第7章 超音速翼型和机翼的气动特性(1)
第七章 亚音速翼型和机翼的气动特性

§7.2小扰动线化理论
• 速度位方程线化 • 压强系数线化 • 边界条件线化
飞行器或部件的空气动力学问题,大都是远前方 直匀来流受到物体的扰动问题。为了适应高速飞 行,需要减少阻力,因此机翼的相对厚度和弯度 都比较小,而且巡航阶段迎角也不大。因此机翼 对流场的扰动,除个别地方以外,总的来说是不 大的,如图7-1所示,这种扰动称为小扰动。现采 用风轴系,轴与远前方未受扰动的直匀流一致, 这样前方来流只在方向有一个速度分量 。
升力是由压强分布的积分而得到的,而俯仰力矩 和升力只差一个 向的力臂;所以亚音速流中翼型 的升力系数 和俯仰力矩系数 ,等于不可压流的 相应值乘以
(7-32) (7-33)
由于线化理论范围内升力与翼型的厚度无关,且 高速飞机一般采用对称翼型( )的机翼,因此 其升力系数和俯仰力矩系数在亚音速时分别为: (7-34)
(7-45)
引入扰动速度位 (“'”号同样省略),上式 可写成:
(7-10)
对二维流动,(7-10)可写成 (7-11)
式中
对
的超音速流,(7-11)可改写为
(7-12)
式中 对亚音速流 , ,程(7-11)为椭 圆型的线性二阶偏微分方程;对超音速流 , 方程(7-12)为双曲型的线性二阶偏微 分方程。
7.2.2 压强系数的线化
第七章
亚音速翼型和机翼的气动特性
内容
§ 7.1 速度位方程 § 7.2 小扰动线化理论 § 7.3 亚音速流中薄翼型的气动特性 § 7.4 亚音速薄机翼的气动特性及 M 数对气 动特性的影响
(V ) 0
§7.1
速度位方程
对不可压位流,速度位满足拉普拉斯方程。一个具 体位流问题的解决,在数学上归结为求解给定边 界条件的拉普拉斯方程。 对定常、等熵可压位流,由于连续方程中包含密 度,速度位满足的方程不再是拉普拉斯方程了, 而是一个非线性的偏微分方程。 流动定常时,连续方程为
超音速翼型气动力特性研究

超音速翼型气动力特性研究摘要:本文研究方程为0.3(1)zx x =±-的轴对称超音速翼形在马赫数为2,攻角分别为0°,2°情形下的气动力特性,基于对翼型进行离散化处理得到该翼型的物理参数及气动力的近似解,并逐步减小空间步长x ∆来提高解的精度。
在步长数分别为5、20、50及攻角为0°、2°的条件下,计算求得翼型头部斜激波后的流动参数,并由此求解各分区相应参数,列出:表面压力Cp 分布曲线Cp -x ,及表面密度、温度分布曲线ρ/ρ∞-x 、T/T ∞-x 。
在不同条件下得出的轴向力Ca 、法向力Cn 、升力Cl 、阻力Cd 及绕头部顶点俯仰力矩Cm 的表格。
最终分析了编程计算的准确性与精度,分析了压力系数、温度、密度沿该翼型的分布特性,并分析了不同攻角对该翼型气动特性的影响。
问题描述已知方程为0.3(1)zx x =±- 的薄翼形,求该翼型在来流马赫数为2,攻角分别为0°,2°情形下的受力情况。
对x 范围(0,1)内分别按5等份、20等份和50等份进行离散计算,得到表面压力Cp 分布曲线Cp -x ,表面密度、温度分别曲线ρ/ρ∞、T/T ∞ 。
计算得出出轴向力Ca 、法向力Cn 、绕头部顶点俯仰力矩Cm 及升力Cl 、阻力Cd 。
计算方案:(一)计算思路:超音速来流以一定攻角遇到类似于楔形体的机翼前缘,在上下面都有可能产生附体斜激波,要是攻角过大也有可能不产生附体斜激波,这里首先需要根据斜激波的θβ-关系曲线图来作出判断。
经判断,如果顶点处产生斜激波,即使用斜激波前后的马赫数、密度、温度、压强计算公式计算出顶点斜激波后的各项物理参数。
接着,根据翼型的形状可知,气流在通过膨胀波之后会经过一系列的向外的转折角,根据普朗特-迈耶膨胀波理论,超音速气流经过每一个折角都会产生膨胀波。
根据数值计算的基本原理,计算机不能处理连续曲线上随x值变化而连续变化的折角,所以在计算之前必须对翼型的几何结构进行离散化处理。
超声速翼型和亚声速翼型的气动特性

超声速翼型和亚声速翼型的气动特性总负责:祝恺辰(071450704)组员:辛宏宇(071450703)超声速和亚声速翼型不同的主要原因是超声速翼型需承受激波阻力。
激波超声速气体中的强压缩波。
微扰动(如弱压缩波)的叠加而形成的强间断,带有很强的非线性效应。
经过激波,气体的压强、密度、温度都会突然升高,流速则突然下降。
压强的跃升产生可闻的爆响。
如飞机在较低的空域中作超音速飞行时,地面上的人可以听见这种响声,即所谓音爆。
理想气体的激波没有厚度,是数学意义的不连续面。
实际气体有粘性和传热性,这种物理性质使激波成为连续式的,不过其过程仍十分急骤。
因此,实际激波是有厚度的,但数值十分微小,只有气体分子自由程的某个倍数,波前的相对超音速马赫数越大,厚度值越小。
一、超音速薄翼型翼型作亚声速运动和超声速运动时,对气流的扰动有很大不同根据动量定律,向前流出的气体将给翼型一个像后的反作用力,它有一个阻力分量;而从控制面向后流出的气流对翼型有一个推力分量;同理,向前流入控制面的气流将给翼型一个阻力分量。
而向后流入控制面的气流将给翼型一个阻力分量。
从控制面垂直进出的流动不会是翼使翼型承受阻力或是推力。
这样,在无粘性流体中作亚胜诉流亚声速扰动无界原子弹爆炸形成的蘑菇云也是一种激波超声速扰动限于前马赫锥后,前半部压缩,后半部膨胀,扰动均沿着波德传播方向即垂直于马赫波动的翼型不承受阻力(推力与阻力相消),而超声速翼型将承受阻力,这种与马赫波传播有关的阻力称为波阻。
超声速流动中,绕流物体产生的激波阻力大小与物体头波钝度有着密切的关系。
由于钝物的绕流将产生离体激波,激波阻力大;而尖头体的绕流将产生附体激波,激波阻力小。
因此,对于超声速翼型,前缘最好作成尖的,如菱形、四边形、双弧形。
但是对于超声速飞机,总是要经历起飞和着陆的低速阶段,尖头翼型在低速绕流时,较小迎角下气流就要发生给力,是翼型的气动特性能变坏。
为此,为了兼顾超声速飞机的低速特性,目前低超声速的翼型,其形状都采用小圆头的对称薄翼。
翼型与机翼的气动特性

Presenttheoreticalmethodsforthecalculationofa irfoilaerodynamicproperties
2021/10/10
1
6.1 翼型和机翼的发展简史
2021/10/10
2
翼型(airfoil)与机翼(wing)
平行于机翼的对称面截得的机翼截面,称为翼剖面,即翼 型。机翼是由翼型构成的,是飞行器产生升力的主要部件 ,翼型的几何形状是机翼的基本几何特性之一。
2021/10/10
31
当粘性考略在流动中时,这种悖论立马消失。 事实上,流动的粘性产生翼型阻力的唯一原因。 阻力产生于两种物理机制:
1、表面摩擦阻力:即作用在表面上的剪切力
2、由于流动分离产生的压差阻力,有时也叫 做形阻力
2021/10/10
32
如图a清晰展示出剪切力产生的阻力。由于流动分离(b )产生的压差阻力相对来说是一个细微的现象
c 12%
C y设 :来流与前缘中弧线平行时的理论升力系数
2021/10/10
14
NACA层流翼型族(1939)
层流翼型是为了减小湍流摩擦阻力而设计的,尽量使上翼 面的顺压梯度区增大,减小逆压梯度区,减小湍流范围。
2021/10/10
15
NACA六位数翼型族
2021/10/10
16
超临界翼型(1967)
式中,f 为相对弯度,x f 为最大弯度位置。
2021/10/10
12
NACA四位数翼型族(1932)
f是中弧线最高点的纵坐标;p是此最高点的弦向位置(x f)
第1数代表f,是弦长的百分数;第2位代表p,是弦长的十
分数;最后两位代表厚度,是弦长的百分数
简述超音速飞机的机翼平面形状及特点

超音速飞机的机翼平面形状及特点一、机翼平面形状1.1 简介超音速飞机的机翼平面形状是指机翼在平面上的几何形状,其设计直接影响到飞机的空气动力性能,对于超音速飞行来说尤为重要。
1.2 矩形平面形状在早期的超音速飞机设计中,矩形平面形状曾被广泛使用。
矩形机翼具有简单的几何形状,易于制造,但在超音速飞行时会产生较大的阻力,限制了飞机的速度及性能。
1.3 翼展锥度平面形状随着超音速飞机技术的不断发展,翼展锥度平面形状逐渐成为主流设计。
翼展锥度机翼呈锥形,即从根部到翼尖逐渐变细。
这种设计能够减小阻力,在超音速飞行时具有更好的空气动力性能。
1.4 变后掠平面形状一些超音速飞机还采用了变后掠平面形状,即机翼在根部与翼尖的后掠角不同。
这种设计可以根据飞行状态在不同的速度段获得更佳的空气动力性能。
二、特点2.1 较小的翼展比超音速飞机的机翼平面形状通常具有较小的翼展比。
这有利于减小机身与机翼的等效体积,降低阻力,并且有助于降低材料重量,提高飞机的载荷能力。
2.2 锥形机翼锥形机翼的特点是在超音速飞行时能够减小激波阻力,提高升阻比,使飞机具有更好的空气动力性能。
大多数超音速飞机都采用了锥形机翼设计。
2.3 合理的后掠角后掠角是指机翼在纵向平面上与机身的夹角,超音速飞机的机翼平面形状需要具有合理的后掠角来降低阻力,并且在超音速飞行时保持稳定的飞行姿态。
合理的后掠角设计能够使飞机在超音速飞行时具有更好的空气动力性能。
2.4 薄型翼型超音速飞机的机翼平面形状通常采用较薄的翼型。
薄型翼型能够减小阻力,提高升阻比,提高飞机的速度和性能。
结语超音速飞机的机翼平面形状具有独特的设计特点,包括翼展锥度、较小的翼展比、合理的后掠角和薄型翼型等。
这些特点使得超音速飞机在超音速飞行时具有更好的空气动力性能,为飞机的高速飞行提供了重要的技术支持。
随着科学技术的不断进步,相信超音速飞机的机翼平面形状设计将会不断完善,为飞机的超音速飞行带来更加优异的性能表现。
第7章 超音速翼型和机翼的气动特性(3)

∫
bn
0
dy 1 dxn + bn dxn f
2
∫
bn
0
dy dxn dxn c
2
无限斜置翼的波阻系数公式
根据上述超声速无限斜置翼气动特性公式计算的升力 线斜率随后掠角的变化和零升波阻系数随后掠角的变化理 论曲线见下图: 论曲线见下图:
无限斜置翼的波阻系数公式
无限斜置翼的压强系数和载荷系数公式
dy u dy (C p u ) n = ∓ α ± ( ) f ± ( l ) c l 2 dx dx cos χ Ma∞ cos 2 χ − 1 2
法向载荷系数为: 法向载荷系数为:
dy (∆C p ) n = (C pl − C pu ) n = α − ( dx ) f 2 2 cos χ Ma∞ cos χ − 1 4
bn = b cos χ
如果上述波阻系数公式中的表面导数保持为法 向导数不作代换, 向导数不作代换,则波阻系数公式还可表达为 : 4α 2 cos χ 4 I cos 3 χ C db = + 2 2 2 Ma∞ cos χ − 1 Ma∞ cos 2 χ − 1
其中 1 I= bn
∫
bn
0
dy 1 dxn + dx bn n f
2
无限斜置翼的波阻系数公式
(C d b ) n = 4 2 1 α n + 2 bn Ma∞n − 1
∫
bn
0
dy dx n
1 dx n + bn f
2
∫
bn
0
dy dx n
(精品)空气动力学课件:超声速和跨声速翼型气动特性

Folie 9
y d sin 2 (x Bh)
l
Folie 21
9.1.2 薄翼型超声速的线化理论
在线化理论假设下,对于超声速气流绕过波纹壁面的 扰动速度和流线的幅值均不随离开壁面的距离而减小。
在壁面处的压强分布为
超声速绕流压强系数与波纹壁面相位差 /2,亚声速差
。
4 d 2x
C ps
B
cos l
l
超声速
超声速翼型将承受阻力,这种与马赫波传播有关的阻力 称为波阻。
Folie 7
9.1.1超声速薄翼型的绕流特点和流动图画
在超声速流动中,绕流物体产生的激波阻力大小与物 体头部钝度存在密切的关系。由于钝物体的绕流将产生 离体激波,激波阻力大;而尖头体的绕流将产生附体激 波,激波阻力小。
Folie 8
9.1.1超声速薄翼型的绕流特点和流动图画
空气动力学
Folie1
超声速和跨声速翼型 气动特性
超声速和跨声速翼型气动特性
本章主要应用超声速流的线化理论来研究薄翼型在无 粘性有位绕流和小扰动假设下的纵向空气动力特性。由 于作了无粘性绕流的假设,因此,不涉及与粘性有关的 摩擦阻力和型阻力的特性。
与亚声速翼型绕流不同,超声速翼型绕流,承受有波 阻力,这是超声速空气动力特性与亚声速空气动力特性 的主要区别之一。
Folie 12
9.1.2 薄翼型超声速的线化理论
第7章 超音速翼型和机翼的气动特性(4)

前后马赫锥的概念
例如平板后掠翼上一点 P(x,0,z)仅受位于上游前 马赫线内机翼部分的影响
前后马赫锥的概念
当P点位于机翼上方时 P(x,y,z),(P点不在机翼 表面上,Y坐标不为零) , 其依赖区是空间马赫锥与机 翼表面的交线范围区域。
7.5.2 前缘后缘和侧缘
前缘后缘和侧缘
超声速机翼不同边界对机翼绕流性质有很大影响,从而 影响机翼的气动特性,因此必须将机翼的边界划分为前 缘、后缘和侧缘。
第7章 超音速翼型和机翼的气 动特性(4)
7.5 有限翼展薄机翼的超声速绕流 图画
7.5.1 前后马赫锥的概念
M 1
前后马赫锥的概念
M 1
为更好了解薄机翼超声速绕流的 气动特性,先说明几个基本概念。 超声速流场内从任一点P 作两个 与来流平行的马赫锥,P 点上游 的称为前马赫锥,下游的称为后 马赫锥,如图:
锥形流场概念
由于在超音速气流中,后面的扰 动不会影响到前面,因此补上梯 形ABB’A’后,不影响到P1点的 流动参数。
锥形流场概念
在三角形OA’B’中,P2点所处的 位置,相应于P1点在三角形 OAB中所处的位置。
锥形流场概念
比较(a),(b)两图,对于两个几 何相似的三角形平板机翼OAB, OA’B’来说,在相同的来流情况 下,其对应点的流动参数应相同, 亦即P1点与P2点的流动参数相 同。
有限翼展薄机翼的超声速绕流图画
超声速前缘和超声速后缘时,前后、缘处压强系数均为 有限值(图c);
7.6 锥形流
锥形流场概念
所谓锥形流场就是所有流动参数(速度、压强、密 度等,但不包括扰动速位)沿从某顶点发出的射线 均保持为常量的流场。
锥形流场概念
右图所示的点,位于自顶点O发 出的某条射线上,现设想将三角 形OAB放大K倍,得到三角形 OA’B’,它可视为在三角形OAB 后面补上梯形ABB’A’。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超音速薄翼型的绕流
受激波和膨胀波的影响,翼型压强在激波后变大,在膨 胀波后变小。
超音速薄翼型的绕流
激波阻力和升力与翼面上的压强分布有关。
超音速薄翼型的绕流
翼面的压强在激波后最大,以后沿翼面经一系列膨胀 波而顺流逐渐减小。由于翼面前半段的压强大于后半 段压强,因而翼面上压强的合力在来流方向将有一个 向后的分力,即为波阻力。(激波阻力形成机理)
实线表示激波,虚线表示膨胀波
(a) 小迎角 <
(b) 中迎角 >
超音速薄翼型的绕流
如果迎角小于薄翼型前 缘半顶角,则气流流过 翼型时,在前缘处相当 于绕凹角流动,因此, 前缘上下表面将产生两 道附体的斜激波。
小迎角
超音速薄翼型的绕流
当有迎角时,由于上下 翼面气流相对于来流的 偏转角不同,因此,上 下翼面的激波强度和倾 角也不同。
小迎角
超音速薄翼型的绕流
靠近翼面的气流,通过激波后,将偏转到与前缘处的切 线方向一致,随后,气流沿翼型表面的流动相当于绕凸 曲线的流动,通过一系列膨胀波。
超音速薄翼型的绕流
从翼型的前部所发出的膨胀波,将与头部激波相交,激 波强度受到削弱,使激波相对于来流的倾角逐渐减小, 最后退化为马赫波。
超音速薄翼型的绕流
x 2 y 2
其中:B M 2 1
为解出通解,引入变量: x By, x By
从而有:
x x x
2 2 2 2
x 2
2
2
2
2
y 2
B
2
(
2 2
2 2
2 2
)
超音速薄翼型线化理论
线化位流方程:
B 2 2 2 0,
x 2 y 2
2 2 2 2
当上下翼面的超音速气流流到翼型的后缘时,由于上下 气流的指向不同,且压强一般也不相等,故根据来流迎 角情况,在后缘上下必产生两道斜激波或一道斜激波和 一组膨胀波,以使在后缘汇合的气流有相同的指向和相 均受压缩,
形成强度不同的斜激波;经一 系列膨胀波后,由于在后缘处 流动方向和压强不一致,从而 形成两道斜激波。以使后缘汇 合后的气流具有相同的指向和 相等的压强。(近似认为与来 流相同)
超音速薄翼型的绕流
当翼型处于大正迎角时,上 翼面前缘产生膨胀波,压 强小;下翼面前缘产生激 波,压强大。所以上翼面 的压强低于下翼面的压强 ,压强合力在与来流相垂 直的方向上有一个分力, 即升力。
实线表示激波,虚线表示膨胀波 (b) 中迎角 >
7.2 超音速薄翼型线化理论
超音速薄翼型线化理论
为了减小波阻,超声速翼型厚度都比较薄,弯度很小甚至 为零,且飞行时迎角也很小。因此产生的激波强度也较弱, 作为一级近似可忽略通过激波气流熵的增加,在无粘假设 下可认为流场等熵有位,从而可用前述线化位流方程在给 定线化边界条件下求解。
x 2
2
2
2
其中:B M 2 1
2
y 2
B
2
(
2 2
2 2
2 2
)
代入,得:
4B 2 2( ,) 0
超音速薄翼型线化理论
4B 2 2( ,) 0
上式对ξ积分得:
( ,) f *()
f*是自变量η的某一函数。
超音速薄翼型线化理论
( ,) f *()
将上式进一步积分得:
( ,) f1(x By) f2 (x By)
超音速薄翼型线化理论
( ,) f1(x By) f2 (x By)
x By 常数, x By=常数 分别表示倾角为 arctg1/B 和 arctg(- 1/B )的两族直
线即马赫线(扰动波传播的方向)。其中,第一条为正向 波特征线,第二条为负向波特征线。
超音速薄翼型的绕流
当翼型处于小的正迎角时,由 于上翼面前缘的切线相对于来 流所组成的凹角,较下翼面的 为小,故上翼面的激波较下翼 面的弱,其波后马赫数较下翼 面的大,波后压强较下翼面的 低,所以上翼面的压强低于下 翼面的压强,压强合力在与来 流相垂直的方向上有一个分力 ,即升力。
实线表示激波,虚线表示膨胀波 (a) 小迎角 <
第7章 超音速翼型和机翼的气动 特性(1)
7.1 超音速薄翼型的绕流
超音速薄翼型的绕流
超音速气流流过物体时,如果是钝头体,在物体表面 将有离体激波产生。由于离体激波中有一段较大的正 激波,使物体承受较大的激波阻力(波阻力)。
为了减小波阻力,超音速翼型前缘最后做成尖的如菱 形、四边形和双弧形等尖前缘。
( ,) f *()d f1( ) f1( ) f2 ()
其中: f1( ) 是ξ的某函数,f2 () f *()d是η的某函数,
且二者无关。
超音速薄翼型线化理论
( ,) f *()d f1( ) f1( ) f2 ()
x By, x By
将原变量代回得线化方程的通解:
超音速薄翼型的绕流
但是,超音速飞机总要经历起飞和着陆的阶段,尖头 翼型在低速绕流时,在较小的迎角时气流就有可能在 前缘分离,使翼型的气动特性变坏。
因此,为了兼顾超音速飞机高速飞行的低速特性,目 前,低超音速飞机的翼型,其形状都为小圆头对称薄 翼型。
超音速薄翼型的绕流
下面以双弧形为例,说明翼型超音速绕流的流动特点。
超音速薄翼型线化理论
超声速二维流动的小扰动速度位函数,所满足的线化位 流方程为:
B 2 2 2 0,
x 2 y 2
其中:B M 2 1
这是一个二阶线性双曲型偏微分方程,x沿来流,y与之 垂直。上述方程可用数理方程中的特征线法或行波法求 解。
超音速薄翼型线化理论
B 2 2 2 0,
实线表示激波,虚线表示膨胀波 (a) 小迎角 <
超音速薄翼型的绕流
如果迎角大于薄翼型前缘 半顶角,则气流绕上翼面 前缘的流动,就相当于绕 凸角流动。上翼面前缘将 产生一组膨胀波,下面仍 为激波。
中迎角
超音速薄翼型的绕流
由于在后缘处流动方向和压 强不一致,有一道斜激波和 一族膨胀波,以使后缘汇合 后的气流具有相同的指向和 相等的压强。(近似认为与 来流相同)
超音速薄翼型线化理论
( ,) f1(x By) f2 (x By)
其中,
f1(x By) 表示沿正向特征线的波函数; f2 (x By) 表示沿负向特征线的波函数;