第七章习题答案
高等数学第七章 习题答案

习题7-11. 下列向量的终点各构成什么图形?(1)空间中一切单位向量归结为共同的始点;(2)平行于同一平面的一切单位向量归结为共同的始点;(3)平行于同一直线的所有单位向量归结为同一始点;(4)平行于同一直线的所有向量归结为同一始点。
答:(1)单位球面 (2)单位圆 (3)两个点 (4)直线。
2. 设点O 是正六边形ABCDEF 的中心,在向量,,,,,,,,OA OB OC OD OE OF AB BC ,,,CD DE EF FA 中,哪些向量是相等的? 答:,OA EF =,OB FA =,OC AB =,OD BC =,OE CD =.OF DE =3.平面四边形,ABCD 点,,,K L M N 分别是,,,AB BC CD DA 的中点,证明:.KL NM =当四边形ABCD 是空间四边形时,上等式是否仍然成立?证明:连结AC, 则在∆BAC 中,21AC. 与方向相同;在∆DAC 中,21AC. NM 与AC 方向相同,从而KL =NM 且KL 与NM 方向相同,所以KL =NM .当四边形ABCD 是空间四边形时,上等式仍然成立。
4. 解下列各题:(1)化简()()()()2332;x y x y -+-+-a b a b(2)已知12312323,322,=+-=-+a e e e b e e e 求,,32+--a b a b a b.解:(1)()()()()2332x y x y -+-+-a b a b()()()()23322332x y x y x y x y =--++-++⎡⎤⎡⎤⎣⎦⎣⎦a b()()55x y x y --+-=a b;(2)()()123123123233225;+=+-+-+=++a b e e e e e e e e e()()12312312323322;-=+---+=-+a b e e e e e e e +e e()()()()123123123123323232322693644-=+---+=+---+a b e e e e e e e e e e e e 235.=+e e5.四边形ABCD 中,2,568AB CD =-=+-a c a b c,对角线,AC BD 的中点分别是,,E F 求.EF 解:()()111156823352222EF CD AB =+=+-+-=+-a b c a c a b c.6. 设ABC ∆的三条边,,AB BC CA 的中点分别为,,,L M N 另O 为任意一点,证明: .OA OB OC OL OM ON ++=++证明:(1)如果O 在ABC ∆内部(如图1),则O 把ABC ∆分成三个三角形OAB,OAC,OBC 。
普通化学第七章课后习题解答

第七章沉淀反应参考答案P 142【综合性思考题】:给定体系0.02mol/LMnCl 2溶液(含杂质Fe 3+),经下列实验操作解答问题。
(已知K θSPMn(OH)2=2.0×10-13,K θSPMnS =2.5×10-13,K θbNH3=1.8×10-5,K θaHAc =1.8×10-5①与0.20mol/L 的NH 3.H 2O 等体积混合,是否产生Mn(OH)2沉淀?解:等体积混合后浓度减半,[Mn 2+]=0.01mol/L ,c b =[NH 3.H 2O]=0.10mol/L∵是一元弱碱体系,且c b /K b θ>500∴10.0108.1][5⨯⨯=⋅=--b b c K OH θ又∵ 622108.101.0][][--+⨯⨯=⋅=OH Mn Q c=1.8×10-8> K θSPMn(OH)2=2.0×10-13∴ 产生Mn(OH)2沉淀。
②与含0.20mol/L 的NH 3.H 2O 和0.2mol/LNH 4Cl 的溶液等体积混合,是否产生Mn(OH)2沉淀? 解:混合后属于NH 3.H 2O~NH 4Cl 的碱型缓冲液体系此时浓度减半:c b =[NH 3.H 2O]=0.2V/2V=0.1(mol.L -1)c S= [NH 4+]=0.2V/2V=0.1(mol.L -1)[Mn 2+]=0.02V/2V=0.01(mol.L -1)A 、求[OH -] 用碱型缓冲液计算式求算:s b b c c K OH ⋅=-θ][ 55108.11.01.0108.1--⨯=⨯⨯= B 、求Qc 22][][-+⋅=OH Mn Q c=0.01×[1.8×10-5]2=3.24×10-12C 、比较θ2)(,OH Mn SP K ∵13)(,100.22-⨯=>θOH Mn SP C K Q故有Mn(OH)2沉淀产生。
第七章 习题答案

第七章动态电路的时域分析习题一、选择题1. 一阶电路的时间常数取决于: C(A) 电路的结构(B) 外施激励(C) 电路的结构和参数(D) 电路的参数2. 图示电路中I S = 5 A恒定,电路原已稳定,t = 0时开关S打开。
在求解过渡过程中,下列式子中正确的是: D(A) u(∞) = 125 V (B) τ = 0.4 s (C) u(0+) = 100 V (D) i(∞) = 5AL3.在电路换路后的最初瞬间( t = 0+ ),根据换路定律,电路元件可作如下等效: C(A) 无储能的电容可看做开路(B) 无储能的电感可看做短路(C) 电容可看作具有其初值电压的电压源(D) 电压源可看作短路,电流源可看作开路(0+)的值为:D4. 图示电路在开关S合上前电感L中无电流,合上开关的瞬间uL(A) 0 V (B) 63.2 V (C) ∞(D) 100 V5. 图示电路中电压源电压恒定,且电路原已稳定。
在开关S闭合瞬间,i(0+)的值为:C(A) 0.2 A (B) 0.6 A (C) 0 A (D) 0.3 A6. 表征一阶动态电路的电压、电流随时间变化快慢的参数是:D(A) 电感L(B) 电容C(C) 初始值(D) 时间常数τ7. 图示正弦脉冲信号的数学表达式为:B (A) sin ω t ⋅ ε (t ) + sin ω ( t - T ) ⋅ ε ( t - T ) (B) sin ω t ⋅ ε (t ) - sin ω t ⋅ ε ( t - T ) (C) sin ω t ⋅ ε (t ) - sin ω ( t - T ) ⋅ ε ( t - T ) (D) sin ω t ⋅ ε (t ) + sin ω t ⋅ ε ( t - T )8. 图示电路中,原已达稳态, t = 0开关 S 打开,电路的时间常数为:D (A)s 41 (B) s 61(C) s 4 (D)s 69. 示电路中,t = 0 时开关打开,则 u (0+)为:C(A) 0V (B) 3.75V (C) – 6V (D) 6V10.图示电路中,开关打开已久,在 t = 0 时开关闭合,i (0+) 为:D(A) 0A (B) 0.8A(C) 2A (D)1A11.R 、C 串联电路,已知全响应()()10C 83V,0t u t e t -=-≥,其零状态响应为:(A )(A) 1088V te-- (B) 1083V t e -- (C) 103V t e -- (D) 105V t e -12. .一阶电路的全响应()()10C 106V,0tu t et -=-≥若初始状态不变而输入增加一倍,则全响应u C (t)为 ( D ) (A) 20-12e -10t ; (B) 20-6e -10t ; (C) 10-12e -10t ; (D) 20-16 e -10t 。
微观经济学第七章 习题答案

MR,试求:图7—1(1)A点所对应的MR值;(2)B点所对应的MR值。
解答:(1)根据需求的价格点弹性的几何意义,可得A点的需求的价格弹性为e d =eq \f(15-5,5)=2或者e d =eq \f(2,3-2)=2再根据公式MR=P eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,e d ))),则A点的MR值为MR=2×eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))=1(2)与(1)类似,根据需求的价格点弹性的几何意义,可得B点的需求的价格弹性为e d =eq \f(15-10,10)=eq \f(1,2)或者e d =eq \f(1,3-1)=eq \f(1,2)再根据公式MR=P eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,e d ))),则B点的MR值为MR=1×eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,1/2)))=-12. 图7—2(即教材第205页的图7—19)是某垄断厂商的长期成本曲线、需求曲线和收益曲线。
试在图中标出:(1)长期均衡点及相应的均衡价格和均衡产量;(2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线;(3)长期均衡时的利润量。
图7—2图7—3(1)长期均衡点为E点,因为在E点有MR=LMC。
由E点出发,均衡价格为P0,均衡数量为Q0。
(2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线如图7—3所示。
在Q0的产量上,SAC曲线和LAC曲线相切;SMC曲线和LMC曲线相交,且同时与MR曲线相交。
(3)长期均衡时的利润量由图7—3中阴影部分的面积表示,即π=[AR(Q0)-SAC(Q0)]·Q 0。
3. 已知某垄断厂商的短期总成本函数为STC=0.1Q3-6Q2+140Q+3 000,反需求函数为P=150-3.25Q。
第七章习题及答案

第七章习题及答案第七章习题及答案1. 如果要设置幻灯片“水平百叶窗”播放效果,应使用菜单“幻灯片放映”中的(b)a. 动作设置b. 自定义动画c. 预设动画2. 列方法中不能启动PowerPoint 2003的是(前提为已正常安装好PowerPoint 2003)( c)a. 选择“开始”—“程序” —“ Microsoft Office 2003 ” —“ Microsoft Office PowerPoi nt 2003 ”命令b. 用鼠标左键双击桌面上的PowerPoint 2003快捷方式图标c. 用鼠标右键双击桌面上的PowerPoint 2003快捷方式图标d. 用鼠标左键双击已建立好的PowerPoint 2003文件3. 显示和隐藏工具栏的操作是(d )a. 隐藏“浮动工具栏”,可双击它b. 通过“工具”菜单的“自定义”命令进行操作c. 用鼠标右键单击此工具栏d. 点击“视图”菜单中的“工具栏”,在弹出的菜单中单击需要显示或隐藏的工具栏名称4. powerPoint 2003 有__d ___ 中显示视图。
a. 5b. 2c. 3d. 45. “文件”菜单中的“打印”命令,其快捷键是(c )a. Ctrl+Nb. Ctrl+Sc. Ctrl+Pd. Ctrl+X6. 在PowerPoint 2003中,“文件”菜单中的“打开”命令的快捷键是(a)a. Ctrl+O b. Ctrl+S c. Ctrl+P d. Ctrl+N7. 计算机没有接打印机,Powerpoint2003将_______a ____ 。
a. 可以进行幻灯片的放映,但不能打印b. 不能进行幻灯片的放映,也不能打印c. 按文件类型,有的能进行幻灯片的放映,有的不能进行幻灯片的放映d. 按文件大小,有的能进行幻灯片的放映,有的不能进行幻灯片的放映8. Powerpoint 2003演示文稿的默认扩展名是(c)a. DOCb. XLSc. PPTd. PTT9. 在用PowerPoint 2003制作的幻灯片中__d ______ 。
第七章练习题及答案(可编辑修改word版)

第七章练习题及答案一.单项选择题1.根据我国《宪法》、《立法法》等的规定,()行使国家立法权。
A.国务院B.全国人民代表大会及其常务委员会C.地方政府 D 地方人民代表大会及其常务委员会2.国务院有权根据宪法和法律制定()。
A.部门规章B.地方性法规C.行政法规D.地方政府规章3.国务院各部门可以根据宪法、法律和行政法规,在本部门的权限范围内,制定()。
A.部门规章B.地方性法规C.行政法规D.地方政府规章4.省、自治区、直辖市的人民代表大会及其常委会根据本行政区域的具体情况和实际需要,在不同宪法、法律和行政法规相抵触的前提下,可以制定()。
A.部门规章B.地方性法规C.行政法规D.地方政府规章5.省、自治区、直辖市、较大的市的人民政府可以根据法律、行政法规和本省、自治区、直辖市的地方性法规,制定()。
A.部门规章B.地方性法规C.行政法规D.地方政府规章6.在广义上,法律执行是指(),在国家和公共事务管理中依照法定职权和程序,贯彻和实施法律的活动。
A.国家公务员B.国家机关及其公职人员C.社会组织D.公民7.法律适用是指()依照法定职权和程序适用法律处理案件的专门活动。
A.国家立法机关及其公职人员B.国家行政机关及其公职人员C.国家司法机关及其公职人员D.国家机关及其公职人员8.依法治国的主体是()。
A.行政机关B.立法机关C.司法机关D.人民群众9.从法律运行的环节来看,法律公正包括()两个方面。
A.守法公正和司法公正B.立法公正和执法公正C.实体公正和程序公正D.权利公正与义务公正10.从法律公正的内涵来看,法律公正包括()两个方面。
A.守法公正和司法公正B.立法公正和执法公正C.实体公正和程序公正 D.权利公正与义务公正11.()是国家安全的支柱与核心。
A.政治安全和国防安全B.经济安全与科技安全C.文化安全与生态安全D.社会公共安全与政治安全12.()是维护国家安全的专门法律,规定了国家安全机关在国家安全工作中的职责以及公民和组织维护国家安全的权利和义务,规律了各类危害国家安全行为所应承担的法律责任。
第七章课后练习题答案

第七章证券评价一、单项选择题1.已知某证券的 系数等于1,则表明该证券( C )。
A.无风险B.有非常低的风险C.与金融市场所有证券平均风险一致D.比金融市场所有证券平均风险大1倍2.某种股票为固定成长股票,年增长率为5%,预期一年后的股利为6元,现行国库券的收益率为11%,平均风险股票的必要收益率等于16%,而该股票的贝他系数为1.2,那么,该股票的价值为( A )。
A.50B.33C.45D.303.投资短期证券的投资者最关心的是( D)。
A.发行公司的经营理财状况的变动趋势B.证券市场的现时指数C.发行公司当期可分派的收益D.证券市场价格的变动4.证券投资者的购买证券时,可以接受的最高价格是( C )。
A.出卖市价B.风险价值C.证券价值D.票面价值5.一般而言,金融投资不是( B )。
A.对外投资B.直接投资C.证券投资D.风险投资6.非系统风险( B )。
B.归因于某一投资企业特有的价格因素或事件C.不能通过投资组合得以分散D.通常以 系数进行衡量7.下列说法中正确的是( D )。
A.国库券没有利率风险B.公司债券只有违约风险D.国库券没有违约风险,但有利率C.国库券和公司债券均有违约风险风险8.如果组合中包括了全部股票,则投资人( A )。
A.只承担市场风险B.只承担特有风险C.只承担非系统风险D.不承担系统风险9.债券的价值有两部分构成,一是各期利息的现值,二是( C )的现值。
A.票面利率B.购入价格C.票面价值D.市场价格10.A公司发行面值为1000元,票面利率10%,期限五年,且到期一次还本付息(单利计息)的债券,发行价格为1050元,B投资者有能力投资,但想获得8%以上的投资报酬率,则B投资者投资该债券的投资报酬率为( B)。
A.8%B.7.4%C.8.25%D.10%11.某企业于1996年4月1日以950元购得面额为1000元的新发行债券,票面利率12%,每年付息一次,到期还本,该公司若持有该债券至到期日,其到期收益率为( A )。
高等数学第七章习题详细解答

第七章习题答案习题7.01.下列各种情形中,P 为E 的什么点?(1)如果存在点P 的某一邻域()U P ,使得()⊂c U P E (c E 为E 的余集); (2)如果对点P 的任意邻域()U P ,都有, ()(),C U P E U P E φφ≠≠; (3)如果对点P 的任意邻域()U P ,都有. 解 (1)P 为E 的外点;(2)P 为E 的边界点;(3)P 为E 的聚点。
2.判定下列平面点集的特征(说明是开集、闭集、区域、还是有界集、无界集等?)并分别求出它们的导集和边界.(1) (){},0≠x y y ;(2) (){}22,620≤+≤x y x y ; (3) (){}2,≤x y y x ;(4) ()(){}()(){}2222,11,24+-≥⋂+-≤x y x y x y x y .解 (1) 是开集,是半开半闭区域,是无界集,导集为2R ,边界集为(){},0=x y y ;(2)既不是开集也不是闭集,是半开半闭区域,是有界集,导集为(){}22,620≤+≤x y x y ,边界集为(){}2222,=6=20++,x y x y x y ;(3) 是闭集,是半开半闭区域,是无界集,导集为集合本身,边界集为(){}2,=x y y x ;是闭集,是闭区域,是有界集,导集为集合本身,边界集为()()(){}2222,11,24+-=+-=x y x y x y习题7.11. 设求1. 解 令,=-=yu x y v x,解得,11==--u uv x y v v,故()22,11⎛⎫⎛⎫=- ⎪ ⎪--⎝⎭⎝⎭u uv f u v v v ,即()()21+,1=-u v f u v v ,所以,()()21+y ,1=-x f x y y φ≠-}){()(P E P U 22,,y f x y x y x ⎛⎫-=- ⎪⎝⎭(,).f x y2.已知函数()22,cot =+-x f x y x y xy y,试求(),f tx ty .2. 解 因为()22,cot =+-y f x y x y xy x,所以,()2222,cot ,=+-t y f tx ty tx ty txty t x即()()222,cot =+-y f tx ty t x y t xy x.3.求下列各函数的定义域 (1) 25)1(=-+z ln y xy ;(2) =z ;(3) =z(4) )0;=>>u R r(5) =u3. 解 (1)(){}2,510-+>x y yxy ;(2)(){},0->x y x y ;(3)(){}2,≥x y x y ;(4)(){}22222,<++≤x y r x y z R ;(5)(){}222,≤+x y z x y4. 求下列各极限:(1) ()()233,0,31lim →-+x y x yx y ;(2)()(,1,1ln lim→+x x y y e(3)()(,0,0lim→x y(4)()(,0,0lim→x y ;(5)()()(),0,2sin lim→x y xy x ;(6)()()()()222222,0,01cos lim→-++x y x y x y xy e.4. 解 (1)()()2333,0,31101lim 0327→--==++x y x y x y ;(2)()(()1,1,1ln ln 11lim2→+++===x x y y e e e (3)()()()(,0,0,0,0limlim→→=x y x y ()(,0,01lim4→==x y (4)()(()()),0,0,0,01limlim→→=x y x y xy xy()()),0,0=lim1=2→+x y(5)()()()()()(),0,2,0,2sin sin limlim 122→→=⋅=⋅=x y x y xy xy y x xy(6)()()()()()()()()()222222222222222,0,0,0,01cos 1cos limlim→→-+-++=⋅++x y x y x y x y x y x y xy xy eex y()()()()()()()2222222022,0,0,0,01cos 10limlim=02→→-++=⋅⋅=+x y x y x y x y xy e exy5.证明下列极限不存在: (1)()(),0,0lim→-+x y x yx y ;(2)()(),0,0lim→+-x y xyxy x y .5. (1) 解 令=y kx ,有()(),0,001limlim 1→→---==+++x y x x y x kx kx y x kx k ,k 取不同值,极限不同,故()(),0,0lim→-+x y x yx y 不存在.(2) 解令=x y()()22,0,00lim lim 1→→==+-x y x xy x xy x yx ;令2=x y()()()()22,0,02,0,0022lim lim lim 0221→→→===+-++x y y y y xy y y xy x y y y y ;01≠,故()(),0,0lim→+-x y xyxy x y不存在.6.函数=y z a 为常数)在何处间断?6. 解 因为=y z 是二元初等函数,且函数只在点集(){,x y y 上无定义,故函数在点集(){,x y y 上间断.7.用 εδ- 语言证明()(,0,0lim0→=x y .7. 证明 对0∀>ε,要使220-=≤=<ε2<ε,取=2δε<δ0-<ε,所以()(,0,0lim 0→=x y习题7.21. 设()(),sin 1arctan ,π==+-xy xz f x y e y x y 试求()1,1x f 及()1,1y f1. 解()221,sin arctan 1=+++xy x x yf x y ye y xx yyπ22=sin arctan+++xy x xy ye y y x y π.()()222,sin cos 11-=++-+xy xyy x y f x y xe y e y x x yπππ 222sin cos -=+++xyxyx x xe y e y x y πππ()()1,1,1,1∴=-=-x y f e f e2.设(),ln 2⎛⎫=+ ⎪⎝⎭y f x y x x ,求()1,0'x f ,()1,0'y f .2. 解()()222122,22--==++x yx y x f x y y x x y x x()2112,22==++y x f x y yx y x x()()11,011,02∴==,x y f f . 3.求下列函数的偏导数(1) 332=++z x y xy ,(2) ()1=+xz xy , (3) ()222ln =+z y x y ,(4) ln tan=y z x, (5) ()222ln =+z x x y ;(6)=z (7) ()sec =z xy ;(8) ()1=+yz xy ;(9) ()arctan =-zy x y ;(10) .⎛⎫=⎪⎝⎭zx u y 3. 解 (1)2232,32z z x y y x x y ∂∂=+=+∂∂(2)因为 ()ln 1,x xy z e+=所以()()()()ln 1ln 11ln 111x x xy z xy xy e xy xy xy x xy xy +⎛⎫⎛⎫∂=++=+++ ⎪ ⎪∂++⎝⎭⎝⎭()()22ln 1111x x xy z x x e xy y xy xy +⎛⎫⎛⎫∂==+ ⎪ ⎪∂++⎝⎭⎝⎭(3)()2322222222,2ln z xy z y y x y x x y y x y ∂∂==++∂+∂+(4)222222sec sec 111sec ,sec tan tan tantan y yy z y y z y x x y y y y x x x y x x x x x x x x∂∂⎛⎫⎛⎫=-=-== ⎪ ⎪∂∂⎝⎭⎝⎭ (5)()32222222222ln ,z x z x y x x y x x y y x y ∂∂=++=∂+∂+(6)z z x y ∂∂====∂∂(7)()()()()sec tan ,sec tan z z y xy xy x xy xy x y ∂∂==∂∂(8)()()22ln 1111y y xy z y y e xy x xy xy +⎛⎫⎛⎫∂==+ ⎪ ⎪∂++⎝⎭⎝⎭()()()()ln 1ln 11ln 111y y xy z xy xy e xy xy xy y xy xy +⎛⎫⎛⎫∂=++=+++ ⎪ ⎪∂++⎝⎭⎝⎭ (9)()()()()()()()11222ln ,,111z z zz z z z x y z x y x y x y u u u x y z x y x y x y ------∂∂∂==-=∂∂∂+-+-+-(10)因为 ln,x z yu e=所以ln ln ln 21,,ln zzx x x z z z y y y u z x z u z x x z u x e e e x x xy y x y y y y z y y y⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂=⋅==⋅-=-= ⎪ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭4.设ln=z ,求证: 12∂∂+=∂∂z z xy x y . 4.证明 因为ln,z =所以z zx y∂∂====∂∂从而有12 z zx yx y∂∂+=+=+=∂∂5.求下列函数的二阶偏函数:(1)已知33sin sin=+z x y y x,求2∂∂∂zx y;(2)已知ln=xz y,求2∂∂∂zx y;(3)已知(ln=z x,求22∂∂z x和2∂∂∂z x y;(4)arctan=yzx求22222,,∂∂∂∂∂∂∂z z zx y x y和2∂∂∂zy x.5. 解(1)3323sin sin,3sin coszz x y y x x y y xx∂=+∴=+∂从而有223cos3coszx y y xx y∂=+∂∂(2)ln ln1,lnx xzz y y yx x∂⎛⎫=∴= ⎪∂⎝⎭从而有()()()ln1ln1ln11ln ln ln ln1xx xz yxy y y x yx y x y x--⎛⎫∂=+⋅=+⎪∂∂⎝⎭(3)(()1222 ln,zz x x yx-∂=∴===+∂从而有()()3322222222122zx y x x x yx--∂=-+=-+∂()()332222222122z x y y y x y x y --∂=-+=-+∂∂ (4)22221arctan,1y z y y z x xx x y y x ∂⎛⎫=∴=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭ 222111z x yx x y y x ∂⎛⎫=⋅= ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭从而有()()()()2222222222222222222,x y y z xy z y x x x y x y x y x y -++∂∂-===∂∂∂+++ ()()2222222222222222,z xy z x y xy x y y y x x y x y x y ⎛⎫∂-∂+--=== ⎪∂∂∂+⎝⎭++ 6. 设()ln =z y xy ,求2∂∂∂z x y 及22∂∂zy .6. 解 因为()ln ,z y xy =所以()(),ln ln 1z y y z x y xy y xy x xy x y xy∂∂===+=+∂∂从而有22211,.z z x y x y y∂∂==∂∂∂ 习题7.31. 求下列函数的全微分.(1) 2222+=-s t u s t ;(2) ()2222+=+x y xyz x y e;(3) ()arcsin0=>xz y y;(4) ⎛⎫-+ ⎪⎝⎭=y x x y z e ;1.解 (1)()()222232322222222()()22222∂--+⋅---==∂--u s s t s t s s st s t s s s t s t()()222223232222222()()22222u t s t s t t ts t ts s t s t s t ∂--+---==∂-- ()()2322222244u u st t dz ds dt ds dt s t s t s t ∂∂-∴=+=-∂∂--(2)()()()222222222222++++∂=++⋅∂x y x y xyxyx y x y yzxe x y exxy()2222222244222222+++⎛⎫--=++⋅=+ ⎪⎝⎭x y x y x y xyxyxyx y x y xe x y e x e x y x y()()()22222222222-2+++∂=++⋅∂x y x y xy xyy x x y xzye x y eyxy()()2222222222442222+++-+⎛⎫-=+⋅=+ ⎪⎝⎭x y x y x y xyxyxyy x x y y x yeey e xy xy2244442222x y xyz z x y y x dz dx dy x edx y dy x y x y xy +⎛⎫⎛⎫∂∂--∴=+=+++ ⎪ ⎪∂∂⎝⎭⎝⎭ (3)2222211∂=⋅==∂--⎛⎫yzxyyy x y x x22⎛⎫⎛⎫∂=-=-= ⎪ ⎪∂⎝⎭⎝⎭z x x yy y z zdz dx dy x y∂∂∴=+=∂∂(4)22221y x y x x y x y z y y x e e x x y x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-= ⎪∂⎝⎭ 22221y x y x x y x y z x x y e e y x y xy ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-+= ⎪∂⎝⎭222222y x y x x y x y z z z y x x y dz dx dy e dx e dy x y y x y xy⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭∂∂∂--∴=+==+∂∂∂ 2. 求函数2arctan1=+xz y 在1,1==x y 处的全微分.2.解()()()()()()()22222222222222222211111111111++∂++=⋅=⋅=∂++++++++y y z y y x xy y x y y xy()()()()()()22222222222222211222111111+∂-⋅--=⋅=⋅=∂++++++++y z x y xy xyx yy y x y y xy()()21,11125111z x ∂+∴==∂++ , ()()21,12125111∂-⋅==-∂++z y ()1,12255dz dx dy ∴=- 3. 求函数22=-xyz x y 当2,1,0.02,0.01==∆=∆=x y x y 时的全微分和全增量,并求两者之差.3.解 ()()()(),, 2.02,1.011,1z z x x y y z x y z z ∆=+∆+∆-=-()()22222.02 1.0121 2.0420.6670.667021 4.08 1.0232.02 1.01⨯⨯=-=-=-=--- ()()()2223222222222--⋅∂--===-∂---y x y xy x z x y y y x x y x y x y ()()()()22322222222--⋅-∂+==∂--x x y xy y z x xy y x y x y ()2,111413z x ∂∴=-=-∂- ,()()22,182110941z y ∂+⨯==∂- ()2,11100.020.010.070.0110.00439dz ∴=-⨯+⨯=-+=00.0040.004z dz ∴∆-=-=-.*4讨论函数()()()()(),0,0,0,,0,0⎧≠⎪=⎨⎪=⎩xy x y f x y x y 在()0,0点的连续性、可导性、可微性以及其偏导函数在()0,0的连续性.4.解()()()()()(),0,0,0,0lim,lim 00,0x y x y f x y xy f →→===(),f x y ∴在()0,0点连续 又()()()00,00,0000,0limlim 0x x x f x f f x x∆→∆→∆--===∆∆ ()()()000,0,0000,0limlim 0y y y f y f f y y∆→∆→∆--===∆∆ ()()0,00,0,00x y f f ∴==.()(()(,0,0,0,0,0,00limlim limx y x y f x yf z dzρρ→∆∆→∆∆→∆∆--∆-==()()()0,0,0x y<∆∆→∆lim0z dzρρ→∆-∴=故函数(),f x y 在()0,0点可微. 由()(),0,0x y ≠时(),=-x f x yy xy()23222sinx yy xy=-+(),=-y f x y x xy ()23222xy x xy=-+()(),0,0lim 0x y y →= ,()()()()23,0,0222lim→=+x y x yy kx xy()()()33323222=lim11→==+⋅+x kx ky kx k xk ,k 不同值不同()()()23,0,0222lim→∴+x y xy xy 不存在,故()()(),0,0lim ,xx y f x y →不存在.(),x f x y ∴在()0,0点不连续,同理可证(),y f x y 在点()0,0不连续.*5.计算()2.050.99的近似值.5.解 令00,1,2,0.01,0.05yz x x y x y ===∆=∆= 则1,ln y y z z yx x x x y-∂∂==∂∂ ()()1,21,22,0z zx y ∂∂∴==∂∂ ()()()2.0521,21,20.991120.0100.0510.02 1.02∂∂∴≈+∆+∆=+⨯+⨯=+=∂∂z zx y x y*6.设有厚度为,内高为,内半径为的无盖圆柱形容器,求容器外壳体积的近似值(设容器的壁和底的厚度相同).6.解 设容器底面积半径为r ,高为h则容器体积2V r h π=22,V Vrh r r hππ∂∂==∂∂ 22∴=+dV rhdr r dh ππ002,10,0.1,0.1r cm h cm r cm h cm ==∆=∆=()()22,102,1020.10.1400.140.1 4.4∴∆≈=⋅+⋅=⨯+⨯=V dV rh r πππππ*7. 测得直角三角形两直角边的长分别为7±0.1cm 和24±0.1cm ,试求利用上述二值来计算斜边长度时的绝对误差和相对误差.0.1cm 10cm 2cm7.解 设直角三角形的直角边长分别为,x y ,则斜边z =,zz xy∂∂==∂∂由题意007,24,0.1,0.1x y x y δδ====z ∴的绝对误差为()()7,247,247240.10.10.242525∂∂=+=⨯+⨯=∂∂z x y z z x y δδδz 的相对误差()7,240.240.009625=≈zz δ 习题7.41.设,,,求. 1.解 ()3222sin 22cos 23cos 6---∂∂=⋅+⋅=⋅-⋅=-∂∂x y x y t t du z dx z dy e t e t e t t dt x dt y dt2.设,而,,求. 2.解2123∂∂=⋅+⋅=+∂∂dz z dy z dV x dx u dx V dx2341-=x3.设,,,求,. 3.解 ()()222cos 2sin ∂∂∂∂∂=⋅+⋅=-+-∂∂∂∂∂z z u z v uv v y u uv y x u x v x()()2222222cos sin sin cos cos 2cos sin sin x y y x y y x y x y y y =-+-()23sin cos cos sin x y y y y =-()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=+=--+-∂∂∂∂∂ ()()()2222222cos sin sin sin cos 2cos sin cos x y y x y x y x y x y y x y =--+-()()3333cos sin 2cos sin sin cos x y y x y y y y =+-+2e x y u -=sin x t =3y t =d d u tarccos()z u v =-34u x =3v x =d d zx22z u v uv =-cos u x y =sin v x y =zx ∂∂z y∂∂4.设,而,,求,. 4.解 222ln 3∂∂∂∂∂⎛⎫=⋅+⋅=⋅+- ⎪∂∂∂∂∂⎝⎭z z u z v u y u v x u x v x v x()()()2322632ln 326ln 3x y y y y x y x y x x x x +⎛⎫=+-=+-- ⎪⎝⎭5.设求5.解 ()()1wf x xy xyz y yz x ∂'=++++∂()()()()1wf x xy xyz x xz x z f x xy xyz y∂''=+++=+++∂ ()()wf x xy xyz xy xyf x xy xyz z ∂''=++=++∂6.求下列函数的一阶偏导数(其中具有一阶连续偏导数):(1);(2);(3);(4).6.解 (1)()()222222∂''=-⋅=-∂z f x y x xf x y x()()()222222∂''=-⋅-=--∂zf x y y yf x y y(2)121110∂'''=+⋅=∂u f f f x y y12122211u x x f f f f y y z y z ⎛⎫∂⎛⎫''''=-+=-+ ⎪ ⎪∂⎝⎭⎝⎭122220∂⎛⎫'''=⋅+-=- ⎪∂⎝⎭u y y f f f z z z (3)1231231∂''''''=⋅+⋅+⋅=++∂uf f y f yz f yf yzf x123230∂'''''=⋅+⋅+⋅=+∂uf f x f xz xf xzf y2ln z u v =32u x y =+y v x =zx ∂∂z y∂∂(),w f x xy xyz =++,,.w w wx y z∂∂∂∂∂∂f 22()z f x y =-,x y u f y z ⎛⎫= ⎪⎝⎭(,,)u f x xy xyz =22(,e ,ln )xy u f x y x =-123300∂''''=⋅+⋅+⋅=∂uf f f xy xyf z (4)1231231122∂''''''=⋅+⋅⋅+⋅=++∂xy xyu f x f e y f xf ye f f x x x()12312202∂'''''=⋅-+⋅+⋅=-+∂xy xy uf y f e x f yf xe f y7.求下列函数的二阶偏导数,,(其中具有二阶连续偏导数):(1),(2). 7.解(1)22121222∂''''=⋅+⋅=+∂zf xy f y xyf y f x22121222∂''''=⋅+⋅=+∂zf x f xy x f xyf y()()222211112212222222∂'''''''''∴=+⋅+⋅+⋅+⋅∂zyf xy f xy f y y f xy f y x233341111221222422yf x y f xy f xy f y f '''''''''=++++ 23341111222244yf x y f xy f y f '''''''=+++()()2222111122212222222∂''''''''''=+⋅+⋅++⋅+⋅∂∂zxf xy f x f xy yf y f x f xy x y322223111122212222422xf x yf x y f yf x y f xy f ''''''''''=+++++ 32231111222222522xf x yf x y f yf xy f ''''''''=++++()2222211122212222222∂'''''''''=+++⋅+⋅∂zx f x x f xy xf xy f x f xy y43221112222424x f x yf xf x y f '''''''=+++(2)()()222222∂''=+⋅=+∂zf x y x xf x y x()()222222∂''=+⋅=+∂zf x y y yf x y y22zx∂∂2z x y ∂∂∂22z y ∂∂f 22(,)z f x y xy =22()z f x y =+()()()()2222222222222224∂''''''∴=+++⋅=+++∂zf x y xf x y x f x y x f x y x()()22222224∂'''=+⋅=+∂∂z xf x y y xyf x y x y()()()()2222222222222224∂''''''=+++⋅=+++∂zf x y yf x y y f x y y f x y y8.设其中F 是可微函数,证明8.解()()()cos sin sin cos cos cos sin sin ux F y x x x xF y x x∂''=+--=--∂ ()sin sin cos uF y x y y∂'=-∂ ()()cos cos cos cos sin sin cos cos sin sin cos u uy x x xF y x y yF y x x x y∂∂''∴+=--+-⎡⎤⎣⎦∂∂ ()()cos cos cos cos sin sin cos cos sin sin cos cos x y x yF y x x yF y x x y ''=--+-=.习题7.51.设,φ⎛⎫= ⎪⎝⎭x y z z 其中为可微函数,求∂∂+∂∂z z x y x y . 1.解 z是,x y函数由方程xx z y φ⎛⎫= ⎪⎝⎭确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章习题答案
第六章
大中取大法:乙方案最优
小中取大法:丙方案最优
大中取小法:后悔值计算如下:
故甲方案最优
第七章
1. 生产甲产品每机时提供的边际贡献=(30-15)/5=3(元/机时)
生产乙产品每机时提供的边际贡献=(45-20)/8=3.125(元/机时)
80000机时分别生产甲、乙产品所能提供的边际贡献:
甲产品边际贡献=80000×3=240000(元)
乙产品边际贡献=80000×3.125=250000(元)
结论:企业应选择生产乙产品。
2. (1) A产品单位边际贡献=300×92%-135=141(元/件)
B产品单位边际贡献=330×87%-140=147.1(元/件)
C产品单位边际贡献=230×95%-105=113.5(元/件)
D产品单位边际贡献=250×98%-112=133(元/件)
(2) A产品单位原材料边际贡献=141÷12=11.75(元/公斤)
B产品单位原材料边际贡献=147.1×12=12.
26 (元/公斤)
C产品单位原材料边际贡献=113.5×7.6=14.93(元/公斤)
D产品单位原材料边际贡献=133×10=13.3(元/公斤)
结论:当原材料用于生产C产品时,平均每公斤材料带来的边际贡献最多,即在现有条件下,只要销路有保障,该企业应将原材料优行用于C产品生产。
3.(1) 甲产品虽然亏损,但其销售收入(60000元)仍大于变动成本(51000元),即亏
损产品甲还可以提供9000元的边际贡
献,并弥补企业部分固定成本,在没有更
好产品替代的情况下,仍应继续生产下
去。
(2) 亏损产品的设备对外承接加工、维修服务
预计收益=50000-28000=22000(元)
由于大于甲产品提供的边际贡献9000元,故此时若继续生产甲产品从经济上不划算。
或:生产甲产品净边际贡献=甲产品边际贡献-机会成本(对外加工收益)
=9000-
(50000-28000)
=-13000(元)即继续生产甲亏损产品比停止生产将设备
对外承接加工少获得收益13000元,故应
停
止甲产品生产,并将设备对外加工。
(3) 转产丁产品的边际贡献净额=2500×
(26-12)-3000=32 000(元)
由于丁产品边际贡献净额大于甲产品的
边际贡献,故应停产甲,转产丁。
4.自行继续加工的追加(差量)收入40000×(14-10)=160000(元)
自行继续加工追加(差量)成本40000×(2.5+1)+17000+8000=165000(元)
自行继续加工追加(差量)利润160000-165000=-5000(元)
结论:企业不应继续加工
5、设X为甲、乙两个方案的临界成本点
Y为甲、丙两个方案的临界成本点
Z为乙、丙两个方案的临界成本点则根据临界成本分析法有:
3X+2000=2X+3500
X=1500(件)
3Y+2000=0.5Y+8000
Y=2400(件)
2Z+3500=0.5Z+8000
Z=3000(件)
结论:图略
当产量在0-1500件时,选择甲方案;
当产量在1500-3000件时,选择乙方案;
当产量在3000件以上,选择丙方案。
6、(1)自制零件有关的约束性固定成本属于不可避免成本,决策可以不予考虑。
外购成本=15000×12=180000(元)
自制(相关)成本=直接材料+直接人工+变动性制造费用+酌量性固定成本
=48000+36000+45000+2 4000
=153000(元)
差量成本=外购成本-自制成本=180000-153000=27000(元)
结论:自制零件比外购零件可节约27000元,企业应自制该零件。
(2)由于企业选择外购,则现有设备可出租,并获得租金收入20000元,可视为企业自制的机会成本(即选择自制付出的代价)
外购成本=15000×12=180000(元)
自制(相关)成本=直接材料+直接人工+变动性制造费用+酌量性固定成本+机会成本
=48000+36000+45000+2
4000+20000
=173000(元)
差量成本=180000-173000=7000(元)
结论:这时自制零件比外购零件可节约7000元,企业仍应自制该零件。
7、(1)根据销售量(y)与价格(x)的数据资料,确定产品销售量与销售价格的关系
(计算过程略)b=-4267.27
a=10953.27
销售量与销售价格的关系为:y=10953.27-4267.27x
于是有:
总成本(C)=2290+0.4332(10953.27-4267.27x)总收入(R)=(10953.27-4267.27x)x
利润(P)=10953.27x-4267.27x2-2290-4744.96+1848.58 x
=-4267.27x2+12801.87x-7034.96
dp/dx=-8534.54x+12801.87=0
x=1.5(元/件)
(2)预期利润=2787,97(元)
8、(1)产品单位变动性(相关)成本=7+4.5+1.8=13.3(元/件)
由于产品单位变动成本低于特别订货报价13.8元/件,故企业应接受客户新增订货。
(2)产品单位变动性(相关)成本=13.3+1000/1000=14.3(元/件)
由于高于特别订货报价13.8元/件,故企业不应接受客户新增订货。
否则企业蒙受经济损失500元。
(3)这时客户订货报价要满足于以下条件:
即特别订货价格≥13.3+[200(16-13.3)+1200]/1000=15.04
而实际客户报价=13.8+0.8=14.6
故不应接受新增订货。
【案例三】
1、分别计算正常销售和追加订货的单位变动成货价格特别订动成本单位变
≥ + 订货数量损失减少正常生产边际贡献对外提供劳务净收益+
本和边际贡献
正常销售的单位变动成本:6.325元
原材料 4.025元
◆变动性生产成本 5.625元加工费0.975元
管理费用0.625元(3.125×0.2)
◆变动性销售及管理费用0.7元
销售员工资0.5元
管理费0.2元(1×0.2)
正常销售单位边际贡献=正常售价-单位变动成本
=10-6.325
=3.675元
追加订货的单位变动成本:5.825元
原材料 4.025元
◆变动性生产成本5.625元加工费0.975元
管理费用0.625元(3.125×0.2)
◆变动性销售及管理费用0.2元
销售员工资0
管理费0.2元(1×0.2)
追加订货单位边际贡献=追加订货售价-单位变动成本
=7.5 -5.825
=1.675元
接受订货30,000双的最低订购价格≥追加订货的单位变动成本+机会成本
≥ 5.825 +10,000×3.675/30,000=7.05元
由于客商报价7.5元高于7.05元,故厂长的意见不对。
接受追加订货(30,000件)后新增利润
=30,000件追加订货的边际贡献-减少正常销量10,000 件边际贡献损失
=30,000×1.675-10,000 ×3.675
=50,250 -36,750
=13,500元
2、生产科长利润计算如下:
正常销售70,000件的边际贡献=70,000×3.675=257,250元
接受订货30,000件的边际贡献=30,000×1.675=50,250元
企业固定成本=250,000×0.8+80,000×0.8=264,000元
企业利润=257,250+50,250-264,000=43,500元
3、销售科长利润计算如下:
追加订货中所增10,000双单位(变动性)生产成本
=单位变动性生产成本+单位产品追加加班费
=5.825+1.8
=7.625元>7.5元
∴追加订货中加班生产的10,000双是亏本的。
企业总利润:
正常销售80,000双利润30,000元
新增订货30,000双利润32,250元
[(7.5-5.825)×30,000-10,000×1.8]
合计62,250元
4、应采纳销售科长建议,企业可获得的利润最大。
5、若加班10,000双,费用增加40,000元,则企业利润为:
利润=正常销售利润+追加订货边际贡献-追加费用
=30,000+30,000×1.675-40,000
=40,250元。