化工原理知识点总结整理

合集下载

化工原理各章节知识点总结

化工原理各章节知识点总结

第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。

连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。

拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。

欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。

定态流动流场中各点流体的速度u 、压强p不随时间而变化。

轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。

流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。

系统与控制体系统是采用拉格朗日法考察流体的。

控制体是采用欧拉法考察流体的。

理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。

粘性的物理本质分子间的引力和分子的热运动。

通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。

气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。

总势能流体的压强能与位能之和。

可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。

有关的称为可压缩流体,无关的称为不可压缩流体。

伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。

平均流速流体的平均流速是以体积流量相同为原那么的。

动能校正因子实际动能之平均值与平均速度之动能的比值。

均匀分布同一横截面上流体速度相同。

均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度, 故沿该截面势能分布应服从静力学原理。

层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。

稳定性与定态性稳定性是指系统对外界扰动的反响。

定态性是指有关运动参数随时间的变化情况。

边界层流动流体受固体壁面阻滞而造成速度梯度的区域。

边界层别离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象。

(完整版)化工原理基本知识点

(完整版)化工原理基本知识点

第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。

(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。

表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==液体的粘度随温度升高而减小,气体粘度随温度升高而增大。

三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。

111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。

四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。

(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。

圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。

化工原理整理知识点

化工原理整理知识点

第一章 流体传递现象流体受力:表面力和体积力体积力/场力/质量力:为非接触力,大小与流体的质量成正比表面力:为接触力,大小与和流体相接触的物体(包括流体本身)的表面积成正比, 流场概念:场和流场;矢量场和标量场;梯度第一节 流体静力学1-1-2 压力流体垂直作用于单位面积上的力,称为流体的静压强,又称为压力。

在静止流体中,作用于任意点不同方向上的压力在数值上均相同。

压力的单位(1) 按压力的定义,其单位为N/m 2,或Pa ;(2) 以流体柱高度表示,如用米水柱或毫米汞柱等。

标准大气压的换算关系:1atm = 1.013×105Pa =760mmHg =10.33m H 2O 压力的表示方法表压 = 绝对压力-大气压力 真空度 = 大气压力-绝对压力 1-1-3 流体静力学基本方程 静力学基本方程:压力形式 :)(2112z z g p p -+=ρ能量形式 :gz p g z p 2211+=+ρρ适用条件:在重力场中静止、连续的同种不可压缩流体。

(1)在重力场中,静止流体内部任一点的静压力与该点所在的垂直位置及流体的密度有关,而与该点所在的水平位置及容器的形状无关。

(2)在静止的、连续的同种液体内,处于同一水平面上各点的压力处处相等。

液面上方压力变化时,液体内部各点的压力也将发生相应的变化。

(3)物理意义:静力学基本方程反映了静止流体内部能量守恒与转换的关系,在同一静止流体中,处在不同位置的位能和静压能各不相同二者可以相互转换,但两项能量总和恒为常量。

应用:1. 压力及压差的测量 (1)U 形压差计:gR p p )(021ρρ-=- 若被测流体是气体,可简化为:021ρRg p p ≈-U 形压差计也可测量流体的压力,测量时将U 形管一端与被测点连接,另一端与大气相通,此时测得的是流体的表压或真空度。

(2)倒U 形压差计 ρρρRg Rg p p ≈-=-)(021(3)双液体U 管压差计)(21C A Rg p p ρρ-=- 2. 液位测量3. 液封高度的计算第二节 流体动力学1-2-1 流体的流量与流速 一、流量体积流量V S 单位时间内流经管道任意截面的流体体积, m 3/s 或m 3/h 。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结一、化工原理的概念和基本原理1. 化工原理的概念化工原理是指研究化工过程中各种物质变化和能量变化规律的科学。

化工原理是化学工程学科的基础,它研究化工过程中的化学反应、物质传递、热力学、流体力学等基本原理和规律。

2. 化工原理的基本原理化工原理的基本原理包括热力学、化学反应动力学、物质传递和流体力学等方面的基本原理。

(1)热力学热力学是研究物质的能量转化规律和能量平衡的科学。

在化工过程中,热力学原理适用于研究热平衡、热力学循环、热力学分析等方面的问题。

(2)化学反应动力学化学反应动力学是研究化学反应速率和影响因素的科学。

化工过程中的化学反应速率、反应机理、反应平衡等问题都需要运用化学反应动力学的原理进行分析和研究。

(3)物质传递物质传递是指物质在不同相之间的传递过程,包括物质的扩散、对流,以及传质设备的设计和运行原理等问题。

(4)流体力学流体力学是研究流体运动规律和流体性质的科学。

在化工过程中,很多问题都需要用到流体力学原理,如管道输送、泵的选择和设计、流体混合等方面的问题。

这些基本原理是化工原理研究的基础,它们为化工过程的设计、优化和运行提供了理论支持和技术指导。

二、化工过程的热力学分析1. 化学平衡在化工过程中,化学反应是一个重要的环节,化学反应的平衡状态对于产品的质量和产率有很大的影响。

因此,分析化学平衡是化工过程设计和运行中的重要内容。

2. 热力学循环热力学循环是指利用热力学原理设计和运行的热力系统,如蒸汽发电系统、制冷系统等。

热力学循环的分析和设计对于提高能量利用率和节能减排具有重要意义。

3. 热力学分析热力学分析是指利用热力学原理对化工过程中的能量转化和热平衡进行分析。

热力学分析通常包括能量平衡、热效率、热损失等方面的内容,它是化工过程优化和节能改造的重要手段。

三、化工过程的化学反应动力学分析1. 反应速率反应速率是指化学反应中物质的转化速率,其大小受到温度、浓度、压力等因素的影响。

化工原理知识点总结复习重点

化工原理知识点总结复习重点

第一章、流体流动一、流体静力学Y二、流体动力学'三、流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力, 俗称压强。

表压强(力)=绝对压强(力)-大气压强(力)真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系流体静力学方程式及应用:压力形式p2p1g(z1 z2)备注:1)在静止的、连续的同一液体内,处于同一能量形式■P1z1g z2g 水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U型压差计p i P2 (0 )gR*倾斜液柱压差计微差压差计、流体动力学流量质量流速G kg/m 2s I 2m s=GAn /4d G体积流量V S m3/s 质量流量m=V S pm s kg/s连续性方程及重要引论:U2 (d i\2()u1d2一实际流体的柏努利方程及应用(例题作业题)以单位质量流体为基准:Z i g 1 22Ui B W e Z2g 122U2P2 WfJ/kg以单位重量流体为基准:Zi 1 2U1 2gP1H e Z2g1 2U2 2gP2 hfJ/N=mg输送机械的有效功率:N e m s W e输送机械的轴功率:N e N e(运算效率进行简单数学变换)应用解题要点:1、作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、截面的选取:两截面均应与流动方向垂直;3、基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、两截面上的压力:单位一致、表示方法一致;5、单位必须一致:有关物理量的单位必须一致相匹配。

三、流体流动现象:流体流动类型及雷诺准数:(1)层流区Re<2000(2)过渡区2000< Re<4000(3)湍流区Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re值,更重要的是两种流型的质点运动方式有本质区别。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结1. 流体力学- 流体静力学:压力的概念、流体静力学平衡、马里奥特原理、流体静压力的测量。

- 流体动力学:连续性方程、伯努利方程、动量守恒、流动类型(层流与湍流)、雷诺数。

- 管道流动:管道摩擦损失、达西-韦斯巴赫方程、摩擦因子的确定、管道网络分析。

2. 传热学- 热传导:傅里叶定律、导热系数、热阻、稳态与非稳态导热。

- 对流热传递:对流热流密度、牛顿冷却定律、对流给热系数。

- 辐射传热:斯特藩-玻尔兹曼定律、黑体辐射、角系数、有效辐射面积。

- 热交换器:热交换器类型、效能-NTU方法、传热强化技术。

3. 物质分离- 蒸馏:基本原理、平衡曲线、麦卡布-锡尔比法、塔板理论、塔内设备。

- 萃取:液-液萃取、固-液萃取、溶剂萃取、萃取平衡、萃取过程设计。

- 过滤与沉降:沉降原理、过滤操作、离心分离、膜分离技术。

- 色谱与电泳:色谱原理、色谱柱、电泳分离、毛细管电泳。

4. 化学反应工程- 化学反应动力学:反应速率、速率方程、活化能、催化剂。

- 反应器设计:批式反应器、半连续反应器、连续搅拌槽式反应器(CSTR)、管式反应器。

- 反应器分析:稳态操作、非稳态操作、反应器的稳定性分析。

- 催化反应工程:催化剂特性、催化剂制备、催化剂失活与再生。

5. 质量传递- 扩散现象:菲克定律、扩散系数、分子扩散与对流扩散。

- 质量传递原理:质量守恒、质量传递微分方程、边界条件。

- 吸收与解吸:气液平衡、吸收塔操作、解吸过程。

- 干燥过程:湿空气系统、干燥过程分析、干燥器设计。

6. 过程控制- 控制系统基础:控制系统组成、开环与闭环系统、控制器类型。

- 控制器设计:PID控制器、串级控制系统、比值控制系统。

- 过程动态分析:拉普拉斯变换、传递函数、系统稳定性分析。

- 先进控制策略:模糊控制、自适应控制、预测控制。

7. 化工热力学- 热力学第一定律:能量守恒、热力学过程、热力学循环。

- 热力学第二定律:熵的概念、熵增原理、卡诺循环。

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点(完美版)————————————————————————————————作者:————————————————————————————————日期:ﻩ第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=-倾斜液柱压差计 微差压差计ﻩ ﻩﻩﻩ ﻩﻩ二、流体动力学● 流量质量流量 m S kg /s m S =V S ρ体积流量 V S m3/s质量流速 G kg/m2s (平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = m S =GA=π● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。

(完整版)化工原理知识点总结整理

(完整版)化工原理知识点总结整理

一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。

4.两种流动形态:层流和湍流。

流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。

当流体层流时,其平均速度是最大流速的1/2。

5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。

6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。

孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。

其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差、变截面。

8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。

)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

3.牛顿粘性定律:F=±τA=±μAdu/dy,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。

4.两种流动形态:层流和湍流。

流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。

当流体层流时,其平均速度是最大流速的1/2。

5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C。

6.流体阻力=沿程阻力+局部阻力;宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re,湍流时λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。

孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。

其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差、变截面。

8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。

)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。

半闭式和开式效率较低,常用于输送浆料或悬浮液。

气缚现象:贮槽的液体没有吸入泵。

汽蚀现象:泵的安装位置太高,叶轮中各处压强高于被输送液体的饱和蒸汽压。

原因(①安装高度太高②被输送流体的温度太高,液体蒸汽压过高;③吸入管路阻力或压头损失太高)各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体12. 往复泵的流量调节❖ (1)正位移泵❖ 流量只与泵的几何尺寸和转速有关,与管路特性无关,压头与流量无关,受管路的承压能力所限制,这种特性称为正位移性,这种泵称为正位移泵。

❖ 往复泵是正位移泵之一。

正位移泵不能采用出口阀门来调节流量,否则流量急剧上升,导致示损坏。

❖ (2)往复泵的流量调节❖ 第一,旁路调节,如图2-28所示,采用旁路阀调节主管流量,但泵的流量是不变的。

第二,改变曲柄转速和活塞行程。

使用变速电机或变速装置改变曲柄转速,达到调节流量,使用蒸汽机则更为方便。

改变活塞行程则不方便。

13.流体输送机械分类 222'2e 2e 2u d l l u d l l u d l h h h f f f ⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+=∑∑∑∑∑∑ζλλζλ14.15.流体输送机械特点:• 速度式流体输送机器的特点• (1)由于速度式流体输送机械的转动惯量小,摩擦损失小,适合高速旋转,所以速度式流体输送机械转速高、流量大、功率大。

• (2)运转平稳可靠,排气稳定、均匀,一般可连续运转1~3年而不需要停机检修。

• (3)速度式流体输送机械的零部件少,结构紧凑。

• (4)由于单级压力比不高,故不适合在太小的流量或较高的压力(>70MPa )下工作。

• 2.容积式流体输送机械的特点• (1)运动机构的尺寸确定后,工作腔的容积变化规律也就确定了,因此机械转速改变对工作腔容积变化规律不发生直接的影响,故机械工作的稳定性较好。

• (2)流体的吸入和排出是靠工作腔容积变化,与流体性质关系不大,故容易达到较高的压力。

• (3)容积式机械结构复杂,易于损坏的零件多。

而且往复质量的惯性力限制了机械转速的提高。

此外,流体吸入和排出是间歇的,容易引起液柱及管道的振动。

16.流体体积随压力变化而改变的性质称为压缩性。

二、非均相机械分离1.颗粒的沉降:层流沉降速度Vt=(ρp -ρ)gdp2/18μ,(ρp -ρ:颗粒与流体密度差,μ:流体粘度);重力沉降(沉降室,H/v=L/u ,多层;增稠器,以得到稠浆为目的的沉淀);离心沉降(旋风分离器)。

2.过滤:深层过滤和滤饼过滤(常用,助滤剂增加滤饼刚性和空隙率);分类:压滤、离心过滤,间歇、连续;滤速的康采尼方程:u=(Δp/Lμ)ε3/5a2(1-ε)2,(ε:滤饼空隙率;a :颗粒比表面积;L :层厚)。

3.过滤介质:过滤过程所用的多孔性介质称为过滤介质,过滤介质应具有下列特性:多孔性、孔径大小适宜、耐腐蚀、耐热并具有足够的机械强度。

图2-10 离心泵的工作qvg z A ρ+∆=4.助滤剂:若滤浆中所含固体颗粒很小,或者所形成的滤饼孔道很小,又若滤饼可压缩,随着过滤进行,滤饼受压变形,都使过滤阻力很大而导致过滤困难。

可采用助滤剂以改善滤饼的结构,增强其刚性。

常用的助滤剂有:硅藻土、纤维粉末、活性炭、石棉等5. 过滤速率基本方程 恒速过滤,恒压过滤6.过滤设备:板框压滤机(间歇操作,构造简单,过滤面积大而占地省,过滤压力高(可达1.5MPa 左右),便于用耐腐蚀性材料制造,便于洗涤。

它的缺点是装卸、清洗劳动强度较大。

)、叶滤机(叶滤机也是间歇操作设备,具有过滤推动力大、单位地面所容纳的过滤面积大、滤饼洗涤较充分等优点。

其生产能力比板框压滤机大,而且机械化程度高,劳动力较省,密闭过滤,操作环境较好。

其缺点是构造较复杂、造价较高。

)、厢式压滤机、转筒真空过滤机(操作连续、自动)7.自由沉降:单个颗粒在流体中的沉降过程称。

干扰沉降:若颗粒数量较多,相互间距离较近,则颗粒沉降时相互间会干扰,称为干扰沉降。

8.影响因素:当颗粒浓度增加,沉降速度减少。

容器的壁和底面,沉降速度减少。

非球形的沉降速度小于球形颗粒的沉降速度。

9. 流态化是一种使固体颗粒通过与流体接触而转变成类似于流体状态的操作。

分三个阶段:(1)固定床阶段:流体通过颗粒床层的表观速度u 较低,使颗粒空隙中流体的真实速度u1小于颗粒的沉降速度ut ,则颗粒基本上保持静止不动,颗粒层为固定床。

流化床阶段 :在一定的表观速度下,颗粒床层膨胀到一定程度后将不再膨胀,此时颗粒悬浮于流体中,床层有一个明显的上界面,与沸腾水的表面相似,这种床层称为流化床。

(散式流态化,聚式流态化)。

(3)颗粒输送阶段:如果继续提高流体的表观速度u ,使真实速度u1大于颗粒的沉降速度ut ,则颗粒将被气流所带走,此时床层上界面消失,这种状态称为气力输送。

10. 气力输送的优点(1)系统封闭,避免物料飞扬,减少物料损失,改善劳动条件。

(2)输送管路不限制,即使在无法铺设道路或安装输送机械的地方,使用气力输送更加方便。

(3)设备紧凑,易于实现连续化、自动化操作,便于同连续化工生产相衔接。

(4)在气力输送过程中可同时进行粉料的干燥、粉碎、冷却、加料等操作。

三、传热1.传热方式:热传导(傅立叶定律)、对流传热(牛顿冷却定律)、辐射传热(四次方定律);热交换方式:间壁式传热、混合式传热、蓄热体传热(对蓄热体的周期性加热、冷却)。

2.傅立叶定律:dQ= -λdA ,(Q :热传导速率;A :等温面积;λ:比例系数; :温度梯度);λ与温度的关系:λ=λ0(1+at),(a :温度系数)。

3.不同情况下的热传导:单层平壁:Q=(t1-t2)/[b/(CmA)]=温差/热阻,(b :壁厚;Cm=(λ1-λ2)/2);多层平壁:Q=(t1-tn+1)/ [bi /(λiA)];单层圆筒:Q=(t1-t2)/[b/(λAm)],(A :圆筒侧面积,C= (A2-A1)/ln(A2/A1)); 多层圆筒:Q=2πL(t1-t n+1)/ [1/λi [ln(ri+1/ri) ]。

4.对流传热类型:强制对流传热(外加机械能)、自然对流传热、(温差导致)、蒸汽冷凝传热(冷壁)、液体沸腾传热(热壁),前两者无相变,后两者有相变;牛顿冷却定律:dQ=hdAΔt,(Δt>0;h :传热系数)。

5.吸收率A+反射率R+透射率D=1;黑体A=1,镜体R=1,透热体D=1,灰体A+R=1;总辐射能E=Eλdλ,(Eλ:单色辐射能;λ:波长);四次方定律:E=C(T/100)4=εC0(T/100)4,(C :灰体辐射常数;C0:黑体辐射常数;ε=C/C0:发射率或黑度);两物体辐射传热:Q1-2=C1-2φA[(T1/100)4-(T2/100)4],(φ:角系数;A :辐射面积;C1-2=1/[(1/C1)+(1/C2)-(1/C0)])6.总传热速率方程:dQ=KmdA ,(dQ :微元传热速率;Km :总传热系数;A :传热面积);1/K=1/h1+bA1/λAm+A1/h2A2,(h1,h2:热、冷流体表面传热系数)。

7.换热器:夹套换热器、蛇管式换热器、套管式换热器、列管式换热器。

8、(1)强化传热 为了使物料满足所要求的操作温度进行的加热或冷却,希望热量以所期望的速率进行传递;(2)削弱传热 :为了使物料或设备减少热量散失,而对管道或设备进行保温或保冷。

φμr p K ∆=2)(2e q q K d dq u +==ττK qq q e =+22τ222KA VV V e =+9.热传导 物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为热传导,又称导热。

10.对流传热:对流仅发生于流体中,它是指由于流体的宏观运动使流体各部分之间发生相对位移而导致的热量传递过程 。

11.12.传热的基本方式:(1)热传导(2)对流传热—热对流 (3)辐射传热13.影响冷凝传热的因素和冷凝传热的强化① 流体物性:冷凝液ρ↑ 、λ↑、μ↓→ α↑ ;潜热r ↑ → α↑ ② 温差:液膜层流流动时,∆t=ts -tW ↑,δ↑,α↓ ③ 不凝气体:不凝气体的存在会导致α↓↓(1%不凝气可使α↓60%),所以应该定期排放④ 蒸汽流速与流向(u>10m/s):蒸汽与液膜同向时u ↑→δ↓,α↑;反向时u ↑→δ↑,α↓;u ↑↑时α↑(无论方向)。

因此蒸汽进口一般设在换热器上部,以避免蒸汽与液膜逆向流动使α↓。

相关文档
最新文档