第九章重积分
第9章 二重积分的计算方法 9.2

y
2
y
x y
D
2
(4, 2) x y2
O 1
x
(1, 1)
图9.14
第9章 重积分及其应用
§ 9.2 二重积分的计算方法
方法二 把区域 D 看成是X—型区域,则积分区域 D 分成
D1 和 D2 两部分,如图9.15.
其中 D1 与 D2 可表示为
y
D1 :0 x 1, x y x; D2 :1 x 4, x 2 y x .
y
y 2 ( x)
y 1 ( x )
o a
x — 型区域
bx
第9章 重积分及其应用
§ 9.2 二重积分的计算方法
Y—型区域:D ( x, y ) c y d , 1 ( y ) x 2 ( y )
其中 1 ( y) 与 2 ( y) 在区间 [c, d ] 上连续.
先介绍所谓的X—型区域和Y—型区域的概念. X—型区域:D ( x, y ) a x b, 1 ( x ) y 2 ( x ) 其中 1 ( x) 与
D
2 ( x) 在区间 [ a, b] 上连续
.
这种区域的特点是: 穿过区域且平行于y 轴的直线与区域的边界 至多有两个交点.
1 x [ ( xy 2 ) ] dx 1 2 x2
4
1 4 2 x x( x 2) 2 dx 2 1 1 4 2 (5x x 3 4x) dx 2 1
1 5 3 1 4 45 2 4 ( x x 2x ) 2 3 4 1 8
y
y x
§ 9.2 二重积分的计算方法
理学第九章重积分

1
1
2
2
(
1 2
,
2)
y
(
1 2
,1)
yx (1,1)
2
dy
1
y f (x, y)dx
1
1 2
(
1 2
,
1 2
)
y
1 x
o 11 2
x
机动 目录 上页 下页 返回 结束
4. 计算 I
2 dy
2
sin
x
dx.
0
yx
解: 积分区域如图. 交换积分顺序得:
I
2
sin
x
dx
0x
x
dy
0
x
cos(x y)dy
2
x
2
1
D2
o
D1
2
x
机动 目录 上页 下页 返回 结束
x y , x2 y 2x2
8. 设 f (x, y)
0 , 其他
,求 I f (x, y)dxdy,
D
其中 D {(x, y) 0 x 1 , 0 y 1}.
解: 积分区域如图.
I f (x, y)dxdy f (x, y)dxdy f (x, y)dxdy
z
1
解: 积分区域如图.
x2 y2 z2 6
z x2 y2
Dxy : x2 y2 2
y
2
o Dxy
x
1 : z 6 x2 y2
2 : z x2 y2
机动 目录 上页 下页 返回 结束
S1 Dxy
6 6 x2 y2 dxdy
2
2
6 d
0
0
rdr 6 r2
重积分

第九章 重积分一、教学要点1. 了解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的积分中值定理. 2. 掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标). 3. 会用重积分求一些几何量与物理量(平面图形的面积、体积、质量、重心、转动惯量、引力).二、重点、难点1.二重积分的计算方法.2.用重积分求几何量与物理量(图形面积、体积、质量、重心、转动惯量、引力).三、典型问题解析例1.求二次积分dx xxdy y⎰⎰202sin ππ的值. -------1 解:dx x xdy y ⎰⎰202sin ππdy xx dx x ⎰⎰=200sin π⎰⎰=-=2020sin )0(sin ππxdx dx x xx1)10(cos 2=--=-=πx例2.求二次积分⎰⎰--21312x y dy e dx 的值. ------()1(214--e ) 解:⎰⎰--21312x y dy edx ⎰⎰+-=1122y y dx edy⎰-=202ydy e y)1(21214202---=-=e e y例3.求⎰⎰D zdxdy , 22(,)14,D x y x y x y ⎧⎫⎪⎪=≤+≤≤≤⎨⎬⎪⎪⎩⎭.解:21≤≤r ,⎩⎨⎧==θθsin cos r y r x , 36πθπ≤≤⎰⎰Dzdxdy θθππd rdr ⎰⎰=2136tan arctan⎰=3621221ππθθd r⎥⎦⎤⎢⎣⎡--=22)6()3(21)212(ππ)369(4322ππ-= 例4.若{}(,)01,01D x y x y =≤≤≤≤,求Dx ydxdy -⎰⎰解:Dx ydxdy -=⎰⎰1D x y dxdy -+⎰⎰2D x y dxdy -⎰⎰1()D y x dxdy =-+⎰⎰2()D x y dxdy -⎰⎰1110()()xxdx y x dy dx x y dy =-+-⎰⎰⎰⎰1121200011()()22x x y xy dx xy y dx ⎡⎤=-+-⎢⎥⎣⎦⎰⎰ 112200111()222x x dx x dx =-++⎰⎰1201()2x x dx =-+⎰0311111()3223x x =-+=例5.计算积分⎰⎰+Ddxdy y x 22,其中{}x y x x y y x D 2,0),(22≤+≤≤=.解:利用极坐标 ⎩⎨⎧==θθsin cos r y r x 则原式=⎰⎰⎰=403cos 2040cos 38.πθπθθθd rdr r dθθπs i n)s i n 1(38402d ⎰-= 2910sin 31sin 38403=⎥⎦⎤⎢⎣⎡-=πθθ 例6.计算2Dxy d σ⎰⎰,其中D 是直线,23y x y x ==-+和2y =围成的闭区域. 解:三条直线的交点分别为()()1,2,1,1,2,22A B C ⎛⎫⎪⎝⎭. 将D 看作Y -型区域,把二重积分化为先对x 后对y 的二次积分。
第九章 重积分

第九章 重积分(一)1.填空题(1) 设()y x y x P 2,=,()23,y x y x Q =,定义于:D 10<<x ,10<<y ,则()σd y x P D⎰⎰, ()⎰⎰Dd y x Q σ, (比较大小)(2) 设曲顶柱体的顶面是()y x f z ,=,()D y x ∈,,侧面是母线平行于z 轴,准线为D的边界线的柱面,则此曲顶柱体的体积用重积分可表示为=V 。
(3) 在极坐标系中,面积元素为 。
2.利用二重积分的性质,比较下列积分大小(1) ()⎰⎰+Dd y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 由x 轴,y 轴以及直线1=+y x 所 围成。
(2) ()⎰⎰+Dd y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 是由圆周()()21222=-+-y x 所围成。
3.利用二重积分性质,估计积分()⎰⎰++=Dd y x I σ92222的值,其中D 是圆形闭区域422≤+y x 。
4.交换积分()⎰⎰--a ax ax xa dy y x f dx 2222,的积分次序。
5.交换积分()⎰⎰-2120,y dx y x f dy 的积分次序。
6.交换二次积分()⎰⎰+-aa y y a y x f dy 022,的积分次序。
7.计算()⎰⎰+Dd y x σ23,其中D 是由两坐标轴及直线2=+y x 所围成的闭区域。
8.计算()⎰⎰+Dd y x x σcos ,其中D 是顶点分别为()0,0,()0,π和()ππ,的三角形区域。
9.计算()⎰⎰+Dyd x σsin 1,其中D 是顶点分别为()0,0,()0,1,()2,1和()1,0的梯形闭区域。
10.计算二重积分⎰⎰Ddxdy ,其中区域D 由曲线21x y -=与12-=x y 围成。
11.计算二重积分⎰⎰Dd xy σ2,其中D 是由圆周422=+y x 及y 轴所围成的右半闭区域。
西工大高数答案重积分

第九章 重积分第一节 重积分的概念与性质1.选择 设21()d DI x y =+σ⎰⎰,32()d DI x y =+σ⎰⎰, 1若D 由x 轴、y 轴与直线1x y +=围成,则在D 上B . A .23()()x y x y +≤+; B .23()()x y x y +≤+; 由二重积分的性质可知,A .A .12I I ≥;B .12I I ≤;C .12I I =; 2若D 由圆周22(2)(1)2x y -+-=围成,则B . A .12I I ≥; B .12I I ≤; C .12I I =; 2.填空 设(,)d DI f x y =σ⎰⎰,1若(,)1f x y x y =++,域D 为01x ≤≤,02y ≤≤,则在D 上,(,)f x y 的最小值为1,最大值为4;由二重积分的性质可知,28I ≤≤;2若22(,)49f x y x y =++,域D 为224x y +≤,则在D 上,(,)f x y 的最小值为9,最大值为25,因此36100I π≤≤π.3.设12231()d D I xy =+σ⎰⎰,其中1D 是矩形闭区域:11x -≤≤,22y -≤≤;22232()d D I x y =+σ⎰⎰,其中2D 是矩形闭区域:01x ≤≤,02y ≤≤,试利用二重积分的几何意义说明1I 与2I 之间的关系.解 设函数223(,)()f x y x y =+,则积分1(,)d D f x y σ⎰⎰的几何意义是在矩形域1D 上以曲面(,)z f x y =为曲顶的曲顶柱体体积. 由于域1D 关于0x =即y 轴对称,而函数(,)f x y 是x 的偶函数即曲面(,)z f x y =关于yOz 面对称,因此1(,)d D f x y σ⎰⎰=2(,)d D f x y *σ⎰⎰ ,其中域D *为01x ≤≤,2y ≤. 同理,D *关于0y =对称,(,)f x y 是y 的偶函数,因此,(,)d D f x y *σ⎰⎰=22(,)d D f x y σ⎰⎰于是1(,)d D f x y σ⎰⎰=42(,)d D f x y σ⎰⎰,即124II =.第二节 二重积分的计算1.填空 1改变积分次序e ln 1d (,)d x x f x y y ⎰⎰=14d (,)d y ey f x y x ⎰⎰.2改变积分次序 I =2220d (,)d x x f x y y ⎰⎰+2(,)d x f x y y ⎰⎰2 若(,)f x y xy =,则I =103. 3设D :15y ≤≤,5y x ≤≤,则应把二重积分d d ln Dx yI y x=⎰⎰化为先对y 后对x 的二次积分I =5111d d ln x x y y x⎰⎰=4. 4二重积分20d xx f y ⎰⎰=π2sec 3π04d ()d f r r r θθ⎰⎰.5二重积分211222d ()d xxx x y y -+⎰⎰=2πsin 4cos 01d d r r rθθθ⋅⎰⎰=π420sin d cos θθθ⎰1. 2.画出积分区域,并计算下列二重积分. 122()d Dxy -σ⎰⎰,其中D 是闭区域0sin y x ≤≤,0πx ≤≤.解 原式=πsin 22d ()d x x x y y -⎰⎰=3π2sin (sin )d 3xx x x -⎰=2πππ3π000011cos 2sin 2cos [cos cos ]33x x x x x x x -+++-=240π9-.2d Dx y ⎰⎰,其中D 是由直线y x =,1x =-,1y =所围成的闭区域.解 将D 视为X -型区域,则D :1x y ≤≤,11x -≤≤. 原式=111d xx y -⎰⎰=31222111(1)d 3xx y x --+-⎰=1302(1)d 3x x --⎰=12. 3e d d x yDx y +⎰⎰,其中D 是由不等式1x y +≤,0x ≥所确定的闭区域.解 原式=1101d ed x x yx x y -++-⎰⎰=111d x y y x y x ex +=-+=-⎰=1210(e e )d x x --⎰=e 122e+.易犯的错误是:认为积分区域D 是关于x 轴对称的,因此原积分等于在域D 内第一象限 部分域上积分的2倍,即原式=21e d x yD +σ⎰⎰ , 1D =01,01.x y x ≤≤⎧⎨≤≤-⎩ 此解错在没有被积函数的奇偶性,只有积分区域的对称性,就乱用对称性简化计算. 4cos d Dx x σ⎰⎰,其中D 是由曲线0y =,y x =和π6x =围成的闭区域. 解 cos d Dx x σ⎰⎰=π600cos d d x x x y x ⎰⎰=π60cos d x x ⎰=12. 3.计算积分222d ed y x x y -⎰⎰的值.解 由于函数2e y -的原函数不是初等函数,故需交换积分次序,积分区域D 为由0,2,x y y x ===所围成的区域,故原式=2e d d y Dx y -⎰⎰=2200d e d y y y x -⎰⎰=220e d y y y -⎰=221e 2y --=41(1e )2--. 4.设D 为以点(1,1),(1,1),(1,1)---为顶点的三角形,1D 为D 在第一象限部分,试将(cos sin )d d Dxy x y x y +⎰⎰化为1D 上的积分.解 如图所示,将积分区域分为1D '与2D '两部分,其中1D '为三角形AOB ,2D '为三角形BOC .显然1D '关于y 轴对称,2D '关于x 轴对称,又因为 函数xy 关于x ,y 均为奇函数,所以1d d D xy x y '⎰⎰=0, 2d d D xy x y '⎰⎰=0.故d d Dxy x y ⎰⎰=1d d D xy x y '⎰⎰+2d d D xy x y '⎰⎰=0.又函数cos sin x y 关于x 为偶函数,关于y 为奇函 数, 所以1cos sin d d D x y x y '⎰⎰=21cos sin d d D x y x y ⎰⎰,2cos sin d d D x y x y '⎰⎰=0.综上所述,(cos sin )d d Dxy x y x y +⎰⎰=21cos sin d d D x y x y ⎰⎰.5.证明:()0d e ()d a y m a x y f x x -⎰⎰=()0()e ()d am a x a x f x x --⎰.分析 因为欲证等式的左端为累次积分,等式右端为定积分,因此,应从左端出发证明, 作一次积分,化为定积分,使之与右端定积分相等. 但原累次积分的被积函数含有抽象函数,无法关于x 先积分,故考虑改变积分次序.解()0d e ()d a y m a x y f x x -⎰⎰=()0e ()d d a a m a x xf x x y -⎰⎰=()0()e ()d am a x a x f x x --⎰.6.求下列空间域Ω的体积.1由四个平面0,0,1,1x y x y ====所围成的柱体被平面0z =及236x y z ++=截得的立体.解 曲顶柱体以{(,)|01,01}D x y x y =≤≤≤≤为底,以623z x y =--为顶面,故所求立体体积 (623)d d DV x y x y =--⎰⎰=1100d (623)d x x y y --⎰⎰=103(62)d 2x x --⎰=6-1-32=72. 2由曲面222z x y =+及2262z x y =--围成的立体. 解 两曲面的交线满足方程组 消去z ,得222x y +=.所求立体的体积 21()d DV z z =-σ⎰⎰=2222[(62)(2)]d Dx y x y ---+σ⎰⎰ =322(2)d Dx y --σ⎰⎰=32π20d )d θ-ρρρ⎰⎰=426π(4ρ⋅ρ-=6π.7.画出积分区域,并且把积分(,)d d Df x y x y ⎰⎰表示为极坐标形式的二次积分,其中积分区域D 是:图1 20y x ≤≤, 01x ≤≤;解 积分区域如图a 所示,其边界曲线2y x =及1x =在极坐标下的方程分别为2sin cos θρ=θ及1cos ρ=θ. 原积分=2π14cos sin 0cos d (cos ,sin )d f θθθθρθρθρρ⎰⎰易犯的错误是:积分区域如图b 所示.原积分=π14cos 0d (cos ,sin )d f θθρθρθρρ⎰⎰.此错误是由作图不准确造成的.2由曲线22y a x =-,2y ax x =-及y x =-围成的闭区域0a >.解 积分区域如图所示,曲线22y a x =-及2y ax x =-在极坐标下的方程分别为r a =及cos r a =θ. 原积分=π20cos d (cos ,sin )d a a f θθρθρθρρ⎰⎰+3π4π02d (cos ,sin )d af θρθρθρρ⎰⎰.易犯的错误是:原积分=3π40cos d (cos ,sin )a a f d θθρθρθρρ⎰⎰.8.计算()d d DI x y x y =+⎰⎰,其中D :224xy +≤.解 积分区域关于x 轴,y 轴均对称,被积函数x y +关于x ,y 均为偶函数,故 I =41()d d D x y x y +⎰⎰1D 为D 位于第一象限的部分图 a图 b图=4π2220d (cos sin )d θθ+θρρ⎰⎰=643. 9.选择适当的坐标计算下列各题. 122sin d d Dx y x y +⎰⎰,其中D 是圆环形闭区域:2222π4πx y ≤+≤. 解 原式=2π2ππd sin d θρ⋅ρρ⎰⎰=2ππ2[cos sin ]π-ρρ+ρ=26π-.22d d yDxe x y -⎰⎰,其中D 是由曲线24y x =和29y x =在第一象限所围成的区域. 解2d d y Dxex y -⎰⎰=2203d d y y y y xe x +∞-⎰⎰=201()d 249y y y e y +∞--⎰ =205d 72y ye y +∞-⎰=5144. 3arctan d d Dy x y x ⎰⎰,D 是由圆周22224,1x y x y +=+=,及直线0,y y x ==所围成的在第一象限内的区域.解 arctan d d Dy x y x ⎰⎰=2401d d πθθ⋅ρρ⎰⎰=23π64.422()d d Dx y x y +⎰⎰,其中D 是由直线y x =,y x a =+,y a =,3(0)y a a =>所围成的闭区域. 解 原式=322d ()d a y ay ay x y x -+⎰⎰=232d []3a a y a ax y y x -+⎰=23321[()]d 33a ay y a y a y --+⎰=4433()[]12123aa y y a a y --+ =414a . 易犯的错误时:认为积分区域如图 所示. 原式=220d ()d a x a ax x y y ++⎰⎰+3322d ()d a aaxx x y y +⎰⎰.此错误是由画图不准确造成的. 5d d Dy x y ⎰⎰,其中D 是直线2x =-,0y =,2y =及曲线22x y y =--所围成的平面图区域.解1 区域D 及1D 如图所示,有d d Dy x y ⎰⎰=1d d D D y x y +⎰⎰-1d d D y x y ⎰⎰ =02π2sin π22d d d sin x y y d θ--θρθ⋅ρρ⎰⎰⎰⎰=4-428sin d 3ππθθ⎰=4-2811cos 4(1cos 2)d 342ππ+θ⋅-θ+θ⎰ =4-2π. 解2 如图所示,{(,)|22}D x y x y =-≤≤≤≤,d d Dy x y ⎰⎰=202d y y x -⎰⎰=222d y y y -⎰⎰=4-2y ⎰令y-1=s i nt π22π24(1sin )cos d t t t --+⎰=4-π2.10.求由圆2ρ=和心形线2(1cos )ρ=+θ所围图形在圆外部分的面积.解 由2(1cos )2ρ=+θ⎧⎨ρ=⎩得交点:0π2θ=±,02ρ=.面积A =d d Dρρθ⎰⎰=π2(1+cos θ)2π22d d -θρρ⎰⎰=π22π22[cos θ+2cos ]d -θθ⎰=1π4[2]22⋅+=8π+.11.设平面薄片所占的闭区域D 是由螺线2ρ=θ上一段弧π(0)2≤θ≤与直线π2θ=所围成,它的面密度22(,)x y x y μ=+.求此薄片的质量.解 质量M =(,)d Dx y μσ⎰⎰=22()d Dxy +σ⎰⎰=π2320d d θθρρ⎰⎰=π4204d θθ⎰=5π40.第三节 三重积分的计算1.化(,,)d d d I f x y z x y z Ω=⎰⎰⎰为三次积分,其中积分区域Ω分别是:图1由双曲抛物面xy z =及平面10x y +-=,0z =所围成的闭区域. 2由曲面22z x y =+,2y x =及平面1y =,0z =所围成的闭区域.解 1由0z xy z =⎧⎨=⎩消去z ,得0xy =,即0x =或0y =.因此空间域是以0z =为下曲面,z xy =为上曲面,侧面是柱面0x =,0y =,10x y +-=.因此原式=110d d (,,)d x xy x y f x y z z -⎰⎰⎰.2积分区域Ω可表示为220z x y ≤≤+,21x y ≤≤,11x -≤≤ 所以222111(,,)d d d d d (,,)d x y xf x y z x y z x y f x y z z +-Ω=⎰⎰⎰⎰⎰⎰.2.计算cos()d d d y x z x y z Ω+⎰⎰⎰,其中Ω由y =0y =,0z =和π2x z +=所围成的闭区域.解 将积分区域Ω向xOy 平面投影得xy D :π02x ≤≤,0y ≤≤则Ω可表示成π02z x ≤≤-,(,)xy x y D ∈,故 cos()d d d y x z x y z Ω+⎰⎰⎰=π20d d cos()d xyx D x y y x z z -+⎰⎰⎰=(1sin )d d xyD y x x y -⎰⎰=π20d (1sin )d x y x y -⎰⎰=π201(1sin )d 2x x x -⎰=2π1162-.3.计算d d d z x y z Ω⎰⎰⎰,其中Ω是由锥面z =(0,0)z h R h =>>所围成的闭区域.解1 积分区域Ω如图所示,用竖 坐标为z 的平面截域Ω,得圆域22222():R z D z x y h+≤,其面积为222πR z h,采用“先二后一法”计算.d d d z x y z Ω⎰⎰⎰=0()d d h D z z z σ⎰⎰⎰=2220πd h R z z z h⋅⎰=242π4hR z h ⋅=22π4R h .解2 积分域Ω的边界曲面在柱面坐标下的方程分别为z h =及h z R=ρ. 利用柱面坐标计算.原式=2π0d d d R h h R z z ρθρρ⎰⎰⎰=2222012π[]d 2R h h Rρ-ρρ⎰=224202π[]24R h h R ρρ-⋅=22π4R h . 易犯的错误是: 1在柱面坐标下,原式=2π0d d d hRR z z ρθρρ⎰⎰⎰.关于z 的积分上、下限错误.2采用“先二后一法”.d d d z x y z Ω⎰⎰⎰=222d d d hx y R z zx y +≤⎰⎰⎰=2d h Rz z π⎰=222R h π. 关于x ,y 积分的积分域错误,积分域应为22222R z x y h +≤. 特别注意,将被积函数z用表达式z =. 4.计算d d d xz x y z Ω⎰⎰⎰,其中Ω是由平面0z =,z y =,1y =以及抛物柱面2y x =所围成的闭区域.解1 按先z 再x 后y 积分. 原式=10d d d 0yy x z z =⎰⎰⎰其中⎰为奇函数再对称区间上的积分,其值为0.解2 按先x 再y 后z 积分. 原式=110d d d 0zz z y x x =⎰⎰⎰其中d 0x =⎰.解3 按先x 再z 后y 积分.图原式=10d d d 0y y z z x =⎰⎰⎰5填空题.设Ω由球面z =与锥面z =围成,则三重积分在三种坐标系下分别可化为三次积分如下: 直角坐标系下: 柱面坐标系下: 球面坐标系下:π2π240d d sin d I f r r θϕϕ=⎰⎰⎰.6.利用柱面坐标计算下列三重积分. 122e d d d x y x y z --Ω⎰⎰⎰,其中Ω为由221x y +≤,01z ≤≤所确定.解22e d d d xy x y z --Ω⎰⎰⎰=22π11ρ0d ρd ρd ez θ-⎰⎰⎰=21ρ02πρd ρe-⎰=21ρ20πe d ρ-⎰=21ρ0πe --=1π(e 1)---=1π(1)e-.2d z v Ω⎰⎰⎰,其中Ω为由曲面z =及223x y z +=所围成的闭区域.解由223z x y z⎧⎪=⎨+=⎪⎩z ,得223x y +=,zdv Ω⎰⎰⎰=d ρd d zr z θΩ⎰⎰⎰=22π03d d ρd r z z θ⎰⎰⎰=4212π(4ρ)d ρ29r ⋅--⎰=13π4.3d d x y z Ω⎰⎰⎰, 其中Ω为由曲面y =,0z =,z a = (0)a >,0y =所围成的闭区域.解 原式=π2cos 220d ρd ρd a z z θθ⎰⎰⎰=π23204cos d 3a θθ⎰=289a .7.利用球面坐标计算下列三重积分:1d d x y z Ω,其中Ω是由球面222x y z z ++=所围成的闭区域.解 球面222x y z z ++=在球面坐标下的方程为cos r ϕ=.原式=π2πcos 320d sin d d r r ϕθϕϕ⎰⎰⎰=π420πsin cos d 2ϕϕϕ⎰=π520πcos 10ϕ-=π10. 2d d d z x y z Ω⎰⎰⎰,其中Ω是由不等式:2222()xy z a a ++-≤,22x y +2(0)z a ≤>所确定.解 曲面2222()x y z a a ++-=及222(0)x y z a +=>在球面坐标下的方程分别为2cos r a ϕ=及π4ϕ=. 原式=π2π2cos 340d sin d cos d a r r ϕθϕϕϕ⎰⎰⎰=π45402π4cos sin d a ϕϕϕ⎰=π640cos 8π6ϕ-⋅=47π6a . 8.选择适当的坐标计算下列三重积分. 12(1)d x v Ω+⎰⎰⎰,其中Ω是由曲面222x z y =+,2x =,4x =所围成的闭区域. 解 采用“先二后一法”计算.2(1)d x v Ω+⎰⎰⎰=422d (1)d d Dxx x y z +⎰⎰⎰=422(1)d d d Dxx x y z +⎰⎰⎰=4222(1)(π)d x x x +⎰=3256π15.2d d x y z Ω⎰⎰⎰,其中Ω由不等式:2221x y z ++≤,z ≥定.解1 曲面2221x y z ++=及z =在球面坐标下的方程分别为1r =及π6ϕ=.原式=π2π12600d sin d r cos r r dr θϕϕϕ⋅⋅⎰⎰⎰=π125600sin ρ2π25ϕ⋅⋅π20=. 解2 曲面2221x y z ++=及z =z =z =.原式=12π20d rdr z θ⎰⎰=120r 2π2⎰π20=.32d d d z x y z Ω⎰⎰⎰,其中Ω是2222xy z R ++≤和2222(0)x y z Rz R ++≤>的公共部分.解1 球面2222x y z R ++=及2222x y z Rz ++=在球面坐标下的方程分别为r R =及2cos r R ϕ=.由2cos r R r Rϕ=⎧⎨=⎩解得 3πϕ=.原式=π2π22230d d cos sin d Rr r r θϕϕϕ⋅⎰⎰⎰+π2π2cos 2222π03d d cos sin d R r r r ϕθϕϕϕ⋅⎰⎰⎰=ππ525732π03232cos dcos 2πcos dcos 55R R πϕϕϕϕ--⋅⎰⎰=557ππ60160R R +559π480R =. 解2 采用“先二后一法”计算. 原式=2222222222022d d d d d d RRR x y Rz z x y R z z zx y z zx y +≤-+≤-+⎰⎰⎰⎰⎰⎰=22222202π(2)d π()d R RR z Rz z z z R z z -+-⎰⎰559π480R =. 第四节 重积分的应用1.求锥面z =被柱面22z x =所割下部分的曲面面积.解由22z z x⎧⎪=⎨=⎪⎩消去z ,得D 的边界:222x y x +=.所求曲面面积DS σ=⎰⎰=d Dx yd Dσ.2.求底圆半径相等的两个直交圆柱面222x y R +=及222x z R +=所围成立体的表面积.解1 所求曲面在第一卦限内的图形如图所示.面积为2016d 16R Rx R ==⎰⎰.解2 由222222x y R x z R⎧+=⎨+=⎩消去x ,得z y =±.对于曲面x =y x =,0z x =,所求曲面的面积为图8d 8R y R Ry z R y -==⎰⎰⎰12222082()|16RR R y R =-⋅-=.3.设平面薄片所占的闭区域D 由曲线2y x =,2x y +=围成,求该均匀薄片的重心. 解 y M x M=,xM y M=. 212120000229d d d (2)d 2x x DM x y x x x ρσρρρ---===--=⎰⎰⎰⎰⎰,212120000229d d d (2)d 4x y x DM x x x y x x x x ρσρρρ---===--=-⎰⎰⎰⎰⎰,2121240002236d d [(2)]d 25x x x M x y y x x x ρρρ---==--=⎰⎰⎰, 因此,12yM x M ==-,85x M y M ==,故重心坐标为(,)x y =18(,)25-. 4.设平面薄片所占的闭区域D 由直线2x y +=,y x =和x 轴所围成,它的面密度22(,)x y x y ρ=+,求该薄片的质量.解 质量为1222220()d d ()d y yDM xy y x y x σ-=+=+⎰⎰⎰⎰12323410088842(44)d [2]33333y y y y y y y y =-+-=-+-⎰43=. 5.利用三重积分计算.1由曲面z =224x y z +=所围成的立体体段.解 采用柱面坐标计算232242002π2π(5ρ)ρπ4)383=---=.2由曲面z =,0)z A a =>>,0z =所围匀质物体的重心.解 匀质物体的重心即形心,且形心在对称轴-z 轴上,因此0x =,0y =,d d z vz vΩΩ=⎰⎰⎰⎰⎰⎰.其中332d π()3v A a Ω=-⎰⎰⎰.d z v Ω⎰⎰⎰=π2π320d cos sin d d A ar r θϕϕϕ⎰⎰⎰=π24420sin 2π24A a ϕ-⋅⋅=44π()4A a -. 于是44333()8()A a z A a -=-.重心坐标为44333()0,0,8()A a A a --. 6.求半径为R 、高为h 的均匀圆柱体绕过中心而垂直于母线的轴的转动惯量设密度1ρ=.解 建立坐标系,使圆柱体的对称轴在z 轴上,且原点在其中心.则所求转动惯量为 y I =2π22222202()d d ρd ρ(ρcos )d hRh x y v z z θθ-Ω+=+⎰⎰⎰⎰⎰⎰4322π20[cos ]d 424hR h R θθ=+⎰=342ππ412h h R R + 22()43M h R =+ 其中2πM R h =为圆柱体质量 第九章 重积分总习题1.计算d D I x y =,22222:,D x y a x y ay +≤+≥.解1 2()d ρd D D I ρθ=+⎰⎰⎰⎰下上π2π220sin πd ρd ρd ρd ρa aa θθθ=+⎰⎰⎰⎰33π3(1sin )d π33a a θθ=-+⎰π3333202222πsin d (π)3333a a a θθ=+=-⎰.解222222x y a x y ayI σσ+≤+≤=-⎰⎰⎰⎰3π3330222πsin d (π)3333a a a θθ=-=-⎰. 2.计算()d DI x y σ=+⎰⎰,其中D 由2y x =,24y x =及1y =围成. 解11100d )d d )d I y x y x y x y x =+++⎰⎰13/202d 5y y ==⎰. 解2 ()()d D D I x y σ=-+⎰⎰⎰⎰大小14212221121116[(1)]d [(14)]d 22x x x x x x x x ----=-+--+⎰⎰25=.3.计算2101d d x y I y x x y ≤≤≤=-⎰⎰解1 1222()d ()d D D I y x x y σσ=-+-⎰⎰⎰⎰ 图 221112211d ()d d ()d x xx y x y x x y y --=-+-⎰⎰⎰⎰4411224111[(1)]d []d 22x x x x x x x ---=--+-⎰⎰1115=. 亦可利用对称性简化计算.由于1D 、2D 均关于0x =即y 轴对称,又(,)f x y 关于x 为偶函数即(,)(,)f x y f x y -=,因此 221112202d ()d 2d ()d x xI x y x y x x y y =-+-⎰⎰⎰⎰.4.计算2(369)d Dy x y σ+-+⎰⎰,其中D 是闭区域222x y R +≤. 解 原式222200d ρ[ρsin 3ρcos 6ρsin ]d ρ9πRR πθθθθ=+-+⎰⎰442π2229πsin d 009ππ44R R R R θθ=+++=+⎰.亦可利用对称性简化计算.由于积分Dxd σ⎰⎰及Dyd σ⎰⎰均为零,故原积分再利用极坐标计算.5.计算22()d d d y z x y z Ω+⎰⎰⎰,其中Ω是由xOy 平面上曲线22y x =绕x 轴旋转而成的曲面与平面5x =所围成的闭区域.解 Ω在yOz 面投影域yz D 为:2210y z +≤,所以22()d d d yz x y z Ω+⎰⎰⎰=22π522d ρd ρd r x θ⋅⎰⎰⎰51150010002502π[1001000]2ππ412123-=⨯-⨯==. 6.计算d d x y z Ω,其中Ω为由2221x y z ++≤,1z ≥所确定.解 投影区域D :2224()5x y +≤,用柱面坐标得d d x y z Ω=42π50212d ρd ρd ρr z z θ-⎰⎰⎰图42250642π[1ρ(2ρ1)]d ρπ75=---=⎰. 7.计算()d d d x z x y z Ω+⎰⎰⎰,其中Ω是由曲面z =与z =所围成的区域.解d d d 0x x y z Ω=⎰⎰⎰因为被积函数是x 的奇函数,积分区域Ω关于0x =对称,所以有()d d d x z x y z Ω+⎰⎰⎰=d d d z x y z Ω⎰⎰⎰;又由于d d d z x y z Ω⎰⎰⎰的被积函数只是z 的函数,用平面z z =去截Ω所得闭区域()D z 的面积很容易求,因此可选用“先二后一”方法求解.()d d d x z x y z Ω+⎰⎰⎰=d d d z x y z Ω⎰⎰⎰=1210()()d d d d d d D z D z z zx y z zx y +⎰⎰⎰⎰⎰=1220πd π(1)d z z z z z z +-⎰=π8.8.计算22()d I x y v Ω=+⎰⎰⎰,其中Ω是由222x y z +=,2z =,8z =围成的闭区域. 解1 22()()d I x y v ΩΩ=++⎰⎰⎰⎰⎰⎰外柱22π282π48330222d ρd ρd d ρd ρd z z ρθθ=+⎰⎰⎰⎰⎰⎰2432ρ62π42πρ(8)d ρ2=⋅⋅+-⎰48π288π336π=+=.解2 22()()d I xy v ΩΩ=-+⎰⎰⎰⎰⎰⎰大小222π482π2222ρρ022d ρd ρρd d ρd ρρd z z θθ=-⎰⎰⎰⎰⎰⎰42353500112π(8ρρ)d ρ2π(2ρρ)d ρ22=---⎰⎰336π=. 解3 采用“先二后一法”计算. I=22882π223222d ()d d d d d ρx y zzx y x y z θ+≤+=⎰⎰⎰⎰⎰⎰=8222πd z z ⎰336π=.易犯的错误是:将222x y z +=代入被积表达式,得 388222π2d 4π|672π3z z z z =⋅⋅==⎰.9.计算2221d xy z v Ω++-⎰⎰⎰,其中Ω是球体2224x y z ++≤.解 被积函数含有绝对值2221x y z ++-,用曲面22210x y z ++-=将Ω分成1Ω和2Ω,其中1Ω:2221x y z ++≤ ,2Ω:22214x y z ≤++≤. 于是采用球面坐标计算1222(1)d x y z v Ω---⎰⎰⎰=2ππ1220d d (1)sin d r r r θϕϕ-⎰⎰⎰=8π15, 2222(1)d x y z v Ω++-⎰⎰⎰=2ππ22201d d (1)sin d r r r θϕϕ-⎰⎰⎰=232π15, 所以2221d x y z v Ω++-⎰⎰⎰=8π15+232π15=16π. 10.半球面z =220x y Ry +-=,22x y +0(0)Ry R +=>割出两个窗口,求在这半球面上剩下部分的面积.解d d S x y σ==.sin 4d R R Rθθ=-⎰=π2204cos d 4R R R θθ=⎰.11.在底半径为R ,高为H 的圆柱体上面,拼加一个同半径的半球体,使整个立体的重心 位于球心处,求R 和H 的关系设体密度1μ=.解 建立坐标系如图所示,由题意知,物体重心的竖坐标 d 0d z vZ vΩΩ==⎰⎰⎰⎰⎰⎰,222π(2)02R R H =-=.R =.12.设一个上、下底半径各为b 、a ,高为H 的圆锥台,轴的转动惯量b a <. 解1 建立坐标系下如图432π2πρ(ρ)d ρ4a b b H H a a b=⋅⋅+--⎰=55π()10()H a b a b --.解2 采用“先二后一法”.用竖坐标为z 的平面截闭区域Ω,得到 圆域()D z ,设其半径为()z ρ,则ρ()z b H z a b H --=-,ρ()a bz a z H-=-.原式=2π2230()d ()d d d ρd ρa bH Ha z HD z z x y z σθ--+=⎰⎰⎰⎰⎰⎰45540π1π[()]d ()210()H H aH a b z z a b H a b =--=--⎰.。
重积分_期末复习题_高等数学下册_(上海电机学院)

第九章 重积分一、选择题1.I=222222(),:1x y z dv x y z Ω++Ω++=⎰⎰⎰球面部, 则I= [ C ]A. ⎰⎰⎰ΩΩ=dv 的体积 B.⎰⎰⎰142020sin dr r d d θϕθππC.⎰⎰⎰104020sin dr r d d ϕϕθππD.⎰⎰⎰104020sin dr r d d θϕθππ2. Ω是x=0, y=0, z=0, x+2y+z=1所围闭区域, 则⎰⎰⎰Ω=xdxdydz [ B ]A. ⎰⎰⎰---yx x dz x dy dx 21021010 B.⎰⎰⎰---y x xdz x dy dx 21021010C.⎰⎰⎰-10210210dz x dx dy yD.⎰⎰⎰---yx y dz x dx dy 21021010 3. 设区域D 由直线,y x y x ==-和1x =所围闭区域,1D 是D 位于第一象限的部分,则[B ](A )()()1cos d d 2d d DD xy x xy x y xy x y +=⎰⎰⎰⎰(B )()()()1cos d d 2cos d d DD xy x xy x y x xy x y +=⎰⎰⎰⎰(C )()()1cos d d 2(cos())d d DD xy x xy x y xy x xy x y +=+⎰⎰⎰⎰(D )()()cos d d 0Dxy x xy x y +=⎰⎰4. Ω:1222≤++z y x , 则⎰⎰⎰Ω=++++++dxdydz z y x z y x z 1)1ln(222222 [ C ]A. 1B. πC. 0D.34π 5.222{(,),0}D x y x y a y =+≤≥,其中0a >,则Dxy d σ=⎰⎰ D A.220sin cos a d r dr πθθθ⎰⎰ B.30sin cos ad r dr πθθθ⎰⎰C.3(sin cos )ad r dr πθθθ-⎰⎰ D.320sin cos ad r dr πθθθ⎰⎰-302sin cos ad r dr ππθθθ⎰⎰6.设,010,()()0,a x a f x g x ≤≤⎧>==⎨⎩其余,D 为全平面,则()()D f x g y x dxdy -=⎰⎰ CA.aB.212a C. 2a D.+∞ 7.积分cos 20(cos ,sin )d f r r rdr πθθθθ⎰⎰可写为 DA. 10(,)dy f x y dx ⎰B.10(,)dy f x y dx ⎰ B.11(,)dx f x y dy ⎰⎰D.100(,)dx f x y dy ⎰8.交换二次积分22(,)x dx f x y dy ⎰⎰的积分顺序为( A ).(A) 420(,)dy f x y dx ⎰(B)400(,)dy f x y dx ⎰ (C)242(,)xdy f x y dx ⎰⎰(D)402(,)dy f x y dx ⎰9.设平面区域D 由140,0,,1x y x y x y ==+=+=围成,若31[ln()],DI x y dxdy =+⎰⎰32(),DI x y dxdy =+⎰⎰ 33[sin()],DI x y dxdy =+⎰⎰ 则123,,I I I 的大小顺序为( C ).(A) 123I I I << (B) 321I I I << (C) 132I I I << (D) 312I I I << 10.221x y ≤+≤⎰⎰的值 ( B ).(A) 大于零 (B) 小于零 (C) 0 (D) 不能确定 11.设积分区域D 由||,||(0)x a y a a ==>围成,则Dxydxdy =⎰⎰( C ).(A)1 (B) 14 (C) 0 (D) A, B, C 都不对12.221x y ≤+≤⎰⎰的值 ( B ).(A) 大于零 (B) 小于零 (C) 0 (D) 不能确定 13.把二次积分2210x y dx dy +⎰化为极坐标形式的二次积分(B ).(A)221r d re dr πθ⎰⎰ (B)2221rd re dr ππθ-⎰⎰(C)2221r d e dr ππθ-⎰⎰ (D) 221r d e dr πθ⎰⎰14. 设积分区域D 是由直线y=x,y=0,x=1围成,则有⎰⎰=Ddxdy ( A )(A )⎰⎰x dydx 01(B )⎰⎰ydxdy 01(C )⎰⎰01xdydx (D )⎰⎰yxdxdy 115. 设D 由1,2,===y x y x y 围成,则⎰⎰=Ddxdy ( B )(A )21 (B )41 (C )1 (D )2316.根据二重积分的几何意义,下列不等式中正确的是( B ); (A) D x D,0d )1(⎰⎰>-σ:x ≤1,y ≤1;(B) D x D,0d )1(⎰⎰>+σ:x ≤1,y ≤1;(C)D y x D,0d )(22⎰⎰>--σ:22y x +≤1;(D) D y x D,0d )ln(22⎰⎰>-σ:x +y ≤1 17.=+⎰⎰y x y x Dd d 22( C ),其中D :1≤22y x +≤4;(A)2π4201d d r r θ⎰⎰; (B)2π41d d r r θ⎰⎰;(C)2π221d d r r θ⎰⎰; (D)2π21d d r r θ⎰⎰18. 二重积分⎰⎰=≤≤≤≤1010y x xydxdy ( C )(A )1 (B )21 (C )41(D )219.dxdy y x y x ⎰⎰≤++132222 的值等于( A )A.π43; B. π76; C. π56; D. π23 20. 二重积分⎰⎰=≤≤≤≤1010y x xydxdy ( C )(A )1 (B )21 (C )41(D )221. 设D 是区域(){}()π8 ,|,22222=⎰⎰+≤+dxdy y x a y xy x D又有,则a=( B )(A )1 (B )2 (C )4 (D )822. 若D 是平面区域(){}e y x y x ≤≤≤≤1 ,10|,,则二重积分=⎰⎰dxdy y xD ( B )(A )2e (B )21(C )e (D )1 23. 设D 由1,2,===y x y x y 围成,则⎰⎰=Ddxdy ( B )(A )21 (B )41 (C )1 (D )23二、填空题 1.变换积分次序(,)f x y dx =1(,)(,)f x y dy f x y dy +2.比较大小:其中D 是以(0,0),(1,1),(1,1)-为顶点的三角形22()Dx y dxdy -⎰⎰ <D3.变换积分次序2142(,)ydy f x y dx -=⎰⎰1411(,)(,)dx f x y dy dx f x y dy +⎰⎰⎰4.交换二次积分的积分次序()2211,x dx f x y dy ⎰⎰=()421,dy f x y dx ⎰5. 交换dx e dy yx ⎰⎰112的积分次序后的积分式为210xx dx dy e ⎰⎰,其积分值为()112e - 6、交换二次积分的积分次序后,)(110y x ,f dx x⎰⎰-dy=⎰⎰-1010),(ydx y x f dy7、交换二次积分的次序⎰⎰-=ax ax xdy y x f dx 022),(0(,)a ya dy f x y dx ⎰⎰三、计算与证明1. 计算⎰⎰Ddxdy xy 2, 其中D 是抛物线2y =2x 与直线x=21所围闭区域解:⎰⎰Ddxdy xy 2=⎰⎰--11212122y dx xy dy=⎰--1162)8181(dy y y=2112. 计算I=⎰⎰+Ddxdy y x 22sin , D={(x, y)22224ππ≤+≤y x }解:令x=rcos θ, y=rsin θ则I=⎰⎰πππθ220sin rdr r d=26π-3. 设G(x)在10≤≤x 上有连续的)(''x G , 求I=dxdy y x xyG D⎰⎰+)(22'', 其中D 为122≤+y x 的第一象限部分解:在极坐标下计算积分,D={(r,θ)20,10πθ≤≤≤≤r }I=θθθ⎰⎰Drdrd r G r )(cos sin 2''2=⎰⎰202''13)(cos sin πθθθdr r G r d=dr r G r )(212''103⎰ =du u G u )(41''1⎰ =)]1(0)1([41'G G G -+)( 4.xy dxdy Ω⎰⎰,其中Ω是以a 为半径,坐标原点为圆心的圆。
第九章重积分
性质 3 :
D1 D2
f ( x, y)d f ( x, y)d f ( x, y)d
D1 D2
性质 4 : 设 ( x, y ) D, f ( x, y ) g ( x, y ) 则
f ( x, y)d g ( x, y)d
2 2 2
x y z , x y z R , z 0.
2 2 2 2 2 2 2
§3.重积分的应用
1.二重积分的应用 (1)立体的体积
例1. 计算由曲面 z x 2 y 2 和 x 2 y 2 ( z 1) 2 1 所围公共部分的立体体积。
3 例2. 计算 x y z 2 z 和 x y z 2 公共部分的立体体积。
0 x
1
1
2 y2
dy
2。利用极坐标计算二重积分 设积分区域是由不等式
r r2 ( )
r r1 ( )
r1 ( ) r r2 ( ) ,
积分元素d rdrd
β α 0
d
x
来表示,其中r1 ( ) , r2 ( ) 在[ , ] 上连续。
来表示,其中 r ( ) 在[ , ] 上连续。0
则极坐标下二重积分可化为二次积分
β α
r r ( )
f ( x, y)d f (r cos , r sin )rdrd
D D
d
r ( )
0
f (r cos , r sin )rdrd
例9. 计算二重积分 e
例3. 计算三重积分 e dv,其中 是由曲面
y
x y z 1及 y 0 , y 2 所围成。
高等数学 课件 PPT 第九章 重积分
若函数ρ(x,y)=常数,则薄片的质量可用公式 质量=面密度×面积 来计算.现在面密度ρ(x,y)是变化的,故不能用上述公式来求. 这时仍可采用处理曲顶柱体体积的方法来求薄片的质量.分为下列 几个步骤:
一、二重积分的概念
(1)分割将D分成n个小闭区域Δσ1,Δσ2,…,Δσn(小区域 的面积也用这些符号表示),第i个小块的质量记为 ΔMi(i=1,2,…,n),则平面薄片的质量
于是
一、在直角坐标系下计算二重积分
图 9-11
一、在直角坐标系下计算二重积分
【例3】
计算
,D是由抛物线y2=2x与直线y=x-4所
围成的区域.
解 画出积分区域D的草图如图9-12所示.若先对x积分,
则有
一、在直角坐标系下计算二重积分
图 9-12
一、在直角坐标系下计算二重积分
若先对y积分,则需将D分为两个区域D1和D2, 于是
一、在直角坐标系下计算二重积分
【例1】
试将
化为两种不同次序的累次积分,其中
D是由y=x,y=2-x和x轴所围成的区域.
解 积分区域D如图9-9所示.首先说明如何用“穿线法”
确定累次积分的上、下限.如果先积x后积y,即选择Y型积
分区域,将区域D投影到y轴,得区间[0,1],0与1就是对y
积分的下限与上限,即0≤y≤1,在[0,1]上任意取一点y,
二、二重积分的性质
二重积分与定积分有类似的性质.假设 下面所出现的积分是存在的.
二、二重积分的性质
性质1
设c1,c2为常数,则
性质2
若闭区域D分为两个闭区域D1与D2,则
二、二重积分的性质
性质3
(σ为D的面积).
性质4
第九章 重积分(二重和三重)高数课件
其中Ω 其中Ω 所围立体. 所围立体
z
π
4
0≤r ≤ R Ω: 0 ≤ ϕ ≤ π 4 0 ≤ θ ≤ 2π
∴
r=R
∫∫∫Ω
3. 三重积分的计算
(1) 投影法 (“先单后重”) 先单后重” 先单后重
z = z2 (x, y)
z
z = z1(x, y)
= ∫∫ dxdy∫
D
z2 ( x, y)
z1( x, y)
f (x, y, z)d z
关键:正确的判断上、下曲面 关键:正确的判断上、下曲面; 找对投影区域. 找对投影区域
2011-2012学年高等数学第二学期期 中考试说明
• 题型: 题型: 个小题); 个小题); 一、填空题(5个小题);二、选择题( 5个小题);三、 填空题( 个小题);二 选择题( 个小题);三 计算题( 个小题);四 计算题( 个小题);五 个小题); 个小题); 计算题( 5个小题);四、计算题( 5个小题);五、计 算与解答题( 个小题);六 证明题( 个小题 个小题); 个小题)。 算与解答题( 2个小题);六、证明题( 1个小题)。 • 考试时间: 考试时间: 2012年5月4日(第10周周五)下午 :00-6:00 年 月 日 周周五) 周周五 下午4: - : • 考试地点: 考试地点: 化学工程与工艺6班 制药工程 化学工程与工艺 班、制药工程1—2班: 24-303 班 生物工程1—2班:24-305 班 生物工程
2π
2 h
h
x
o
y
例. 计算三重积分
其中Ω 其中Ω为由
柱面 x2 + y2 = 2x 及平面 z = 0, z = a (a > 0), y = 0 所围 成半圆柱体. 成半圆柱体
比较下列积分值的大小
第九章重积分1、比较下列积分值的大小:2 3(1)I i(x • y) d;二与I i(x y) d二,其中D为由x轴y轴与直线x • y = 1围成的D D区域;答案:II(X y)2d= _ (x y)3d;:D D(2)i iln(x - y)d;「与i i[ln(x • y)]2d二,其中D 是矩形域3_x_5,0_y_1.D D答案:ln(x y)d;「_ [ln(x y)]2d;:D D2、估计下列积分的值:(1) I .i (x - y - 1)d二,D是矩形闭区域:0乞x空1,0乞y空1 ;D答案:0 ::: 6(2)(xD 24y2,9)d二,其中D是圆形闭区域:2 2x y _4答案:36二::I :: 100 二3、化二重积分..f(x, y)d二为二次积分,其中积分区域D分别为:D(1)由直线y = x及抛物线y =x所围成的区域;1 J X答案:I =0dx xf(x,y)dy(2)由直线y = x,x=2及双曲线xy =1(x 0)所围成的区域。
2 x答案:[dx j i f (x, y)dyx4、计算下列二重积分:---- ---------------------------------------------------------------------------------------- 2(1)!! x yd匚,其中D是由两条抛物线y =、x, y = x所围成的闭区域;D答案:—55(2)| i(x2• y2- x)d二其中D 是由直线y = 2, y 二x, y 二2x 围成;D13答案:1365、计算“ y —x2d^ ,其中D是由—1兰x兰1, 0兰yE1所围成的闭区域答案:—15答案:f (x, y)dx X 26、 计算 -dxdy ,其中D 是由x = 2, y 二x, xy = 1所围成的闭区域□ y9答案:- 47、 计算: (x y)dxdy .|x| ,y d答案:08、 改变积分次序:e ln x(1) M dx 0 f(x,y)dy ;1 y答案:0 dy [y f (x, y)dx1 1 _x 2(2)」dx _ —2 f (x, y)dy ; 1 1 -y 0 J 1 -x o d y _1」(x ,y )dx /y 工 - sin x(3) 0 dx*in x f (x, y)dy . 2 答案: 0 - 1arcsin y 」d y 4csiny f(x ,y )dx0 d y arcsin y f (兀2 2 2 2 9、 求曲面z = x ・2y,z = 6-2x - y 所围成的立体体答案:6二10、 设平面薄片所占的闭区域 □是由直线x - y=2, y = x,y 二0所围成,它的面密度(x, x 2 y 2,求该薄片的质量.4答案:4 311、化二次积分为极坐标形式的二次积分: 1 』1 -x 2⑴ 0 dx 1 f (x, y)dy ;H 1答案: 2d^ 丄 f rcos^, rsin^ rdr 0jcos j sin y ⑵:dx 「f( x 2 y 2)dy2sec 71答案:3" of r rdr4 12、把下列积分化为极坐标形式的二次积分,并计算积分值:(1) 2a. 2ax x ,dx “ - 答案: (2) 0 - 0 3 4—a4 i0dX x 2(X (x 2 y 2)dy ;1y 2)^dy .y 11 arctan —d ~ D x答案:2 -113、利用极坐标计算下列各题:2.2⑴ e x y d ;「,其中D 是由圆周x 2 y^4围成的闭区域;D答案:二e 4 -1(2) | |sin .. x 2 y 2d 二,其中 D 是由 x 2 y 2 < 4 2, x^ y 2 _ 二 2所围成的闭区D域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:在区域 D上,由于0xy4,,0, xy4 所以 ,
0 (xy)xy4
即 00dI4d16
D
D
(确定被积函数在上的最大值和最小值)
兰州交通大学数理与软件工程学院
例2
判断 ln(x2 y2)dxdy的符号。 r|x||y|1
解: 当 r|x||y|1时,0x 2y2 (x || |y|2 ) 1
将薄片分割成若干小块, y 取典型小块,将其近似
(i,i )
看作均匀薄片, 所有小块质量之和
o
近似等于薄片总质量
i
x
兰州交通大学数理与软件工程学院
二、二重积分的概念
定义 设 f ( x, y)是有界闭区域 D上的有界函数,
将闭区域 D任意分成 n个小闭区域
1
, 2 ,
,
,
n
其中 i 表示第 i 个小闭区域,也表示它的面积,
第九章重积分
兰州交通大学数理与软件工程学院
第一节 二重积分的概念和性质
一、问题的提出 二、二重积分的概念 三、二重积分的性质
兰州交通大学数理与软件工程学院
兰州交通大学数理与软件工程学院
兰州交通大学数理与软件工程学院
步骤如下:
先分割曲顶柱体的底,并 取典型小区域,
z
用若干个小平
顶柱体体积之
和近似表示曲 顶柱体的体积,
曲顶柱体的体积
o
y
x
i
n
Vlim 0i1
f(i,i)i.
(i ,i )
兰州交通大学数理与软件工程学院
2.求平面薄片的质量
设 有 一 平 面 薄 片 , 占 有 xo 面 上 y 的 闭 区 域
D , 在 点 (x ,y)处 的 面 密 度 为 (x ,y), 假 定 (x ,y)在 D 上 连 续 , 平 面 薄 片 的 质 量 为 多 少 ?
(x, y)D均有 1 x y 1,从而有
2
xy(xy)20
而 lnx(y)0
由二重积分的性质得 I1I2I3
(在 D 上比较被积函数的大小)
兰州交通大学数理与软件工程学院
四、小结
二重积分的定义
(和式的极限)
二重积分的几何意义 (曲顶柱体的体积)
二重积分的性质
兰州交通大学数理与软件工程学院
m f(x,y)d M
D
(二重积分估值不等式)
性质 6 设函数 f ( x, y)在闭区域 D上连续, 为 D 的面积,则在 D 上至少存在一点( , )使得
f(x,y)d f(, )
D
(二重积分中值定理)
兰州交通大学数理与软件工程学院
例1 估计积分I (xy)xydxd的y值,其中D是矩形域
d
二重积分的几何意义 当被积函数大于零时,二重积分是柱体的体积. 当被积函数小于零时,二重积分是柱体的体积的负值.
兰州交通大学数理与软件工程学院
在直角坐标系下用平行于坐标
y
轴的直线网来划分区域D,
则面积元素为 ddxdy o
故二重积分可写为
D
x
f(x,y)df(x,y)dxdy
D
D
兰州交通大学数理与软件工程学院
D
n
即
D
f
( x,
y)d
lim
0 i1
f
(i
,i
)i .
兰州交通大学数理与软件工程学院
对二重积分定义的说明:
(1 ) 在 二 重 积 分 的 定 义 中 , 对 闭 区 域 的 划 分 是 任 意 的 .
(2 )当 f(x ,y )在 闭 区 域 上 连 续 时 , 定 义 中 和 式
的 极 限 必 存 在 , 即 二 重 积 分 必 存 在 .
在每个 i 上任取一点(i ,i ),
作乘积 f (i ,i ) i ,
(i 1,2,, n),
n
并作和
f
( i
,i
)
,
i
i 1
兰州交通大学数理与软件工程学院
如果当各小闭区域的直径中的最大值 趋近于零
时,这和式的极限存在,则称此极限为函数f (x, y)
在闭区域 D 上的二重积分,
记为 f (x, y)d ,
D
D 1
D 2
兰州交通大学数理与软件工程学院
性质3
如果 D 在上,f(x,y)1,为 D 的面积,则
1dd.
D
D
性质4 若在D上 f(x ,y ) g (x ,y ),则有
f(x,y)d g (x,y)d .
D
D
特殊地 f(x,y)df(x,y)d.
D
D
兰州交通大学数理与软件工程学院
性质 5 设 M 、m分别是 f ( x, y)在闭区域 D 上的最 大值和最小值, 为 D 的面积,则
三、二重积分的性质
(二重积分与定积分有类似的性质)
性质1 设 , 为常数,则
[f ( x ,y ) g ( x ,y )d ] f( x ,y ) d g ( x ,y ) d
D
D
D
性质2 对区域具有可加性 (D D 1D 2)
f ( x ,y ) d f ( x ,y ) d f ( x ,y ) d.
故 lnx(2y2)0
又当 |x||y|1时,lnx(2y2)0
于是 lnx(2y2)dxdy0 r|x||y|1
兰州交通大学数理与软件工程学院
例3 解:
比较积分I1lnx( y)d, I2 (xy)2d, I3 (xy)d
D
其中 D是由直线 x0
D
y0 和 x y 1
D
所围成的
。
2
因为积分域 D在直线 xy1的下方,所以对任意点