自然数的全部数字之和。
【二】一把钥匙只能开一把锁。
现在有4把钥匙和4把锁,但不知道哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁?
练习
1、现在有8对钥匙和锁混在一起,不知道哪把钥匙配哪把锁,最多要试多少次就可以把它们全部配成对?
2、有9颗钢珠,其中8颗一样重,另有一颗比这8颗略轻,用一架天平最多称多少次,就
可以找到那颗较轻的钢珠?
【三】思雨读一本长篇小说,他第一天读20页,从第二天起,他每天读的页数都比前一天多2页,第11天读了40页,正好读完,这本书共有多少页?
练习
1、王师傅做一批零件,第一天做了40个,以后每天都比前一天多做3个,第15天做了82
个,正好做完,这批零件共有多少个?
2、张琳读一本故事书,她第一天读了15页,从第二天起,每天读的页数都比前一天多5
页。
最后一天读了40页恰好读完,这本书共有多少页?
【四】45把锁的钥匙都搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?
练习
1、有60把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?
2、有一些锁的钥匙搞乱了,已知至多要试45次,就能使每把锁都配上自己的钥匙,问一共
有几把锁的钥匙搞乱了?
【五】某班有30个同学,每两个同学互通一次电话,那么他们一共通了多少次电话?
练习
1、竹苑小学进行象棋比赛,每个参赛选手都要和其他所有的选手各赛一场,如果有15人参
加比赛,问一共要进行多少场比赛?
2、一次生日party中,参加的有20位同学和3位老师,每两人之间握一次手。
那么一共握了几次手?
【六】求1~99中连续自然数的所有数字之和。
练习
1、求1~199的199个连续自然数的所有数字之和。
2、求1~999的999个连续自然数的所有数字之和。
3、求1~210连续自然数的全部数字之和。
4、求1~299连续自然数的全部数字之和。
5、求1~1008连续自然数的全部数字之和。
课外作业
1、求3~33连续自然数的所有数字之和。
2、仓库里放一批粗细均匀的圆木,最上一层放3根,每向下一层就增加1根,最下面一层
放了8根,这批圆木有多少根?
3、文文背英语单词,第一天背会了10个,以后每天都比前一天多背1个,最后一天背会了
18个,文文在这些天中背会了多少个单词?
4、有9只盒子,35只羽毛球。
能不能把35只羽毛球放到盒子中去,使各个盒子里的羽毛球不相等?
5、暑假里有一些同学相约每两人互通一次电话,他们一共打了55次电话,问有多少同学互
通电话?
6、求1~2000的2000个自然数的所有数字之和。
7、求连续自然数1000~3000的全部数字之和。