同步传输方式与异步传输方式实现原理是什么
数据通信中的同步技术同步传输和异步传输

异步传输方式相对简单,不需要复杂的同步机制,因此实现起来较 为容易。
低速率
由于每个字符都需要单独发送,且需要附加起始位和停止位,因此 异步传输的速率相对较低。
异步传输的原理
起始位和停止位
异步传输中,每个字符前面都有一个起始位,用于指示字符的开始, 后面跟着一个或多个数据位,最后是一个停止位,表示字符结束。
同步传输和异步传输的定义
同步传输
指发送端和接收端保持同步,即发送 端发送数据时,接收端始终处于准备 接收状态,一旦收到数据,立即进行 处理。
异步传输
指发送端和接收端不保持同步,即发 送端发送数据时,接收端处于等待状 态,当数据到达时,接收端按照自己 的时钟对数据进行处理。
02 同步传输
CHAPTER
05 未来展望
CHAPTER
数据通信技术的发展趋势
1 2
5G和6G通信技术
随着5G网络的普及和6G技术的研发,数据通信 将更加高效、快速和可靠,支持更多样化的应用 场景。
云计算和边缘计算
云计算和边缘计算的发展将加速数据处理和分析 的效率,满足实时性要求高的应用需求。
3
物联网和智能家居
物联网和智能家居的普及将推动数据通信技术的 发展,实现设备间的无缝连接和智能化控制。
独立发送
每个字符在发送时都是独立的,发送端和接收端不需要保持时钟同 步。
字符间隔
字符之间的间隔是可变的,但必须满足最小位时间的要求,以确保接 收端能够正确识别起始位和停止位。
异步传输的应用场景
低速数据通信
由于异步传输速率较低,因此适用于低速数据通信,如控制设备、终端等。
兼容性较好
由于异步传输相对简单,因此在老式设备和标准上得到广泛应用,具有较强的 兼容性。
异步传输和同步传输的区别(整理)

同步传输和异步传输的区别在网络通信过程中,通信双方要交换数据,需要高度的协同工作。
为了正确的解释信号,接收方必须确切地知道信号应当何时接收和处理,因此定时是至关重要的。
在计算机网络中,定时的因素称为位同步。
同步是要接收方按照发送方发送的每个位的起止时刻和速率来接收数据,否则会产生误差。
通常可以采用同步或异步的传输方式对位进行同步处理。
1. 异步传输(Asynchronous Transmission):异步传输将比特分成小组进行传送,小组可以是8位的1个字符或更长。
发送方可以在任何时刻发送这些比特组,而接收方从不知道它们会在什么时候到达。
一个常见的例子是计算机键盘与主机的通信。
按下一个字母键、数字键或特殊字符键,就发送一个8比特位的ASCII代码。
键盘可以在任何时刻发送代码,这取决于用户的输入速度,内部的硬件必须能够在任何时刻接收一个键入的字符。
异步传输存在一个潜在的问题,即接收方并不知道数据会在什么时候到达。
在它检测到数据并做出响应之前,第一个比特已经过去了。
这就像有人出乎意料地从后面走上来跟你说话,而你没来得及反应过来,漏掉了最前面的几个词。
因此,每次异步传输的信息都以一个起始位开头,它通知接收方数据已经到达了,这就给了接收方响应、接收和缓存数据比特的时间;在传输结束时,一个停止位表示该次传输信息的终止。
按照惯例,空闲(没有传送数据)的线路实际携带着一个代表二进制1的信号,异步传输的开始位使信号变成0,其他的比特位使信号随传输的数据信息而变化。
最后,停止位使信号重新变回1,该信号一直保持到下一个开始位到达。
例如在键盘上数字“1”,按照8比特位的扩展ASCII编码,将发送“00110001”,同时需要在8比特位的前面加一个起始位,后面一个停止位。
异步传输的实现比较容易,由于每个信息都加上了“同步”信息,因此计时的漂移不会产生大的积累,但却产生了较多的开销。
在上面的例子,每8个比特要多传送两个比特,总的传输负载就增加25%。
通信软件的原理与应用

通信软件的原理与应用1. 什么是通信软件通信软件是指用于连接和交换信息的应用程序或工具,通过计算机网络或其他通信介质实现数据传输和信息交流的工具。
通信软件的原理和应用涉及到数据传输、协议、网络架构等多个方面,下面将详细介绍。
2. 通信软件的原理通信软件的原理包括数据传输方式、协议和网络架构。
2.1 数据传输方式1.同步传输:同步传输是指数据在发送和接收时以同样的速率进行传输,要求发送方和接收方的时钟频率保持一致。
常见的同步传输方式有同步串行传输和同步并行传输。
2.异步传输:异步传输是指数据在发送和接收时按照各自的时钟频率进行传输,发送方和接收方的时钟频率可以不一致。
常见的异步传输方式有异步串行传输和异步并行传输。
2.2 协议协议是通信软件中一套约定的规则,用于确保数据能够正确传输和交流。
常见的通信协议有TCP/IP协议、HTTP协议、FTP协议等。
1.TCP/IP协议:TCP/IP协议是互联网通信的基础协议,它将数据分割成小的数据包进行传输,并在接收方重新组合。
TCP协议负责保证数据的可靠传输,而IP协议负责数据的路由和寻址。
2.HTTP协议:HTTP协议是超文本传输协议,用于在客户端和服务器之间传输超文本文档。
它基于请求-响应的模式,客户端发送请求给服务器,服务器根据请求返回相应的内容。
3.FTP协议:FTP协议是文件传输协议,用于在客户端和服务器之间传输文件。
它支持文件的上传和下载操作,同时具有权限控制和文件管理功能。
2.3 网络架构通信软件的网络架构决定了数据传输的方式和拓扑结构。
常见的网络架构有客户端-服务器架构和对等网络架构。
1.客户端-服务器架构:客户端-服务器架构是指通信软件中有一个或多个服务器提供服务,多个客户端通过网络连接到服务器来请求服务和获取数据。
2.对等网络架构:对等网络架构是指通信软件中的节点之间没有明显的服务器和客户端的区别,节点之间平等地共享资源和服务。
3. 通信软件的应用通信软件在现代社会的各个领域都有广泛的应用。
数据通信中的同步技术同步传输和异步传输

同步方式中,数据传输额外开销小,传输效率高。但是同步 方式实现复杂,传输中的一个错误将影响整个字符组(而异 步传输中的同样错误只影响一个字符的正确接收)。这种方 式用于高速设备。
异步传输与同步传输的区别
异步传输是面向字符传输的,而同步传输是面 向位传输的。
异步传输的单位是字符,而同步传输的单位是 大的数据块。
异步传输通过传输字符的“起止位”和“停止 位”而进行收发双方的字符同步,但不需要每 位严格同步;而同步传输不但需要每位精确同 步,还需要在数据块的起始与终止位置,进行 一个或多个同步字符的双方字符同步的过程。
异步传输相对于同步传输有效率低、速度低、 设备便宜、适用低速场合等特点。
异步传输方式实现简单。但需在每个字符的 首尾附加起始位和停止位,因而它的额外开 销大,传输效率低。
这种方式主要
用于低设备。
同步传输
同步方式是指在一组字符(数据帧)之前加入同步字符,同 步字符之后可以连续发送任意多个字符。
同步方式数据帧的典型组成 :
同步字符( SYN ):表示数据帧的开始 地址字段:包括源地址和目的地址 控制字段:用于控制信息 数据字段:用户数据 检验字段:用于检错
数据通信中的同步方式
所谓同步,就是要求通信的收发双方在 时间基准上保持一致。
数据通信中常用的两种同步方式是:异 步传输和同步传输。
异步传输
异步传输是以字符为单位进行传输,传输字 符之间的时间间隔可以是随机的、不同步的。 但在传输一个字符的时段内,收发双方仍需 依据比特流保持同步,所以也称为起-止式同 步传输。
ATM基本原理概述

ATM(异步传输模式)是一种基于分组交换技术的高速数据通信方式。了解 ATM的概念、组成、工作原理、通信技术以及服务质量等方面的内容,有助 于深入理解这一先进的网络技术。
ATM的基本组成部分
ATM终端设备
包括ATM计算机、网络接口卡等。
ATM传输介质
用于传输ATM分组的介质,如光纤、同轴电缆等。
采用同步时钟信号进行数据传输,保证数据的同步性。
2 异步传输
无需依赖时钟信号,根据数据帧中的同步字段自行判断数据的开始与结束。
3 分组交换
将数据分割成固定长度的小块进行传输,实现高效的数据交换。
ATM的传输协议
1
ATM适配层(AAL)
定义了不同类型数据的服务质量要求和处理方式。
2
ATM透明传输层(ATM TTP)
ATM的虚电路和虚路径
1 虚电路
2 虚路径
在发送和接收之间建立的逻辑路径,用于传输数 据。
相互连接的一组虚电路,用于提高传输效率。
提供不可靠的、无连接的传输服务。3源自ATM传输层(ATM TP)
负责虚电路的建立和拆除,以及传输协议的错误检测与纠正。
ATM的帧结构
头部
包含地址、控制信息等。
有效载荷
携带应用数据和附加信息。
尾部
包含校验和和其他控制信息。
ATM的传输速率
ATM支持多种传输速率,包括155.52Mbps(OC-3)、622.08Mbps(OC-12)、2.488Gbps(OC-48)等。
ATM交换设备
用于高速分组交换的设备,包括ATM交换机和ATM 路由器。
ATM控制设备
进行ATM网络的管理和控制,如ATM管理系统。
ATM的工作原理
usart同步通信原理

usart同步通信原理USART(Universal Synchronous/Asynchronous Receiver Transmitter)是一种通用的同步/异步收发器,常用于计算机与外设之间的串行通信。
与其他通信接口相比,USART具有使用简便、传输速率高、可靠性强等优点,广泛应用于工业自动化、通信设备、嵌入式系统等领域。
本文将详细介绍USART 同步通信的原理。
一、USART概述USART是一种支持同步和异步通信的串行通信接口。
它包含了发送和接收两个单独的模块,可以独立进行串行数据的发送和接收。
USART的工作模式可以是同步模式,也可以是异步模式。
同步模式下,由外设设备提供时钟信号,数据通过USART与时钟信号同步传输。
异步模式下,USART通过内部时钟信号进行数据传输。
二、USART同步通信原理USART同步通信是指数据传输的时钟信号由外部设备提供的通信方式。
在同步模式下,数据包含位同步的时钟信号,可以实现更稳定可靠的数据传输。
USART同步通信的原理如下:1. 产生时钟信号:在USART同步模式下,时钟信号由外设设备提供。
外设设备通常会产生一个固定频率的时钟信号,用于同步数据传输。
时钟信号可以是周期性的矩形波形。
2. 数据传输:数据传输分为发送和接收两个过程。
发送过程:当发送数据时,USART根据时钟信号的上升沿或下降沿来判断数据位的变化。
一般情况下,数据传输的时刻是在每个时钟信号的下降沿或上升沿进行的。
每个数据位都映射到一个时钟信号的周期。
发送方按照时钟信号的节拍,将数据按位发送。
接收过程:当接收数据时,接收方根据时钟信号的上升沿或下降沿来采样传输的数据。
接收方在每个时钟信号的节拍来临时,采样接收到的数据位。
发送和接收过程通常以字节为单位进行,即发送或接收一个字节的数据。
USART通信支持多种数据位宽,如8位、9位等。
一个字节的数据包括起始位、数据位、校验位和停止位。
3. 通信协议:USART同步通信需要一种规定的通信协议,以确保发送方和接收方之间的数据传输正确可靠。
异步通信和同步通信

通信同步方式在数字数据通信中,发送端和接收端之间必须在时间上保持同步,接收端只有知道数据流中各个位的开始时间和结束时间,才能保证数据接收的正确性和可靠性。
为此,通信双方必须在通信协议中定义通信同步方式,并按照规定的同步方式进行数据传输。
根据通信协议所定义的同步方式,数据传输可分为异步传输 (Asynchronous Transmission)和同步传输(Synchronous Transmission)两大类。
1.异步传输通常,异步传输是以字符为传输单位,每个字符都要附加 1 位起始位和 1 位停止位,以标记一个字符的开始和结束,并以此实现数据传输同步。
所谓异步传输是指字符与字符(一个字符结束到下一个字符开始)之间的时间间隔是可变的,并不需要严格地限制它们的时间关系。
起始位对应于二进制值 0,以低电平表示,占用 1 位宽度。
停止位对应于二进制值 1,以高电平表示,占用 1~2 位宽度。
一个字符占用 5~8位,具体取决于数据所采用的字符集。
例如,电报码字符为 5 位、ASCII码字符为 7 位、汉字码则为8 位。
此外,还要附加 1 位奇偶校验位,可以选择奇校验或偶校验方式对该字符实施简单的差错控制。
发送端与接收端除了采用相同的数据格式(字符的位数、停止位的位数、有无校验位及校验方式等)外,还应当采用相同的传输速率。
典型的速率有:9 600 b/s、19.2kb/s、56kb/s等。
异步传输又称为起止式异步通信方式,其优点是简单、可靠,适用于面向字符的、低速的异步通信场合。
例如,计算机与Modem之间的通信就是采用这种方式。
它的缺点是通信开销大,每传输一个字符都要额外附加2~3 位,通信效率比较低。
例如,在使用Modem上网时,普遍感觉速度很慢,除了传输速率低之外,与通信开销大、通信效率低也密切相关。
2. 同步传输通常,同步传输是以数据块为传输单位。
每个数据块的头部和尾部都要附加一个特殊的字符或比特序列,标记一个数据块的开始和结束,一般还要附加一个校验序列(如16位或32 位CRC校验码),以便对数据块进行差错控制。
异步传输和同步传输的概念

异步传输和同步传输的概念异步传输和同步传输的概念听上去可能有点复杂,但其实就像我们平时聊天一样,简单易懂。
想象一下,你在一个热闹的聚会上,大家都在各自的角落聊天。
有人说话的时候,其他人也可以随意插嘴,这就是异步传输。
你随时可以说“嘿,你听过那个笑话吗?”而不需要等别人说完。
这种方式在网络数据传输中也一样,信息可以在不同的时间到达,而不需要所有的数据都齐刷刷地到位。
再说说同步传输,就像是一场音乐会,乐队里的每个人都得严格按照节奏来演奏。
你不能随便插入自己的即兴创作,不然乐曲就变得乱七八糟。
所有的信息都必须在规定的时间内发送和接收。
就好比你在上课,老师讲课的时候,学生们都得保持安静,等老师讲完才能提问。
这种方式让信息传输的效率更高,适合那些需要及时响应的场合。
现在说到优缺点,异步传输就像是你随意的聚会,轻松自在,但有时候也会造成混乱。
因为信息到达的时间不确定,有时候可能会出现“信息堵车”的情况。
而同步传输就像是精心安排的演出,每个乐器都有它的位置,所有的演奏者都在同一节拍下。
但是,万一有人跑掉了,整个乐队就得停下来,重新调整节奏。
如果把这两种传输方式比作交通方式,那异步传输就是你随心所欲开车,想走哪条路就走哪条路,虽说自由,但有时可能会遇到堵车。
而同步传输就像是高铁,虽然速度快,但必须严格遵守时刻表。
也许你在车站等得不耐烦,但一旦上车,飞速前进的感觉真是爽快。
异步传输在我们的日常生活中其实挺常见的。
比如说你发个微信,朋友未必会立刻回复你,这就是异步。
你可以先做自己的事情,再等对方的回复。
而在工作中,有些文件的提交也都是异步进行的,大家各自忙各自的,等到时间到了,再一起交上来,互不影响。
这种方式让每个人都有更多的自由度。
但在一些对时间要求高的场合,比如在线游戏或者视频通话,异步传输就显得不够给力了。
这时候,大家需要实时互动,信息的延迟可能会影响体验。
同步传输就像是两个人在跳舞,必须配合得当,才能让舞步流畅自然。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同步传输方式与异步传输方式实现原理是什么?sclarkca 发表于2006-12-26 15:51:00同步传输方式与异步传输方式实现原理是什么?同步传输方式中发送方和接收方的时钟是统一的、字符与字符间的传输是同步无间隔的。
异步传输方式并不要求发送方和接收方的时钟完全一样,字符与字符间的传输是异步的。
在网络通信过程中,通信双方要交换数据,需要高度的协同工作。
为了正确的解释信号,接收方必须确切地知道信号应当何时接收和处理,因此定时是至关重要的。
在计算机网络中,定时的因素称为位同步。
同步是要接收方按照发送方发送的每个位的起止时刻和速率来接收数据,否则会产生误差。
通常可以采用同步或异步的传输方式对位进行同步处理。
1. 异步传输(Asynchronous Transmission):异步传输将比特分成小组进行传送,小组可以是8位的1个字符或更长。
发送方可以在任何时刻发送这些比特组,而接收方从不知道它们会在什么时候到达。
一个常见的例子是计算机键盘与主机的通信。
按下一个字母键、数字键或特殊字符键,就发送一个8比特位的ASCII代码。
键盘可以在任何时刻发送代码,这取决于用户的输入速度,内部的硬件必须能够在任何时刻接收一个键入的字符。
异步传输存在一个潜在的问题,即接收方并不知道数据会在什么时候到达。
在它检测到数据并做出响应之前,第一个比特已经过去了。
这就像有人出乎意料地从后面走上来跟你说话,而你没来得及反应过来,漏掉了最前面的几个词。
因此,每次异步传输的信息都以一个起始位开头,它通知接收方数据已经到达了,这就给了接收方响应、接收和缓存数据比特的时间;在传输结束时,一个停止位表示该次传输信息的终止。
按照惯例,空闲(没有传送数据)的线路实际携带着一个代表二进制1的信号,异步传输的开始位使信号变成0,其他的比特位使信号随传输的数据信息而变化。
最后,停止位使信号重新变回1,该信号一直保持到下一个开始位到达。
例如在键盘上数字“1”,按照8比特位的扩展ASCII编码,将发送“00110001”,同时需要在8比特位的前面加一个起始位,后面一个停止位。
异步传输的实现比较容易,由于每个信息都加上了“同步”信息,因此计时的漂移不会产生大的积累,但却产生了较多的开销。
在上面的例子,每8个比特要多传送两个比特,总的传输负载就增加25%。
对于数据传输量很小的低速设备来说问题不大,但对于那些数据传输量很大的高速设备来说,25%的负载增值就相当严重了。
因此,异步传输常用于低速设备。
2. 同步传输(Synchronous Transmission):同步传输的比特分组要大得多。
它不是独立地发送每个字符,每个字符都有自己的开始位和停止位,而是把它们组合起来一起发送。
我们将这些组合称为数据帧,或简称为帧。
数据帧的第一部分包含一组同步字符,它是一个独特的比特组合,类似于前面提到的起始位,用于通知接收方一个帧已经到达,但它同时还能确保接收方的采样速度和比特的到达速度保持一致,使收发双方进入同步。
帧的最后一部分是一个帧结束标记。
与同步字符一样,它也是一个独特的比特串,类似于前面提到的停止位,用于表示在下一帧开始之前没有别的即将到达的数据了。
同步传输通常要比异步传输快速得多。
接收方不必对每个字符进行开始和停止的操作。
一旦检测到帧同步字符,它就在接下来的数据到达时接收它们。
另外,同步传输的开销也比较少。
例如,一个典型的帧可能有500字节(即4000比特)的数据,其中可能只包含100比特的开销。
这时,增加的比特位使传输的比特总数增加2.5%,这与异步传输中25 %的增值要小得多。
随着数据帧中实际数据比特位的增加,开销比特所占的百分比将相应地减少。
但是,数据比特位越长,缓存数据所需要的缓冲区也越大,这就限制了一个帧的大小。
另外,帧越大,它占据传输媒体的连续时间也越长。
在极端的情况下,这将导致其他用户等得太久。
基于IP Multicast的传输方式和实现[收藏此页] [打印] [推荐] [挑错]作者:ChinaITLab 2007-07-04内容导航:随着计算机网络技术、多媒...第1页:随着计算机网络技术、多媒体技术..随着计算机网络技术、多媒体技术、计算机视觉与模式识别技术的发燕尾服,一种以数字化、智能化为特点的多媒体远程数字监控系统应运而生,即基于IP的数字监控系统,实现了由传统的模拟监控到数字监控质的飞跃。
与传统的模拟监控系统相比较,数字远程监控系统几个最主要的优势是:可以借助网络实现远程监控;在远程不同地点的分控中心或同个分控中心可同时调看某一个或者几个监控现场的音视频数据,从而实现分布式的音频频接入和音视频数据共享,同时,可以与监控现场人员进行对讲;可以对远程监控现场的云台、摄像机等外围设备进行控制。
视频、音频的实时、分布式传输及控制指令的可靠传输是远程数字监控系统的一个关键问题。
本文设计并实现了远程数字音频频监控系统,采用IP Multicast技术作为分布式音视频执着入和共享的解决方案,并针对视频、音频语音和控制数据不同的特点,对其所采用的不同传输技术进行了探讨,给出了具体实现方法。
1 系统的总体结构远程监控系统一般包括三部分:前端监控现场、通信设备和后端分控中心。
整个系统基于Client/Server(客户机/服务器)模式。
总体结构如图1所示。
(1)前端监控现场由监控现场主机及一些外围设备组成。
外围设备包括摄像机、电动镜头、云台、防护罩、监视器、多功能解码器及报警器。
监控现场主机运行客户前端软件,实现视频、音频数据的实时采集、压缩、解压缩(音频)(视频传输单向的,音频传输是双向的)及打包传送;对压缩的视(音)频数据进行经存储(也可在分近中心进行)。
存储方式为循环存储、定时存储、手动存储及运动视频检测启动存储。
接收来自分控中心的控制指令(也可在本地实施),对云台动作(上、下、左、右及自动)电动镜头的三可变(光圈、焦距和聚焦)。
(2)通信设备是指所采用的传输信道和相关设备,通信网络为LAN及W AN。
(3)后端设备由若干分控中心计算机组成。
各分控计算机运行服务器端软件,接收来自前端压缩视(音)频、显示(播放);通过网络对前端云台、摄像机进行控制;采用组播技术,实现分布式视频执着入和分丰式视频共享:每个分控中心主机可以同时监控多个前端,即“一点对多点”;不同分控心也可以同时监控同一前端,即“多点对一点”。
2 网络传输模块的设计与实现2.1 系统传输数据类型的特点及通信协议的选择系统传输数据有:控制数据、音频、视频数据、后端分控中心通过网络向监控现场主机外围设备云台及摄像机发送控制信号,实现云台动作(上、下、左、右、自动)摄像机光圈、焦距及聚焦三可变,要求控制信号的传输准确无误;音频、视频是连续,数据量大,允许传输中存在一定的数据错误率及数据丢失率,但实时性要求很高。
此外,在监控系统中,要实现音视频的分布式接入和数据共享,必须进行音视频的多点传输。
样实现上述目标?首先是通信协议的选择,TCP/IP协议是广泛使用的网协议,其网络模型定义了四层(即网络接口层、网络层、传输层、应用层)网络通信协议。
传输层包含两个协议:传输控制协议(TCP)和用户数据报协议(UDP)。
IP是国际互联协议,位于网络层。
TCP协议是面向连接的,提供可靠的流服务;UDP是无连接的,提供数据报服务;TCP采用提供确认与超时重发、滑动窗口机制等措施来保证传输的可靠性,正是这些措施增加了网络的开销。
如果用TCP传输视(音)频数据,大量的数据容量引起重传。
,使得网络负载大并会加大延迟;UDP协议是最简单的传输协议,不提供可靠性保证,正因为UDP协议不进行数据确认与重传国,大大提高了传输效率,具有高效快速的特点;Ipv4定义了三种IP数据包的传输:单播、广播及组播。
要系统中实现视(音)频数据的多点传输,若采用单播,则同样的音、视频数据要发送多次,这样导致发送者负担重、延迟长、网络拥塞;若用广播,网络中的每个站点都将接收到数据,不管该结点否需要数据,增加了非接收者的开销;组播是一种允许一个或多个发送者(组播源)发送单一的数据包到多个接收者(一次的、同时的)的网络技术。
组播源把数据包发送到特定组播组,而只有属于该组播组的地址才能接收到数据包。
由于无论有多少个目的地址,在整个网络的任何一条链路上都只传送单一的数据包。
因此组播提高了网络传输的效率,极大地节省了网络传输。
组播方式只适用于UDP。
综上所述,采用TCP/IP传输控制信号,即信令通道;采用UDP/IP传输音视频信号,即数据通道。
IP组播依赖一个特殊的地址组——“移播址”,即D类地址。
范围在224.0.0.0-239.255.255.255之间(其中224.0.0.0-224.0.0.255是被保留的地址),D类地址是动态分配和恢复的瞬态地址。
组播地址只能作为信宿地址使用,而不能出现在任何信源地址中。
每一个组播组对应于动态分配的一个D类地址。
组播的特点:组播组的成员是动态的,主机可以任何时间加入或离开组播组,主机组中的成员在位置上和数量旧没有限制的。
2.2 Windows下,IP组播的Winsock2实现Windows环境下组播通信是基于WindowsSocket的。
Windows Socket提供两种不同IP 组播的实现方法:Windows Socket提供两种不同的IP组播的实现方法:Winsock1与Winsock2。
在Windows2000平台实现VC++6.0开发工具,在本系统中实现了基于Winsock2的组播通信编程。
发送端(前端、客户端)实现步骤:(1)加载Winsock2库,完成Winsock2的初始化:WSAStarup(MAKEWORD(2,2),&wsaData);(2)建立本地套接字(UDP):m_socket=WSASocke(AF_INET,SOCK_DGRAM,IPPROTO_UDP,NULL,0,WSA_FLAG_MUL TIPOINT_C_LEAF|WSA_FLAG_MULTIPOINT_D_LEAF);//组播通信具有两个层面的重要特征:控制层面和数据层面。
控制层面决定一个多播组建立通信的方式,数据层面决定通信成员间数据传输的方式。
每一个层面有两种形式,一种是“有限的”,另一种是“无根的”;数据报IP组播在两个层面上都是“无根”的。
任一用户发送的数据都将被传送到组中所有其它成员。
最后一个参数表明新创建的套接字在控制层面与数据层面都是“无根的”。
可以通过setsocket函数设置套接字的属性,如地址重用,缓冲区是接收还是发送。
M_localAddr.sin_family = AF_INET;M_localAddr.sin_port=m_iPort;//本地端口号M_localAddr..sin _addr.S_un.S_addr=m_uLocalIP;//本地IP地址;(3)绑定(将新创建的套字节与本地插口地址进行绑定):bind(m_socket,(PSOCKADDR)&(m_localAddr),sizeof(m_localAddr);(4)设置生存时间(即数据包最多允许路由多少个网段):WSAIoctl(m_socket,SIO_MULTICAST_SCOPE,//设置数据报生存时间;&iMcastTTL,//生存时间大小;sizeof(iMcastTTL),NULL,0,&cbRet,NULL,NULL);(5)配置Loopback,以决定组播数据帧是否回送:int bLoopback=FALSE;WSAIoct(m_socket,SIO_MULTIPOINT_LOOPBACK,//允许或禁止组播数据帧回送;&bLoopback,sizeof(bLoopback),NULL,0,&cbRet,NULL,NULL);(6)收发数据:在发送方(前端、客户端)响应发送的消息函数中调用下面函数:WSASendTo (m_socket,&stWSABuf,&cbRet,0,(structsockaddr*)&stDestAddr,//发送的目的地址;sizeof(struct(sockaddr),NULL,NULL);在发送方(前端、客户端)响应接收消息函数中调用下面函数:WSARecvFrom(m_socket,&stWSABuf,1,& cbRet,&Flag,(structsockaddr*)&stSrcAddr,//源地址;&iLen,NULL,NULL);(7)将组播套接字设置为异步I/O工作模式,在该套节字上接收事件为基础的网络事件通知:WSAEventSelect(m_socket,m_hNetworkEvent,//网络事件句柄;将此套字节与该事件句柄并联在一起;FD_WRITE|FD_READ);//发生此两个事件之一,则将m_hNetworkEvent置为有信号状态;(8)在工作线程中设置:WSAWaitForMultipleEvent(3,//等待事件的个数);p->m_eventArray,//存放事件句柄的数组;FALSE,WSA_INFINITE,FALSE);(9)关闭组播套字节:closesocket(m_socket);接收端(后端、服务器端)实现步骤:(1)-(3)与发送端(客户端)相同;(4)调用WSAJLoinLeaf加入组播组:SOCKET NetSock=WSAJoinLeaf(sock,//必须为组播标志进行创建,否则调用失败;(PSOCKADDR)&(m_stDestAddr,//组播导址,与发送方的目的地址相同;sizeof(m_stDestAddr),UNLL,NULL,NULL,NULL,JL_BOTH));//允许接收和发送;(5)与客户端(6)相同;(6)与客户端(7)相同;(7)与客户端(8)相同;(8)离开组播组;closesocket(NewSock);//NewSock是调用WSAoinLeaf ()返回的套节字。