考研生物化学复习笔记
考研生物化学笔记

生物化学一、生物化学的观点生物化学是研究生命现象化学本质的学科。
生物化学就是生命的化学。
生物化学是研究生物体内的化学分子组成,分子结构、性质、功效及其在体内代谢历程的学科。
——代谢包罗物质和能量两方面。
生物化学是研究生物的化学组成和化学变革的,所以生物化学也可以分作两大部门内容:化学组成部分,也称为静态生物化学,主要探讨组成生物体的分子类型、分子结构、化学性质及生物功效;②化学变革部门,讨论的是生物体内的化学分子之间如何进行转化,即研究生物体内的化学反响,以及这些反应产生的部位和反响机理,以及陪同这些反响所产生的能量变革。
简朴讲——生物化学就研究生物体的化学组成和生命中的化学变革。
二、生物化学的生长史生物化学的研究始于18世纪下半叶,但作为一门独立的学科是在20世纪初。
1629年荷兰人海尔蒙特进行了柳枝试验,100磅土,2磅重柳枝,只浇水,5年后土和柳枝共重169磅,土淘汰了二两,论文颁发于1648年(死后2年)。
1775年拉瓦锡进行定量试验,证明呼吸历程和化学氧化是相同的。
并推测呼吸形成的CO2也是由于吸入了氧气,与体内的有机物结归并氧化为CO2,从而将呼吸氧化与燃烧联系在一起。
1783年拉瓦锡和拉普拉斯在法国科学院院报颁发论文,提出动物热理论——呼吸相当于不发光的燃烧。
并测定了释放CO2和释热的干系。
现在一般把这一年称为生化开始年。
并把拉瓦锡称为生物化学之父。
但在这同一时期的开拓者另有普利斯特列和舍勒(Scheele),前者发明了光合现象;后者在1770年发明了洒石酸,之后又从膀胱结石中分散出尿酸,并对苹果酸、柠檬酸,甘油等进行了大量研究。
舍勒是瑞典人,学徒工身世,非常热爱化学,最后成为化学家。
进入十九世纪,科学生长大大加快,成绩不停涌现,例如1828年维勒(李比西的学生)人工合成了第一个有机物——尿素,证明有机物可以人造。
1838年施来登与施旺颁发细胞学说。
(在1839年)细胞是有机体,整个动物和植物乃是细胞的聚集体。
生化考研知识点归纳总结

生化考研知识点归纳总结一、细胞生物化学1. 细胞的结构与功能细胞是生命的基本单位,包括原核细胞和真核细胞。
原核细胞包括细菌和蓝藻等,真核细胞包括植物、动物和真菌细胞。
细胞有细胞膜、细胞质、细胞核、线粒体、内质网、高尔基体、溶酶体等多个部分组成。
2. 细胞膜细胞膜是细胞的保护膜,内外有不同的脂类和蛋白质组成。
蛋白质有通道蛋白、受体蛋白、酶蛋白和结构蛋白等。
细胞膜的重要功能包括细胞识别、物质的运输、细胞信号传导等。
3. 蛋白质合成、折叠和降解蛋白质的合成在细胞质中进行,包括转录和翻译两个过程。
新合成的蛋白质需要经过正确的折叠,否则会形成蛋白质聚集,造成细胞内质的损害。
细胞中有多种蛋白质降解途径,主要包括泛素-蛋白酶体途径和溶酶体-体液途径。
4. 细胞核细胞核包括染色质、核仁和核膜等部分。
染色体是DNA和蛋白质的复合物,其中DNA包括基因和非编码序列。
5. 线粒体和叶绿体线粒体是细胞内的能量生产中心,通过氧化磷酸化产生ATP。
叶绿体是植物细胞的特有细胞器,通过光合作用产生ATP和还原能量。
6. 细胞信号传导细胞中的信号传导包括内分泌传导、神经传导和细胞间相互作用等多种方式,主要通过蛋白质、核酸和小分子等信号分子的相互作用实现。
7. 细胞凋亡和坏死细胞凋亡是细胞自身程序性死亡,表现为细胞凋亡因子的释放和内质网的应激等。
细胞坏死是外因导致的异常细胞死亡,与炎症反应和细胞内环境的改变相关。
二、生物大分子结构与功能1. 蛋白质的结构和功能蛋白质包括一级结构、二级结构、三级结构和四级结构。
蛋白质的功能包括酶的催化作用、结构蛋白的机械支持、激素的信号传导等。
2. 核酸的结构和功能核酸包括DNA和RNA,DNA包括脱氧核糖核酸和蛋白质组成,并负责遗传信息的传递。
RNA包括核糖核酸和蛋白质组成,并负责基因的转录和翻译。
3. 糖类的结构和功能糖类包括单糖、双糖和多糖,主要作为细胞的能量来源和结构支持。
4. 脂质的结构和功能脂质包括甘油三酯、磷脂、类固醇和脂蛋白等,主要作为细胞膜的组成成分和储存能量。
考研笔记:生物化学复习知识点

考研笔记:生物化学复习知识点静态生物化学-结构和催化作用1.1氨基酸、多肽和蛋白质1.部分氨基酸的特殊性质:蛋白质中的氨基酸都是L型的,D型仅存在于细菌细胞壁上的小肽或抗菌肽中;只有Ile和XXX有两个手性碳原子,Gly是唯一不含手性碳原子的AA,因此不具旋光性;Ser、Thr、Tyr,这些AA残基的-OH上磷酸化是一个十分普遍的调控机制,可进行可逆性磷酸化,可有效地控制细胞的生长和机体的各种反应;Asn、Gln在生理pH范围内其酰氨基不被质子化,因此侧链不带电荷;Cys,在pro经常以其氧化型的胱氨酸存在,-S-S-二硫桥;His是唯一一个R基的pka值在7附近的AA,因此在PH7.0附近有明显的缓冲作用;Phe:它的浓度的测定被用于苯丙酮尿症的诊断;Met又称蛋氨酸,它是体内代谢中甲基的供体。
(SAM—S-腺苷蛋氨酸);A280:Trp、Tyr和Phe残基的苯环含有共轭双键;Trp显现磷光,是一种寿命较长的发射光,对研讨卵白质结构和动力学特别有用。
近年发现谷胱甘肽过氧化物酶中存在硒代半胱氨酸,有证据表明此氨基酸由终止密码UGA编码,可能是第21种卵白质氨基酸。
2.氨基酸分类按照R基的极性性子(可否与水形成氢键)20种根本aa,可以分为4类:非极性氨基酸(9种)、不带电何的极性氨基酸(6种)、带负电荷的aa(酸性aa,2种)、带正电何的aa(碱性aa,3种) 酶的活性中心:His、Ser、Cys3.氨基酸的化学性子所有的α-AA都能于茚三酮发生颜色反应生成紫色物质,570nm测定;Pro和羟脯氨酸生成亮黄色,440nm测定;在近紫外区(200-400nm)只有芳香族AA有吸收光的能力,含有共轭双键的化合物有吸收紫外光的特性,紫外吸收法定量蛋白质的依据;Trp>Tyr>Phe(紫外吸收能力)在280nm有最大光吸收。
4.自然存在的活性肽:I谷胱甘肽:Glu—Cys—Gly:红细胞中的巯基缓冲剂,参与氧化还原过程,清除内源性过氧化物和自由基,维护卵白质活性中心的巯基处于还原状态。
生物化学学习笔记(整理总结)

第1章蛋白质的结构与功能1.等电点:氨基酸分子所带正、负电荷相等,呈电中性时,溶液的pH值称为该氨基酸的等电点(isoelectric point, pI)当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。
结构域:分子量大的蛋白质三级结构常由几个在功能上相对独立的,结构较为紧凑的区域组成,称为结构域(domain)。
亚基:有些蛋白质分子含有二条或多条多肽链,每一条多肽链都有完整的三级结构,称为蛋白质的亚基(subunit)。
别构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。
蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。
2.蛋白质的组成单位、连接方式及氨基酸的分类,酸碱性氨基酸的名称。
组成单位:氨基酸. 连接方式:肽键氨基酸可根据侧链结构和理化性质进行分类:非极性脂肪族氨基酸、极性中性氨基酸、芳香族氨基酸、酸性氨基酸、碱性氨基酸、非极性侧链氨基酸、极性中性/非电离氨基酸、酸性氨基酸、碱性氨基酸酸性氨基酸:天冬氨酸,谷氨酸碱性氨基酸:精氨酸,组氨酸3.蛋白质一-四级结构的概念的稳定的化学键。
一级结构:蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。
主要的化学键:肽键,有些蛋白质还包括二硫键。
二级结构:蛋白质分子中多肽主链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
主要的化学键:氢键三级结构:整条肽链中全部氨基酸残基的相对空间位置。
即肽链中所有原子在三维空间的排布位置。
主要的化学键:疏水键、离子键、氢键和范德华力等。
四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。
主要的化学键:氢键和离子键。
4.蛋白质的构象与功能的关系。
一、蛋白质一级结构是高级结构与功能的基础二、蛋白质的功能依赖特定空间结构5.蛋白质变形的概念的本质。
考研医学生物化学知识点详解

考研医学生物化学知识点详解一、分子生物学基础知识1. DNA结构和功能DNA(脱氧核糖核酸)是生物体内最重要的遗传物质。
它由核苷酸组成,包括脱氧核糖、磷酸基团和碱基。
DNA分子呈双螺旋结构,由两条互补链相互缠合而成。
它在细胞中具有存储、复制和传递遗传信息的功能。
2. RNA结构和功能RNA(核糖核酸)也是由核苷酸组成,但与DNA不同的是,RNA含有核糖糖分子而非脱氧核糖糖分子。
RNA分为信使RNA (mRNA)、转运RNA(tRNA)和核糖体RNA(rRNA)等不同种类,它们在转录和翻译过程中发挥关键作用。
3. 蛋白质的合成和结构蛋白质是生物体内最基本的宏观生物大分子,由一系列氨基酸残基通过肽键连接而成。
蛋白质合成过程包括转录和翻译两个阶段,其中mRNA将DNA的信息转录为mRNA,而tRNA和rRNA等核糖体辅助在翻译过程中合成蛋白质。
二、细胞结构和功能1. 细胞膜和细胞壁细胞膜是细胞的外包层,由磷脂双分子层和蛋白质等组成。
它具有选择性透过性,控制物质的进出。
细胞壁位于细胞膜外侧,主要由多糖组成,提供细胞的结构支持和保护作用。
2. 细胞器细胞器是细胞内的功能区域,包括内质网、高尔基体、线粒体、溶酶体等。
内质网参与蛋白质合成和修饰,高尔基体负责分泌和物质转运,线粒体是细胞内的能量合成中心,溶酶体则负责细胞内废物的降解。
3. 细胞核细胞核是细胞的控制中心,含有DNA分子和核糖体等。
它通过核孔调控物质的进出,调控细胞代谢和生命活动。
三、酶的生物化学1. 酶的性质和分类酶是生物催化剂,能够降低化学反应所需的活化能。
酶一般由蛋白质组成,根据底物类型和反应方式的不同,酶可分为氧化还原酶、水解酶、脱羧酶等多种类型。
2. 酶促反应的速率和影响因素酶促反应的速率受到底物浓度、温度和pH值的影响。
当底物浓度越高、温度越适宜、pH近于酶的最适pH值时,酶促反应的速率越快。
四、生物膜的结构和功能1. 磷脂的结构和特点磷脂是构成生物膜的重要组分,由磷酸酯键连接的甘油和两条脂肪酸组成。
生物化学重点笔记(基本知识)

生物化学重点绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第一章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
生物化学重点笔记(整理版)

教学目标:1.掌握蛋白质的概念、重要性和分子组成。
2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。
3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。
4.了解蛋白质结构与功能间的关系。
5.熟悉蛋白质的重要性质和分类导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性?1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。
德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。
英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。
佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。
1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。
蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。
蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。
单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。
生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。
新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。
生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。
生物的运动、生物体的防御体系离不开蛋白质。
蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。
随着蛋白质工程和蛋白质组学的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。
生物化学考研知识点总结

生物化学复习资料名词解释:1蛋白质:蛋白质是由许多氨基酸通过肽键联系起来的含氮高分子化合物,是机体表现生理功能的基础。
2蛋白质的变性:在某些物理和化学因素的作用下,蛋白质的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失称为蛋白质变性。
3蛋白质的一级结构:蛋白质分子中氨基酸的排列顺序。
4蛋白质的二级结构:蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
5蛋白质的三级结构:整条肽链中全部氨基酸残基的相对空间位置,即整条肽链所有原子在三维空间的排布位置。
6蛋白质的四级结构:蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用。
7蛋白质的等电点:当蛋白质溶液处于某一p H时,蛋白质解离成正、负离子的趋势相等,成为兼性离子,净电荷为零,此时溶液的p H称为蛋白质的等电点。
8D N A的变性:在某些理化因素的作用下,D N A分子互补碱基对之间的氢键断裂,使D N A 双螺旋结构松散,变成单链,称D N A变性。
9D N A的复性:变性D N A在适当条件下,两条互补链可以重新恢复天然的双螺旋构象,称为D N A的复性。
10核酸酶:所有可以水解核酸的酶。
可分为D N A酶和R N A酶。
11酶:由活细胞合成的,对其特异底物起高效催化作用的蛋白质,是机体内催化各种代谢反应最主要的催化剂。
12核酶:是具有高效,特异催化作用的核酸,是近年发现的一类新的生物催化剂。
13酶原:无活性的酶的前体称为酶原。
14酶的必需基团:酶分子结构中与酶的活性密切相关的基团称为酶的必需基团。
15同工酶:指催化相同的化学反应,而酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。
16糖酵解:缺氧情况下,葡萄糖生成乳糖的过程。
17酵解途径:由葡萄糖分解成丙酮酸的过程。
18必需脂酸:某些不饱和脂肪酸,动物机体自身不能合成,需要从植物油摄取,是动物不可缺少的营养素,称为必需脂酸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一篇生物大分子的结构与功能第一章氨基酸和蛋白质一、组成蛋白质的20种氨基酸的分类1、非极性氨基酸包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸2、极性氨基酸极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸酸性氨基酸:天冬氨酸、谷氨酸碱性氨基酸:赖氨酸、精氨酸、组氨酸其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸属于亚氨基酸的是:脯氨酸含硫氨基酸包括:半胱氨酸、蛋氨酸注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组二、氨基酸的理化性质1、两性解离及等电点氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。
在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。
2、氨基酸的紫外吸收性质芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。
3、茚三酮反应氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。
由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。
三、肽两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。
二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。
10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。
多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。
人体内存在许多具有生物活性的肽,重要的有:谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。
半胱氨酸的巯基是该化合物的主要功能基团。
GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。
四、蛋白质的分子结构1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。
主要化学键:肽键,有些蛋白质还包含二硫键。
2、蛋白质的高级结构:包括二级、三级、四级结构。
1)蛋白质的二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
二级结构以一级结构为基础,多为短距离效应。
可分为:α-螺旋:多肽链主链围绕中心轴呈有规律地螺旋式上升,顺时钟走向,即右手螺旋,每隔3.6个氨基酸残基上升一圈,螺距为0.540nm。
α-螺旋的每个肽键的N-H和第四个肽键的羧基氧形成氢键,氢键的方向与螺旋长轴基本平形。
β-折叠:多肽链充分伸展,各肽键平面折叠成锯齿状结构,侧链R基团交错位于锯齿状结构上下方;它们之间靠链间肽键羧基上的氧和亚氨基上的氢形成氢键维系构象稳定.β-转角:常发生于肽链进行180度回折时的转角上,常有4个氨基酸残基组成,第二个残基常为脯氨酸。
无规卷曲:无确定规律性的那段肽链。
主要化学键:氢键。
2)蛋白质的三级结构:指整条肽链中全部氨基酸残基的相对空间位置,显示为长距离效应。
主要化学键:疏水键(最主要)、盐键、二硫键、氢键、范德华力。
3)蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质。
在体内有许多蛋白质分子含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。
这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,为四级结构。
由一条肽链形成的蛋白质没有四级结构。
主要化学键:疏水键、氢键、离子键五、蛋白质结构与功能关系1、蛋白质一级结构是空间构象和特定生物学功能的基础。
一级结构相似的多肽或蛋白质,其空间构象以及功能也相似。
尿素或盐酸胍可破坏次级键β-巯基乙醇可破坏二硫键2、蛋白质空间结构是蛋白质特有性质和功能的结构基础。
肌红蛋白:只有三级结构的单链蛋白质,易与氧气结合,氧解离曲线呈直角双曲线。
血红蛋白:具有4个亚基组成的四级结构,可结合4分子氧。
成人由两条α-肽链(141个氨基酸残基)和两条β-肽链(146个氨基酸残基)组成。
在氧分压较低时,与氧气结合较难,氧解离曲线呈S状曲线。
因为:第一个亚基与氧气结合以后,促进第二及第三个亚基与氧气的结合,当前三个亚基与氧气结合后,又大大促进第四个亚基与氧气结合,称正协同效应。
结合氧后由紧张态变为松弛态。
六、蛋白质的理化性质1、蛋白质的两性电离:蛋白质两端的氨基和羧基及侧链中的某些基团,在一定的溶液PH条件下可解离成带负电荷或正电荷的基团。
2、蛋白质的沉淀:在适当条件下,蛋白质从溶液中析出的现象。
包括:a.丙酮沉淀,破坏水化层。
也可用乙醇。
b.盐析,将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,破坏在水溶液中的稳定因素电荷而沉淀。
3、蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失。
主要为二硫键和非共价键的破坏,不涉及一级结构的改变。
变性后,其溶解度降低,粘度增加,结晶能力消失,生物活性丧失,易被蛋白酶水解。
常见的导致变性的因素有:加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂、超声波、紫外线、震荡等。
4、蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm处有特征性吸收峰,可用蛋白质定量测定。
5、蛋白质的呈色反应a.茚三酮反应:经水解后产生的氨基酸可发生此反应,详见二、3b. 双缩脲反应:蛋白质和多肽分子中肽键在稀碱溶液中与硫酸酮共热,呈现紫色或红色。
氨基酸不出现此反应。
蛋白质水解加强,氨基酸浓度升高,双缩脲呈色深度下降,可检测蛋白质水解程度。
七、蛋白质的分离和纯化1、沉淀,见六、22、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。
根据支撑物不同,有薄膜电泳、凝胶电泳等。
3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。
4、层析:a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。
如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。
b.分子筛,又称凝胶过滤。
小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。
5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。
不同蛋白质其密度与形态各不相同而分开。
八、多肽链中氨基酸序列分析a.分析纯化蛋白质的氨基酸残基组成(蛋白质水解为个别氨基酸,测各氨基酸的量及在蛋白质中的百分组成)↓测定肽链头、尾的氨基酸残基二硝基氟苯法(DNP法)头端尾端羧肽酶A、B、C法等丹酰氯法↓水解肽链,分别分析胰凝乳蛋白酶(糜蛋白酶)法:水解芳香族氨基酸的羧基侧肽键胰蛋白酶法:水解赖氨酸、精氨酸的羧基侧肽键溴化脯法:水解蛋氨酸羧基侧的肽键↓Edman降解法测定各肽段的氨基酸顺序(氨基末端氨基酸的游离α-氨基与异硫氰酸苯酯反应形成衍生物,用层析法鉴定氨基酸种类)b.通过核酸推演氨基酸序列。
第二章核酸的结构与功能一、核酸的分子组成:基本组成单位是核苷酸,而核苷酸则由碱基、戊糖和磷酸三种成分连接而成。
两类核酸:脱氧核糖核酸(DNA),存在于细胞核和线粒体内。
核糖核酸(RNA),存在于细胞质和细胞核内。
1、碱基:胞嘧啶胸腺嘧啶尿嘧啶鸟嘌呤腺嘌呤嘌呤和嘧啶环中均含有共轭双键,因此对波长260nm左右的紫外光有较强吸收,这一重要的理化性质被用于对核酸、核苷酸、核苷及碱基进行定性定量分析。
2、戊糖:DNA分子的核苷酸的糖是β-D-2-脱氧核糖,RNA中为β-D-核糖。
3、磷酸:生物体内多数核苷酸的磷酸基团位于核糖的第五位碳原子上。
二、核酸的一级结构核苷酸在多肽链上的排列顺序为核酸的一级结构,核苷酸之间通过3′,5′磷酸二酯键连接。
三、DNA的空间结构与功能1、DNA的二级结构DNA双螺旋结构是核酸的二级结构。
双螺旋的骨架由糖和磷酸基构成,两股链之间的碱基互补配对,是遗传信息传递者,DNA半保留复制的基础,结构要点:a.DNA是一反向平行的互补双链结构亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,碱基之间以氢键相结合,其中,腺嘌呤始终与胸腺嘧啶配对,形成两个氢键,鸟嘌呤始终与胞嘧啶配对,形成三个氢键。
b.DNA是右手螺旋结构螺旋直径为2nm。
每旋转一周包含了10个碱基,每个碱基的旋转角度为36度。
螺距为3.4nm,每个碱基平面之间的距离为0.34nm。
c.DNA双螺旋结构稳定的维系横向靠互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,尤以后者为重要。
2、DNA的三级结构三级结构是在双螺旋基础上进一步扭曲形成超螺旋,使体积压缩。
在真核生物细胞核内,DNA三级结构与一组组蛋白共同组成核小体。
在核小体的基础上,DNA链经反复折叠形成染色体。
3、功能DNA的基本功能就是作为生物遗传信息复制的模板和基因转录的模板,它是生命遗传繁殖的物质基础,也是个体生命活动的基础。
DNA中的核糖和磷酸构成的分子骨架是没有差别的,不同区段的DNA分子只是碱基的排列顺序不同。
四、RNA的空间结构与功能DNA是遗传信息的载体,而遗传作用是由蛋白质功能来体现的,在两者之间RNA起着中介作用。
其种类繁多,分子较小,一般以单链存在,可有局部二级结构,各类RNA在遗传信息表达为氨基酸序列过程中发挥不同作用。
如:名称功能核蛋白体RNA(rRNA)核蛋白体组成成分信使RNA(mRNA)蛋白质合成模板转运RNA(tRNA)转运氨基酸不均一核RNA(HnRNA)成熟mRNA的前体小核RNA(SnRNA)参与HnRNA的剪接、转运小核仁RNA(SnoRNA)rRNA的加工和修饰1、信使RNA(半衰期最短)1)hnRNA为mRNA的初级产物,经过剪接切除内含子,拼接外显子,成为成熟的mRNA并移位到细胞质2)大多数的真核mRNA在转录后5′末端加上一个7-甲基鸟嘌呤及三磷酸鸟苷帽子,帽子结构在mRNA作为模板翻译成蛋白质的过程中具有促进核蛋白体与mRNA的结合,加速翻译起始速度的作用,同时可以增强mRNA的稳定性。
3′末端多了一个多聚腺苷酸尾巴,可能与mRNA从核内向胞质的转位及mRNA的稳定性有关。
3)功能是把核内DNA的碱基顺序,按照碱基互补的原则,抄录并转送至胞质,以决定蛋白质合成的氨基酸排列顺序。
mRNA分子上每3个核苷酸为一组,决定肽链上某一个氨基酸,为三联体密码。
2、转运RNA(分子量最小)1)tRNA分子中含有10%~20%稀有碱基,包括双氢尿嘧啶,假尿嘧啶和甲基化的嘌呤等。