10立方米液氨压力容器储罐设计使用说明
立方米液氨储罐设计说明书

目录课程设计任务书220m3液氨储罐设计2课程设计内容3液氨物化性质及介绍31.设备的工艺计算31.1设计储存量31.2设备的选型的轮廓尺寸的确定31.3设计压力的确定41.4设计温度的确定41.5压力容器类别的确定42.设备的机械设计52.1设计条件52.2结构设计62.2.1材料选择62.2.2筒体和封头结构设计62.2.3法兰的结构设计6(1)公称压力确定7(2)法兰类型、密封面形式及垫片材料选择7(3)法兰尺寸72.2.4人孔、液位计结构设计8(1)人孔设计8(2)液位计的选择92.2.5支座结构设计10(1)筒体和封头壁厚计算10(2)支座结构尺寸确定122.2.6焊接接头设计及焊接材料的选取14(1)焊接接头的设计14(2)焊接材料的选取162.3强度校核162.3.1计算条件162.3.2内压圆筒校核172.3.3封头计算182.3.4鞍座计算202.3.5开孔补强计算213.心得体会224.参考文献22课程设计任务书20m3液氨储罐设计一、课程设计要求:1.按照国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。
2.设计计算采用手算,要求设计思路设计思路清晰,计算数据准确、可靠。
3.工程图纸要求计算机绘图。
4.独立完成。
二、原始数据1.设备工艺设计2.设备结构设计3.设备强度计算4.技术条件编制5.绘制设备总装配图6.编制设计说明书四、学生应交出的设计文件(论文):1.设计说明书一份;2.总装配图一张(A1图纸一张)课程设计内容液氨物化性质及介绍液氨,又称为无水氨,是一种无色液体,有强烈刺激性气味。
氨作为一种重要的化工原料,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。
液氨在工业上应用广泛,具有腐蚀性且容易挥发,所以其化学事故发生率很高。
液氨分子式NH3,分子量17.03,相对密度0.7714g/L,熔点-77.7℃,沸点-33.35℃,自燃点651.11℃,蒸汽压1013.08kPa(25.7℃)。
液氨储罐

开孔补强的计算
• 在开孔或安装接管处一般采取相应的补强措施。容器开孔后,在 空附近的局部地区,应力会达到很大的数值。这种局部的应力增 长现象叫做“应力集中”。在应力集中区域的最大应力值,称为 “应力峰值”,通常用σmax表示。
• 引起开孔附近应力集中现象的基本原因是结构的连续性被破坏。 在开孔处,壳体和接管的变形不一致。为了使二者在连接之后的 变形协调一致,连接处便产生了附加内力,主要是附加弯矩。由 此产生的附加弯曲应力,便形成了连接处局部地区的应力集中。
封头的选择
根据规定选择标准椭圆形封头 焊接接头设计:容器筒体的纵向焊接接头和封头的拼接接头基本上都采
用双面焊,所以取焊接接头系数为1(双面焊,全部无损探伤)。 许用应力:制造容器所用的钢板,其在设计温度下许用应力值的大小,
直接决定着容器强度,是主要设计参数之一。在GB 150《钢制压力 容器》中,对钢板、锻件、紧固件均规定了材料的许用应力 。
压力试验一般采用液压试验或气压测试,本次设计我们选用液压测试, 液压试验一般采用水。需要时也可采用不会导致发生危险的其他液 体。实验室液体的温度应低于其闪点或沸点。奥氏体不锈钢制容器 用水进行液压实验后,应将水渍清楚干净。无法清楚干净时,应控 制水中氯离子的含量不超过25mg/L。
水压试验
试验温度:对碳钢、16MnR、15MnRNbR和正火的15MnVR钢制容 器进行液压试验时,液体温度不得低于5℃;对于其他低合金钢 制容器进行液压试验时,液体的温度不得低于15℃。如果由于板 厚等因素造成材料无塑性转变温度升高,则须相应提高试验液体 的温度。
• 有效宽度B
B 2d
B d 2δn 2δnt
二者得出数值,较大的则为有效宽度
有效高度h
完整的压力容器设计储罐液氨

设计任务书设计题目:液氨储罐设计设计任务:试设计一液氨储罐,完成主体设备的工艺设计和附属设备的选型设计;包括筒体、封头、零部件的材料的选择及结构的设计;罐的制造施工及焊接形式等;设计计算及相关校核;各设计的参考标准;附CAD图;已知工艺参数如下:最高使用温度:T=50℃;公称直径:DN=3000㎜;筒体长度不含封头:Lo=5900㎜;目录1 前言本设计是针对化工设备机械基础这门课程所安排的一次课程设计,是对这门课程的一次总结,要综合运用所学的知识并查阅相关书籍完成设计;本设计的液料为液氨,它是一种无色液体;氨作为一种重要的化工原料,应用广泛;,分子量,相对密度L,熔点℃,沸点℃,自燃点℃,蒸汽压25.7℃;蒸汽与空气分子式NH3混合物爆炸极限16~25%最易引燃浓度17%;氨在20℃水中溶解度34%,25℃时,在无水乙醇中溶解度10%,在甲醇中溶解度16%,溶于氯仿、乙醚,它是许多元素和化合物的良好溶剂;水溶液呈碱性;液态氨将侵蚀某些塑料制品,橡胶和涂层;遇热、明火,难以点燃而危险性较低; 但氨和空气混合物达到上述浓度范围遇明火会燃烧和爆炸,如有油类或其它可燃性物质存在,则危险性更高;设计基本思路:本设计综合考虑环境条件、介质的理化性质等因素,结合给定的工艺参数,机械按容器的选材、壁厚计算、强度核算、附件选择、焊缝标准的设计顺序,分别对储罐的筒体、封头、人孔接管、人孔补强、接管、管法兰、液位计、鞍座、焊接形式进行了设计和选择;设备的选择大都有相应的执行标准,设计时可以直接选用符合设计条件的标准设备零部件,也有一些设备没有相应标准,则选择合适的非标设备;各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计;2 设计选材及结构工艺参数的设定2.1.1设计压力根据化学化工物性数据手册查得50℃蒸汽压为,可以判断设计的容器为储存内压压力容器,按压力容器安全技术监察规程规定,盛装液化气体无保冷设施的压力容器,其设计压力应不低于液化气50℃时的饱和蒸汽压力,可取液氨容器的设计压力为 Mpa,属于中压容器;而且查得当容器上装有安全阀时,取~倍的最高工作压力作为设计压力;所以取 Mpa的压力合适;papa<6.0M≤属于中压容器5;10pM设计温度为50摄氏度,在-20~200℃条件下工作属于常温容器;2.1.2筒体的选材及结构根据液氨的物性选择罐体材料,碳钢对液氨有良好的耐蚀性腐蚀率在㎜/年以下,且又属于中压储罐,可以考虑20R和16MnR这两种钢材;如果纯粹从技术角度看,建议选用20R类的低碳钢板, 16MnR钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济;所以在此选择16MnR钢板作为制造筒体和封头材料;钢板标准号为GB6654-1996;筒体结构设计为圆筒形;因为作为容器主体的圆柱形筒体,制造容易,安装内件方便,而且承压能力较好,这类容器应用最广1,5;2.1.3封头的结构及选材封头有多种形式,半球形封头就单位容积的表面积来说为最小,需要的厚度是同样直径圆筒的二分之一,从受力来看,球形封头是最理想的结构形式,但缺点是深度大,直径小时,整体冲压困难,大直径采用分瓣冲压其拼焊工作量也较大;椭圆形封头的应力情况不如半球形封头均匀,但对于标准椭圆形封头与厚度相等的筒体连接时,可以达到与筒体等强度;它吸取了蝶形封头深度浅的优点,用冲压法易于成形,制造比球形封头容易,所以选择椭圆形封头,结构由半个椭球面和一圆柱直边段组成;查椭圆形封头标准JB/T4737-95表椭圆封头标准公称直径DN 曲面高度h1 直边高度h2 内表面积Fi/m2 容积V/m3 3000 750 50封头取与筒体相同材料1,5;3 设计计算筒体壁厚计算查 压力容器材料使用手册-碳钢及合金钢得16MnR 的密度为m 3,熔点为1430℃,许用应力[]tσ列于下表:表 16MnR 许用应力钢号板厚/㎜ 在下列温度℃下的许用应力/ Mpa≤20 100 150 200 250 300 16MnR6~16170 170 170 170 156 144 16~36 163 163 163 159 147 134 36~60 157 157 157 150 138 125 >60~100153153150141128116圆筒的计算压力为 Mpa,容器筒体的纵向焊接接头和封头的拼接接头都采用双面焊或相当于双面焊的全焊透的焊接接头,取焊接接头系数为,全部无损探伤;取许用应力为163 Mpa; 壁厚:[]1.0206.121163230006.122D =-⨯⨯⨯=-=cti c p p φσδ㎜钢板厚度负偏差0.8C 1=,查材料腐蚀手册得50℃下液氨对钢板的腐蚀速率小于㎜/年,所以双面腐蚀取腐蚀裕量2C 2=㎜;所以设计厚度为:81.2212=++=C C d δδ㎜圆整后取名义厚度24㎜;3.2 封头壁厚计算标准椭圆形封头a:b=2:1封头计算公式 :[]ctic p p 5.02D -=φσδ可见封头厚度近似等于筒体厚度,则取同样厚度;因为封头壁厚≥20㎜则标准椭圆形封头的直边高度50h 0=㎜1,4.3.3 压力试验水压试验,液体的温度不得低于5℃;试验方法:试验时容器顶部应设排气口,充液时应将容器内的空气排尽,试验过程中,应保持容器外表面的干燥;试验时压力应缓慢上升,达到规定试验压力后,保压时间一般不少于30min;然后将压力降至规定试验压力的80%,并保持足够长的时间以便对所有焊接接头和连接部位进行检查;如有渗漏,修补后重新试验;水压试验时的压力[][]Mpa pt7.216.225.125.1p T =⨯==σσ水压试验的应力校核: 水压试验时的应力()()[]()44.177124212430007.22D T T =-⨯-+⨯=+=e e i p δδσMpa水压试验时的许用应力为S T 0.9φσσ<故筒体满足水压试验时的强度要求1;4 附件选择4.1人孔选择人孔的作用:为了检查压力容器在使用过程中是否产生裂纹、变形、腐蚀等缺陷;人孔的结构:既有承受压力的筒节、端盖、法兰、密封垫片、紧固件等受压元件,也有安置与启闭端盖所需要的轴、销、耳、把手等非受压件;人孔类型:从是否承压来看有常压人孔和承压人孔;从人孔所用法兰类型来看,承压人孔有板式平焊法兰人孔、带颈平焊法兰人孔和带颈对焊法兰人孔,在人孔法兰与人孔盖之间的密封面,根据人孔承压的高低、介质的性质,可以采用突面、凹凸面、榫槽面或环连接面;从人孔盖的开启方式及开启后人孔盖的所处位置看,人孔又可分为回转盖人孔、垂直吊盖人孔和水平吊盖人孔三种;人孔标准HG21524-95规定PN≥时只能用带颈平焊法兰人孔或带颈对焊法兰人孔;容器上开设人孔规定当Di>1000时至少设一个人孔,压力容器上的开孔最好是圆形的,人孔公称直径最小尺寸为φ400㎜;综合考虑选择水平吊盖带颈对焊法兰人孔HG21524-95,公称压力、公称直径DN450、H1=320、RF型密封面、采用Ⅵ类20R材料、垫片采用外环材料为低碳钢、金属带为0Cr19Ni9、非金属带为柔性石墨、C型缠绕垫;标记为:人孔RFⅥW·C-1220总质量为256kg.法兰标准号为HGJ50~53-91,垫片标准号为HGJ69~72-91,法兰盖标准HGJ61~65-91材料为20R,螺柱螺母标准HGJ75-91螺柱材料40Cr螺母材料45,吊环转臂和材料Q235-A·F,垫圈标准为GB95-85材料100HV,螺母标准GB41-86,吊钩和环材料Q235-A·F,无缝钢管材料为20,支承板材料为20R2,3,5;尺寸表如下表人孔标准尺寸表密封面型式PN/MpaDN dw×s d D D1 H1 H2总质量kg突面450 480×12450 670 600 320 214 2564.2人孔补强的计算开孔补强结构:压力容器开孔补强常用的形式可分为补强圈补强、厚壁管补强、整体锻件补强三种;补强圈补强是使用最为广泛的结构形式,它具有结构简单、制造方便、原材料易解决、安全、可靠等优点;在一般用途、条件不苛刻的条件下,可采用补强圈补强形式;但必须满足规定的条件;压力容器开孔补强的计算方法有多种,为了计算方便,采用等面积补强法,即壳体截面因开孔被削弱的承载面积,必须由补强材料予以等面积的补偿;当补强材料与被削弱壳体的材料相同时,则补强面积等于削弱的面积;补强材料采用16MnR; 1、 内压容器开孔后所需的补强面积()r et f d -+=12A δδδ式中 开孔直径:6.4618.224562=⨯+=+=C d d i ㎜;强度削弱系数:壳体开孔处的计算厚度1.020=δ㎜ 接管有效厚度:2.98.212=-=-=C nt et δδ㎜则 ()38.930416313312.901.20201.206.461A =-⨯⨯⨯+⨯=㎜2 2、有效补强面积即已有的加强面积壳体开孔后,在有效补强范围内,可作为补强的截面积包括来自壳体、接管、焊缝金属、补强元件321A A A A e ++=筒体上多余金属面积:()()()()r e et e f ----=12d -B A 1δδδδδ有效补强宽度 B=2d筒体的有效厚度 2.218.224=-=e δ㎜ 所以()()()27.545163133101.202.212.9201.202.216.4611=-⨯-⨯⨯--⨯=A ㎜2人孔接管上多余的面积:()()r et r t et f C h f h 221222A -+-=δδδ外侧有效高度:43.746.461121=⨯==d h nt δ㎜内侧有效高度即实际内伸高度 02=h 接管计算厚度:[]()73.316.2113322448016.22=-⨯⨯-⨯=-=ctn i c t p d p φσδ㎜ 所以()36.66416313373.32.96.4611222=⨯-⨯⨯⨯=A ㎜2焊缝金属截面积:1441212212A 3=⨯⨯⨯=㎜2则 63.135314436.66427.545A 321=++=++=A A A e ㎜2 比较的 e A A >满足以下条件的可选用补强圈补强:刚材的标准常温抗拉强度540≤b σMpa ;补强圈厚度应小于或等于壳体壁厚的倍;壳体名义厚度38≤n δ㎜;设计压力Mpa 4<;设计温度350≤℃;可知本设计满足要求,则采用补强圈补强;所需补强圈的面积为:75.79504=-=e A A A ㎜2补强圈的结构及尺寸:为检验焊缝的紧密型,补强圈上钻M10的螺孔一个,以通入压缩空气检验焊缝质量;按照根据焊接接头分类,接管、人孔等与壳体连接的接头,补强圈与壳体连接的接头取D 类焊缝;根据补强圈焊缝要求,并查得结构图为带补强圈焊缝T 型接头,补强圈坡口取B 型查化工容器及设备简明设计手册;查标准HG 21506-92 得补强圈外径760D 0=,内径()5~3D 0+=d i 则取485㎜;计算补强圈厚度:14.184852.64615.779504=-⨯=-=i c D B A δ㎜查标准补强圈厚度取20㎜,计算的补强圈厚度也满足补强圈补强的条件; 查得对应补强圈质量为㎏3,5.4.3 进出料接管的选择材料:容器接管一般应采用无缝钢管,所以液体进料口接管材料选择无缝钢管,采用无缝钢管标准GB8163-87;材料为16MnR;结构:接管伸进设备内切成45度,可避免物料沿设备内壁流动,减少物料对壁的磨损与腐蚀;接管的壁厚要求:接管的壁厚除要考虑上述要求外,还需考虑焊接方法、焊接参数、加工条件、施焊位置等制造上的因素及运输、安装中的刚性要求;一般情况下,管壁厚不宜小于壳体壁厚的一半,否则,应采用厚壁管或整体锻件,以保证接管与壳体相焊部分厚度的匹配;不需另行补强的条件:当壳体上的开孔满足下述全部要求时,可不另行补强;①设计压力小于或等于;②两相邻开孔中心的距离应不小于两孔直径之和的2倍;③接管公称外径小于或等于89㎜;④接管最小壁厚满足以下要求;表接管最小壁厚要求接管公称直径/mm 57657689最小壁厚/mm因此热轧无缝钢管的尺寸为φ89×12㎜; 钢管理论重量为㎏/m;取接管伸出长度为150㎜;管法兰的选择:根据平焊法兰适用的压力范围较低PN<,选择突面板式平焊管法兰,标记为:HG20592-1997法兰RFA,其中D=190,管法兰材料钢号标准号:20GB711;根据欧洲体系钢制管法兰、垫片、垫片、紧固件选配表HG20614-1997选择:垫片型式为石棉橡胶板垫片尚无标准号,密封面型式为突面,密封面表面为密纹水线,紧固件型式为六角螺栓双头螺柱全螺纹螺柱;在离筒体底以上250㎜处安装容器出料管,容器内的管以弯管靠近容器底,这种方式用于卧式容器;出料口的基本尺寸以及法兰与进料口相同;进出料接管满足不另行补强的要求所以不再另行补强5;4.4液面计的设计液面计的种类很多,常用的有玻璃板液面计和玻璃板液面计;它们都是外购的标准件,只需要选用;玻璃板液面计有三种:透光式玻璃板液面计、反射式玻璃板液面计、视镜式玻璃板液面计;根据选用表选用:选用反射式玻璃板液面计,标准号HG21590-95,法兰形式及其代号C型长颈对焊突面管法兰HG20617-97,液面计型号R型公称压力,使用温度0~250℃,液面计的主题材料代号:锻钢16Mn,结构形式及其代号:普通型无代号,公称长度为1450mm,排污口结构:V排污口配螺塞;液面计标记为:液面计Ⅰ-1450V根据筒体公称直径3000㎜选择两个同样的液面计,单个质量为90㎏左右;两个液面计接口管的安装位置如装配图所画;液面计接管:无缝钢管GB8163-87热轧钢管,尺寸为φ89×12㎜4;4.5安全阀的选择安装位置:在离右封头切线处1150处安装一安全阀;由操作压力决定安全阀的公称压力,由操作温度决定安全阀的使用温度范围,所以由本设计的温度、压力、介质等基本参数可以查得标准型号A21H-40,公称通径DN 取20㎜,质量约为80㎏;与安全阀和接管连接的法兰选择突面板式平焊管法兰HG20592-1997法兰RFA,与壳体连接的接管为无缝钢管GB8163-87热轧钢管,尺寸为φ89×12㎜5;4.6排污管的选择安装位置:在离右鞍座的左侧1000mm处安装一个排污管;选择无缝钢管GB8163-87热轧钢为材料的排污管焊接在容器底部,尺寸为φ89×12㎜;管端法兰:突面板式平焊管法兰HG20592-1997法兰RFA,法兰一端连接排污阀截止阀,型号J41H-40,取公称通径为80㎜,对应质量为㎏;排污阀的结构是利用装在阀杆下面的阀盘与阀体的突缘部分相配合,一控制阀的启闭;结构较闸阀简单,制造、维修方便;可以调节流量,应用广泛5;鞍座的选择4.7.1鞍座结构和材料的选取卧式容器的支座有三种形式:鞍座、圈座、和支腿,常见的卧式容器和大型卧式储罐、换热器等多采用鞍座,它是应用得最为广泛的一种卧式容器支座;置于支座上的卧式容器,其情况和梁相似,有材料力学分析可知,梁弯曲产生的应力与支点的数目和位置有关;当尺寸和载荷一定时多支点在梁内产生的应力较小,因此支座数目似乎应该多些好;但对于大型卧式容器而言,当采用多支座时,如果各支座的水平高度有差异或地基沉陷不均匀,或壳体不直不圆等微小差异以及容器不同部位受力挠曲的相对变形不同,是支座反力难以为个支点平均分摊,导致课题应力增大,因而体现不出多制作的优点,故一般情况采用双支座;采用双支座时选取的原则如下:① 双鞍座卧式容器的受力状态可简化为受均布载荷的外伸梁,由材料力学知,当外伸长度A=时,跨度中央的弯矩与支座截面处的弯矩绝对值相等,所以一般近似取.2L 0A ≤,其中L 取两封头切线间距离,A 为鞍座中心线至封头切线间距离;② 当鞍座邻近封头时,则封头对支座处筒体有加强刚性的作用;为了充分利用这一加强效应,在满足.2L 0A ≤下应尽量使0.5R 0A ≤.此外,卧式容器由于温度或载荷变化时都会产生轴向的伸缩,因此容器两端的支座不能都固定在基础上,必须有一端能在基础上滑动,以避免产生过大的附加应力;通常的做法是将一个支座上的地脚螺栓孔做成长圆形,并且螺母不上紧,使其成为活动支座,而另一支座仍为固定支座;所以本设计就采用这种支座结构;根据设备的公称直径和容器的重量参照鞍座标准JB/T4712-1992选取鞍座结构及尺寸;鞍座的材料除加强垫板除外为Q235-A ·F,加强垫板的材料应与设备壳体材料相同为16MnR;4.7.2 容器载荷计算筒体的质量1m :查得圆筒体理论质量为1778㎏/m,筒体长度加上封头的直边长度为6m,则W1=1778×6=10668㎏;封头的质量2m :根据封头的名义厚度查得2:1标准椭圆形封头理论质量为1901㎏;水压试验时水的质量3m :由常用压力容器手册查得公称直径3000mm 厚24mm 的标准椭圆封头的容积为3m ,则容器容积为:4575.49.953487.832V V V 2=⨯⨯+⨯=+=π筒体封头3m水重 3m =×1000=㎏;附件的质量4m :人孔重256kg,人孔补强重,进出料管约100kg,两个液面计共180kg,安全阀80kg,排污阀,再加上与阀门相接的接管重量,附件总质量约为750kg.所以设备总质量为.即1,3,5.4.7.3 鞍座选取标准查得公称直径为3000mm 的容器选择轻型A,120°包角、焊制、六筋、带垫板,高度为250mm 的鞍座,允许载荷Q786kN>,为使封头对鞍座处的圆筒起加强作用,可取m .5R 0A ≤,则选A=700mm;左鞍座标记为JB/T4712-1992 鞍座 A3000-F.右鞍座标记为JB/T4712-1992 鞍座 A3000-S.具体尺寸如下表:表 鞍座标准尺寸表公称直径 DN允许载荷Q/kN 鞍座高度 h 螺栓间距 l2 鞍座质量 /kg 增加100mm 高度 增加的质量/kg 3000 786 250 1940 405 344.7.4 鞍座强度校核鞍座腹板的水平分力:查得鞍座包角120°对应系数 204.0K 9=支座反力:鞍座腹板有效界面内的水平方向平拉应力:-S H 计算高度,取鞍座实际高度和3m R 两者中的较小值,mm-0b 鞍座腹板厚度,mm -r b 鞍座腹板有效宽度,取垫板宽度4b 与圆筒体的有效宽度e m R b b δ56.12+=两者中的较小值,mm-re δ鞍座垫板有效厚度,10mm则 Mpa b b re r 538.810500102505.313882204.0H F 0S s 9=⨯+⨯⨯=+=δσ 应力校核:鞍座材料Q235-A ·F 的许用应力[]Mpa sa 125=σ,则[]pa sa M 333.8332=σ []sa σσ329≤35 容器焊缝标准5.1 压力容器焊接结构设计要求焊缝分散原则;避免焊缝多条相交原则;对称质心布置原则;避开应力复杂区或应力峰值去原则;对接钢板的等厚连接原则;接头设计的开敞性原则;焊接坡口的设计原则焊缝填充金属尽量少;避免产生缺陷;焊缝坡口对称;有利于焊接防护;焊工操作方便;复合钢板的坡口应有利于减少过渡层焊缝金属的稀释率;5.2 筒体与椭圆封头的焊接接头压力容器受压部分的焊接接头分为A 、B 、C 、D 四类,查得封头与圆筒连接的环向接头采用A 类焊缝;焊接方法:采用手工电弧焊,其原理是利用电弧热量融化焊条和母材,由融化的金属结晶凝固而形成接缝,焊接材料为碳钢、低合金钢、不锈钢,应用范围广,适用短小焊缝及全位置施焊,可适用在静止、冲击和振动载荷下工作的坚固密实的焊缝焊接,这种方法灵活方便,适应性强,设备简单,维修方便,生产率低,劳动强度高; 封头与圆筒等厚采用对接焊接;平行长度任取;坡口形式为I 型坡口;根据16MnR 的抗拉强度b σ=490Mpa 和屈服点s σ=325Mpa 选择E50系列强度要求:b σ≥490Mpa ;s σ≥400Mpa 的焊条,型号为E5014.该型号的焊条是铁粉钛型药皮药皮成分:氧化钛30%,加铁粉,适用于全位置焊接,熔敷效率较高,脱渣性较好,焊缝表面光滑,焊波整齐,角焊缝略凸,能焊接一般的碳钢结构;5.3 管法兰与接管的焊接接头管法兰与接管焊接接头形式和尺寸参照标准HG20605-97,根据公称通经DN 80选择坡口宽度b=6mm,如附图中的局部放大图所示;5.4 接管与壳体的焊接接头所设的接管都是不带补强圈的插入式接管,接管插入壳体,接管与壳体间的焊接有全焊透和部分焊头两种,它们的焊接接头均属T 形或角接接头;选择HG20583-1998标准中代号为G2的接头形式,基本尺寸为︒±︒=550β;5.02+=b ;5.01±=p ;t k δ31=,且6≥k ,它适用于254~=s δ,s t δδ21≥,因为所选接管的厚度都为壳体厚度的一半,壳体的厚度为24mm,所以符合要求;选择全焊透工艺,可用于交变载荷,低温及有较大温度梯度工况;如附图中的局部放大图所示4,5;6 筒体和封头的校核计算筒体轴向应力校核6.1.1 由弯矩引起的轴向应力筒体中间处截面的弯矩:()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+=L A L h L h R FL M i i m 43412142221 式中 F —鞍座反力,N ;m R —椭圆封头长轴外半径,mm ;L —两封头切线之间的距离,mm ;A —鞍座与筒体一端的距离,mm ;hi —封头短轴内半径,mm;支座处截面上的弯矩:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+---=L h AL h R L A FA M i i m 341211222 所以 mm N M ⋅⨯-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯+⨯⨯-+--⨯⨯-=4222104.15900375041590070027501524590070011700825.8313 由化工机械工程手册上卷,P11~99得K1=K2=;因为︱M1︱>>︱M2︱,且A <Rm/2=762mm,故最大轴向应力出现在跨中面,校核跨中面应力;筒体中间截面上最高点处e m R M δσ21114.3'-=所以 MPa 3-25110.31.221152414.310.02'⨯-=⨯⨯⨯-=σ 最低点处:MPa 0013.0''12=-=σσ鞍座截面处最高点处:MPa R K M e m 5242123101.92.2115240.114.3104.114.3-⨯=⨯⨯⨯⨯--=-=δσ 最低点处:MPa R K M e m 5242124101.92.2115240.114.3104.114.3-⨯-=⨯⨯⨯⨯-=⨯=δσ 由设计压力引起的轴向应力由 em p pR δσ2=所以 MPa p 6.772.212152416.2=⨯⨯=σ 轴向应力组合与校核最大轴向拉应力出现在筒体中间截面最低处所以 MPa p 6013.770013.06.77'22=+=+=σσσ 许用轴向拉压应力σt=163MPa ,而σ2<σt 合格;最大轴向压应力出现在充满水时,在筒体中间截面最高处 MPa 0013.0'11=-=σσ 轴向许用应力:根据A 值查外压容器设计的材料温度线图得B=150MPa,取许用压缩应力σac=150MPa,︱σ1︱<σac,合格; 6.2 筒体和封头切向应力校核筒体切向应力计算:由化工机械工程手册上卷,P11-100查得K3=,K4=;所以MPa R F K e m 085.00.2211524825.8313880.03=⨯⨯=⋅⋅=δτ 封头切向应力计算: MPa R F K e m h 039.00.2211524825.8313401.04=⨯⨯=⋅⋅=δτ 因 []h t h σστ-<5.21所以合格6;7 总结通过这次课程设计,让我对化工设备机械基础这门课有了进一步的认识;这次课设是对这门课程的一个总结,对化工机械知识的应用;设计时要有一个明确的思路,要考虑多种因素包括环境条件和介质的性质等再选择合适的设计参数,对罐体的材料和结构确定之后还要进行一系列校核计算,包括筒体、封头的应力校核,以及鞍座的载荷和应力校核;校核合格之后才能确定所选设备型符合要求;通过这次设计对我们独自解决问题的能力也有所提高;在整个过程中,我查阅了相关书籍及文献,取其相关知识要点应用到课设中,而且其中有很多相关设备选取标准可以直接选取,这样设计出来的设备更加符合要求;在设计的最后附有CAD设备图,在绘图的整个过程中,我对制图软件的操作更加熟悉;这次课设的书写中对格式的要求也很严格,在老师的指导下我们按照毕业设计的格式要求完成课设;这就为我们做毕业设计打下了基础;因为的知识有限,所做出的设计存在许多缺点和不足,请老师做出批评和指正;最后感谢老师对这次课设的评阅;参考文献1 赵军,张有忱等编. 化工设备机械基础. 第二版. 北京:化学工业出版社,2 压力容器实用技术丛书编写委员会编. 压力容器设计知识. 北京:化学工业出版社,3 刘湘秋编. 常用压力容器手册. 北京:机械工业出版社,4 董大勤编. 化工设备机械基础. 北京:化学工业出版社,20035 贺匡国. 化工容器及设备简明设计手册,第二版.6 余国琮. 化工机械工程手册,上卷. 北京:化学工业出版社7 郑晓梅编. 化工制图. 北京:化学工业出版社,8 林大军编着. 简明化工制图. 北京:化学工业出版社,。
液氨储罐设计说明书

液氨储罐设计说明书液氨储罐设计说明书目录附:设计任务书 (2)第一章绪论 (3)(一)设计任务 (3)(二)设计思想 (3)(三)设计特点 (3)第二章材料及结构的选择与论证 (3)(一)材料选择 (3)(二)结构选择与论证 (3)第三章设计计算 (5)(一)计算筒体的壁厚 (5)(二)计算封头的壁厚 (6)(三)水压试验及强度校核 (6)(四)选择人孔并核算开孔补强 (7)(五)核算承载能力并选择鞍座 (9)(六)选择液面计 (9)(七)选择压力计 (10)(八)选配工艺接管 (10)第四章设计汇总 (11)第五章结束语 (12)第六章参考文献 (13)第一章绪论(一)设计任务:针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。
(二)设计思想:综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。
在设计过程中综合考虑了经济性,实用性,安全可靠性。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
(三)设计特点:容器的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。
常、低压化工设备通用零部件大都有标准,设计时可直接选用。
本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
第二章材料及结构的选择与论证(一)材料选择:。
完整的压力容器设计(储罐液氨)

XXXX大学课程设计题目: 液氨储罐设计院系: 化学工程学院专业: 化学工程与工艺班级:姓名:指导教师:完成日期: 2011年12月19日设计任务书设计题目: 液氨储罐设计设计任务:试设计一液氨储罐, 完成主体设备的工艺设计和附属设备的选型设计。
包括筒体、封头、零部件的材料的选择及结构的设计;罐的制造施工及焊接形式等;设计计算及相关校核;各设计的参考标准;附CAD图。
已知工艺参数如下:最高使用温度: T=50℃;公称直径: DN=3000㎜;筒体长度(不含封头): Lo=5900㎜。
任务下达时间: 2010年11月19日完成截止时间: 2010年12月30日目录设计任务书1 前言 (1)2 设计选材及结构 (2)2.1 工艺参数的设定 (2)2.1.1设计压力 (2)2.1.2筒体的选材及结构 (2)2.1.3封头的结构及选材 (2)3 设计计算 (3)3.1 筒体壁厚计算 (4)3.2封头壁厚计算 (4)3.3压力试验 (5)4 附件的选择 (6)4.1人孔的选择 (6)4.2人孔补强的计算 (7)4.3进出料接管的选择 (9)4.4液面计的设计 (10)4.5安全阀的选择 (10)4.6排污管的选择 (11)4.7 鞍座的选择 (11)4.7.1鞍座结构和材料的选取 (11)4.7.2容器载荷计算 (12)4.7.3鞍座选取标准 (12)4.7.4鞍座强度校核 (13)5 容器焊缝标准 (14)5.1压力容器焊接结构设计要求 (14)5.2筒体与椭圆封头的焊接接头 (14)5.3管法兰与接管的焊接接头 (14)5.4接管与壳体的焊接接头 (14)6 筒体和封头的校核计算 (16)6.1 筒体轴向应力校核 (16)6.1.1由弯矩引起的轴向应力 (16)6.1.2 由设计压力引起的轴向应力 (17)6.1.3 轴向应力组合与校核 (17)6.2筒体和封头切向应力校核 (18)7 总结 (19)参考文献 (20)1 前言本设计是针对《化工设备机械基础》这门课程所安排的一次课程设计, 是对这门课程的一次总结, 要综合运用所学的知识并查阅相关书籍完成设计。
液氨储罐设计规范

液氨储罐设计规范液氨储罐设计规范液氨储罐设计是液氨储存和运输系统中的重要环节,设计规范的合理性影响着液氨安全运行和环境保护。
以下是液氨储罐的设计规范要点:1. 储罐选址和场地设计储罐选址应远离居民区和火源,具备足够的通风和排放条件,以便在发生泄漏时能够及时散发液氨气体。
场地设计应考虑防火、排水、排气等因素,并满足储罐的支撑和固定要求。
2. 结构和材料选择液氨储罐结构可以采用球形或圆柱形,球形结构可减少材料用量。
而球形结构中的支撑腿应采用独立支撑方式,以减少热应力。
储罐材料选择应考虑其抗压强度、抗腐蚀性和低温性能。
3. 安全阀与泄漏防护储罐应配置安全阀和泄漏防护装置,以防止储罐内部压力过高和泄漏事故。
安全阀应根据储罐的设计压力和容积进行选择,并在每年定期检测和校准。
泄漏防护装置包括泄漏报警器、止回阀、堤坝和防喷器等。
4. 异常情况处理液氨储罐设计应考虑各种异常情况的处理,包括火灾、地震、泄漏和爆炸等。
储罐应配置火灾报警系统和灭火系统,以及应急处理预案和逃生通道。
5. 操作和维护要求液氨储罐的操作和维护应符合相应的规范。
操作人员应接受培训,了解储罐的工作原理和安全操作规程。
储罐的定期检查和维护应包括液位、压力、温度和防腐等方面的监测与维护。
6. 泄漏应急预案液氨储罐设计应制定相应的泄漏应急预案,包括报警、疏散、应急处理和环境保护等方面的措施。
应急预案应定期检查和演练,以确保应急响应的高效性和准确性。
总之,液氨储罐设计规范的合理性和严格执行对保障液氨安全运输和使用至关重要。
每个环节都应严格按照规范要求进行设计、建设和运行,以减少事故风险,保障生产和环境的安全。
液氨贮罐的设计及计算

液氨贮罐的设计及计算第一章贮罐筒体与封头的设计一、罐体DN、PN的确定1、罐体DN 的确定液氨贮罐的长径比L/Di一般取3~3.5,本设计取L/Di=3.2,由V=(πDi2/4) ·L=10L/Di=3.2得:Di =( 40/ 3.2π)1/3 =1.585 m= 1585 mm因圆筒的内径已系列化,由Di=1585 mm可知: DN=1600 mm2、釜体PN 的确定因操作压力P=16 Kgf/cm2,由文献 [1]可知:PN=1.6 MPa二、筒体壁厚的设计1、设计参数的确定p=(1.05-1.1) pw ,p =1.1×1.6MPa=1.76MPa,pc=p+p∵ p液< 5 % P ,∴可以忽略p液p c =p=1.76 MPa , t = 100 ℃,Ф=1(双面焊,100%无损探伤), c2=2 mm(微弱腐蚀)2、筒体壁厚的设计设筒体的壁厚Sn ′=14 mm,[σ]t=170MPa ,c1=0.8 mm由公式Sd =pcDi/(2 [σ]tФ-P c)+c 可得:S d =1.76×1600/(2×170×1-1.76)+ 2 +0.8=11.13(mm) 圆整Sn=12 mm∵Sn ≠ Sn′∴假设Sn= 14mm是不合理的. 故筒体壁厚取Sn=12 mm3、刚度条件设计筒体的最小壁厚∵ Di=1600 mm < 3800 mm ,Smin =2 Di /1000且不小于3 mm 另加 C2,∴ Sn=5.2 mm按强度条件设计的筒体壁厚Sn =12 mm >Sn=5.2 mm,满足刚度条件的要求.三、罐体封头壁厚的设计1、设计参数的确定p=(1.05-1.1) pw ,p =1.1×1.6MPa=1.76MPa,pc=p+p液,∵ p液< 5 % p ,∴可以忽略p液p c =p=1.76 MPa , t=40 ℃,Ф=1(双面焊,100%无损探伤), c2=2mm(微弱腐蚀)2、封头的壁厚的设计采用标准椭圆形封头,设封头的壁厚Sn ′=14 mm,[σ]t=170 MPa ,c1=0.8 mm由公式Sd =PcDi/(2 [σ]tФ-0.5Pc)+c 可得:Sd=1.76×1600/(2×170×1-0.5×1. 76)+ 2 +0.8=11.10 mm 圆整Sn=12 mm∵S n ≠ S n ′ ∴ 假设S n = 14mm 是不合理的. 故封头的壁厚取S n =12 mm3、封头的直边、体积及重量的确定因为是标准椭球形封头,由文献[2]可知:封头的壁厚S n =12 mm ,直边高度h =40 mm ,由Di =1600 mm 、 S n =12 mm ,由文献[2]可知:封头的体积V 封=0.616 m 3 、封头的深度h 1=400mm封头的重量: 269.2×2=538.4 kg四、筒体的长度设计及重量的确定由V =2V 封+V 筒 可得:V 筒=10-2×0.616=8.768 m 3V 筒=πDi 2L/4=8.768 m 3 可得:L =4363 mm 圆整:L =4360 mm筒体的重量: Di =1600 mm 、S n =12 mm 的筒体1 m 高筒节的重量为0.476(T) ∴ 4.36×0.476=2.08(T)第二章 贮罐的压力试验一、罐体的水压试验1、液压试验压力的确定液压试验的压力:p T =1.25p[σ]/[σ]t 且不小于(p+0.1) MPa ,当[σ]/[σ]t<1.8时 取其为1 则p T =1.25×1.76×1= 2.2 (MPa)2、 液压试验的强度校核由σmax =p T (Di +S n -c )/[2(S n -c)] =2.2(1600+12-2.8)/[2(12-2.8)]=192.4 (MPa)∵ σmax =192.4 (MPa)<0.9σs Φ=0.9×345×1=310.5 MPa ∴ 液压强度足够3、压力表的量程、水温的要求压力表的量程:2p T =2×2.2=4.4 (MPa) 或3.3MPa -8.8MPa ,水温≥15℃ 4、液压试验的操作过程在保持罐体表面干燥的条件下,首先用液体将罐体内的空气排空,再将液体的压力缓慢升至22Kgf/cm 2,保压10-30分钟,然后将压力缓慢降至17.6Kgf/cm 2,保压足够长时间(不低于30分钟),检查所有焊缝和连接部位,若无泄漏和明显的残留变形。
液氨储罐操作规程

液氨储罐操作规程液氨储罐操作规程一、安全操作规程1. 操作人员必须穿戴好防护服、防静电鞋及安全帽等防护装备,确保自身安全。
2. 操作人员必须熟悉储罐的使用方法和相关安全知识,严禁无经验人员进行操作。
3. 操作人员必须提前了解储罐的操作规程,包括储罐的开关和应急处理等。
二、储罐的操作步骤1. 在操作储罐之前,先检查储罐的安全情况,确保储罐无任何泄漏或损坏。
2. 打开储罐附近的通风设备,保证空气流通,并确保没有明火。
3. 操作人员应按照储罐的使用说明书操作,打开储罐的阀门,进行充氨或排氨等操作。
4. 操作人员在操作储罐时要保持警惕,严禁离开储罐进行其他工作,以免发生意外。
5. 在储罐操作结束后,要及时关闭阀门,并确保储罐的安全性。
三、应急处理措施1. 如果储罐发生泄露,应立即采取措施进行紧急处理,如关闭储罐阀门、切断电源等。
2. 紧急处理后,应立即报告相关人员,启动应急预案,并采取必要的隔离和防护措施。
3. 在泄露事件发生时,应按照事先制定的逃生路线进行撤离,并尽量避免进入泄漏区域。
四、储罐的检修与保养1. 储罐定期进行安全检查,确保罐体无任何损坏或腐蚀。
2. 做好储罐的防腐措施,确保储罐的长期使用不受到腐蚀的影响。
3. 定期检查储罐的阀门,确保阀门的灵活性和安全性。
五、涉及到的安全知识和常识1. 操作人员必须熟悉液氨的特性和危害,并了解相关的应急处理方法。
2. 操作人员必须了解液氨的存储和运输规程,并严格按照规程操作。
3. 操作人员要随时保持警惕,发现异常情况要及时报告,并采取相应的措施。
六、注意事项1. 操作人员应遵守操作规范,严禁私自调整储罐的阀门,并确保储罐操作过程的正确性。
2. 液氨储罐周围应保持清洁,避免杂物和易燃物质积聚,确保储罐的安全。
3. 液氨储罐操作完毕后,应及时关闭相关设备,切断电源,避免安全事故的发生。
总结:液氨储罐操作规程非常重要,对操作人员的安全起到决定性的作用。
遵守上述操作规程,能有效避免事故的发生,保证储罐的安全运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章工艺设计1.1任务书*************************************** 1.2储量***************************************** 1.3备的选型及轮廓尺寸*************************** 第二章机械设计2.1结构设计2.1.1筒体及封头设计材料的选择**********************************筒体壁厚的设计计算**************************封头壁厚的设计计算*************************** 2.1.2接管及接管法兰设计接管尺寸选择*********************************管口表及连接标准*****************************接管法兰的选择 *****************************紧固件的选择 ******************************* 2.1.3人孔的结构设计密封面的选择 ******************************人孔的设计********************************2.1.4 核算开孔补强**************************** 2.1.5支座的设计支座的选择**********************************支座的位置********************************** 2.1.6液面计及安全阀选择2.1.7总体布局2.1.8焊接接头设计2.2强度校核小结课程设计任务书一、绪论1、任务说明设计一个容积为103m的液液氨储罐,采用常规设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管进行设计,然后采用SW6-1998对其进行强度校核,最后形成合理的设计方案。
2、液氨的性质二、 设计参数的确定第一章工艺设计1.1 存储量盛装液化气体的压力容器设计存储量t V W ρφ=式中:W ——储存量,t ;φ——装载系数; V ——压力容器容积;t ρ——设计温度下的饱和溶液的密度,3m t;根据设计条件t V W ρφ==t t 7855.4563.01085.0=⨯⨯1.2 设备的选型及轮廓尺寸粗略计算内径: 32104m L D i =π一般63—=D L ,取3=D L得mm D i 1619=,圆整得:mm D i 1600=选用EHA 椭圆封头,那么 L=4800mm. 封头公称直径选取1600mm ,那么此时的总体积为10.82m ³。
由于误差较大,所以将筒体长调整为L=4500mm ,体积变为了与封头10.2m ³。
故,筒体公称直径与封头的工程直径选定为mm D i 1600=筒体长选定为mm L 4500=. 所以计算容积为10.2m ³,工作容积:10.2×0.85=8.67m ³。
第二章 机械设计2.1 结构设计2.1.1筒体及封头设计.材料的选择纯液氨是中度危害性的介质,具有腐蚀性,又因为使用温度为C 。
~5020 ,根据《课程设计指导书》中钢板的使用条件,选用Q345R 。
.筒体壁厚设计计算I .设计压力液氨储罐的工作温度-20℃——50℃,故选取设计温度t=50℃,由《课程设计指导书》查的,该温度下的绝对饱和蒸汽压为2.030MPa 。
在本次设计中的液氨储罐上装有安全阀,通常认为设计压力为工作压力的1.05——1.10倍,所以设计压力为2.233MPa,工程压力取2.5MPa 。
压力容器类别确定一、划分总原则综合考虑压力容器中介质的危害程度、容器所受的压力的高低和容器容积的大小来确定容器的危险程度。
二、介质的危险程度及分组压力容器的介质分为以下两组,包括气体、液化气体以及最高温度高于或等于标准沸点的液体:(1) 第一组介质,毒性程度为极度危害、高度危害的化学介质,易爆介质,液化气体。
(2) 第二组介质,除第一组以外的介质由于该储罐为中压(1.6MPa<P <10MPa ),介质为液氨,液氨属于易爆介质,属于第一组介质,查压力容器的分类图1-1此容器为第一类压力容器. II .液柱静压力液氨的密度为563Kg/m ³,筒体公称直径为1600mm 。
,则根据公式i p gD ρ=静可得a 008836.0MP P =静III .计算压力cp因为%5πPP 静,所以 液柱静压力可忽略不计,则计算压力等于设计压力。
IV .设计温度下材料的许用应力[]t σt 为C 。
~5020-,假设筒体厚度为mm 163~,由《材料许用应力表》可得R Q 345的[]MPa t 189=σ V .焊接接头系数φ本次液氨储罐的设计采用双面焊对接接头和相当于双面焊的全焊透对接接头,局部无损检测,所以φ=0.85。
内压容器的计算厚度δ根据内压容器的计算厚度公式【2】:[]mm p D p cti c 19.11233.285.018921600233.22=-⨯⨯⨯=-=φσδmm 19.11在mm 166~之间,故假设是成立的。
取腐蚀裕量22C mm =,mm C d 2.132=+=δδ负偏差mm C 3.01=。
mm C d 5.131=+δ 查《钢板厚度的常用规格表》,将其圆整为mm 14,即名义厚度mm n14=δ的R Q 345钢板。
③.封头壁厚的设计计算标准椭圆形封头的计算厚度根据标准椭圆形封头的计算厚度公式:[]mm p D p ctic 16.115.02=-=φσδ 取腐蚀裕量22C mm =,mm n 14=δ查《钢板厚度的常用规格表》,将其圆整为mm 14,即名义厚度mm n 14=δ的R Q 345钢板,可见标准椭圆形封头与筒体等厚。
2.1.2接管及接管法兰设计②.管口表及连接标准6 DN25 HG/T20592-2009 FM 压力表接口7 DN25 HG/T20592-2009 FM 液位计接口8 DN32 HG/T20592-2009 FM 排液口9 DN32 HG/T20592-2009 FM 安全阀接口.接管法兰的选择图2 接管法兰结构接管法兰标记名称法兰标记序号名称公称直径DN钢管外径1A法兰外径D螺栓孔中心圆直径K螺栓孔直径L螺栓孔数量n螺栓Th法兰厚度C法兰颈法兰高度H法兰质量(Kg)N S≧1H≈RBB1 进料口出料口50 57 165 125 18 4 M16 20 75 2.9 8 6 48 3.02 安全阀接口排液口32 38 140 100 18 4 M16 18 56 2.6 6 6 42 2.0A7 温度计接口压力表接口出气口液位计接口25 32 115 85 14 4 M12 18 46 2.6 6 6 40 1.02.1.3人孔的结构设计① .密封面的选择由于本次设计的介质是中度危害的,所以本次设计采用凹凸法兰密封面(MFM )。
② .人孔的设计本次设计的储罐设计压力为2.233MPa ,根据20052153521514/-~T HG 《钢制人孔和手孔》【3】,采用回转盖带颈对焊法兰人孔。
该人孔标记为:人孔CM MFM S 35-Ⅲ B 5.2500-200521518/-T HG人孔结构示意图人孔结构尺寸【3】密封面型式公称压力PN公称直径DNdw⨯S d D D1H1H2 bMFM 2.5 500 530⨯12 506 730 660 280 123 44b 1b2A B L d螺柱螺母螺柱总质量数量直径⨯长度43 48 405 200 300 30 20 40 M33⨯2⨯170 3022.1.4 核算开孔补强在设计中,只有人孔需要补强,去补强圈的公称直径为人孔直径的二倍,厚度与筒体厚度相同.2.1.5支座的设计①.支座的选择鞍座结构该卧式容器采用双鞍式支座,材料选用Q245-AF 。
估算鞍座的负荷: 储罐总质量43212m m m m m +++=1m —筒体质量:kg DL m 6.2484785010145.46.114.331,=⨯⨯⨯⨯⨯=⨯=-ρδπ 2m —单个封头的质量:查标准JB/T4746-2002《钢制压力容器用封头》中表B.2 EHA 椭圆形封头质量,可知,kg m 3152=3m —充液质量: 3m =5742.6Kg4m —附件质量:人孔质量为302kg ,其他接管质量总和估100kg ,即kg m 4024=综上所述,kg m m m m m 2.95213026.547231526.284624321=++⨯+=+++= G=mg=93,4kN,每个鞍座承受的重量为46.7kN由此查JB4712.1-2007容器支座,选取轻型,焊制为A,包角为120,有垫板的鞍座。
查JB4712.1-2007得鞍座结构尺寸如下表4:鞍式支座结构尺寸单位:mm公称直径DN 允许载荷Q/kN鞍座高度h底板腹板筋板l1b11δ2δl3b2b33δ1600 275 250 1120 200 12 8 255 170 240 8垫板螺栓配置鞍座质量kg 增加100mm 高度增加的质量/kg弧长b44δ e 间距l2螺孔d螺纹孔长l1870 390 8 70 960 24 M20 40 116 12②.鞍座位置的确定通常取尺寸A 不超过0.2L 值,中国现行标准JB 4731《钢制卧式容器》规定A ≤0.2L=0.2(L+2h ),A 最大不超过0.25L.否则由于容器外伸端的作用将使支座截面处的应力过大。
故mm h L A 910)2524500(2.0)2(2.0=⨯+=+≤由于封头的抗弯刚度大于圆筒的抗变钢度,故封头对于圆筒的抗弯钢度具有局部的加强作用。
若支座靠近封头,则可充分利用罐体封头对支座处圆筒截面的加强作用。
因此,JB 4731还规定当满足A ≤0.2L 时,最好使A ≤0.5R m (2R i n m R δ+=),即mm R nm 814221600=+=δmm R A m 40710065.05.0=⨯=≤,取A=400mm综上有:A=400mm 。
鞍座标记为:/JB T 4712.12007,-支座 F A -1600/JB T 4712.12007,-支座 S A -16002.1.6液位计选择本次设计采用磁性液位计,普通型,压力等级为2.5 MPa 。
根据实际要求,选用液位计的长度为1100mm 。
标记 HG/T 21584-95 UZ 2.5M-1100-0.4563 BF 321C 。