高考高中数学方差

合集下载

高考高中数学方差知识讲解

高考高中数学方差知识讲解

因此第iC5一o名py同r学ig的ht射2击0成04绩-2稳0定1性1 较As差i5p,o第se二P名t同y 学Lt的d.射击
成绩稳定性较好,稳定于8环左右.
如果其他班级参赛选手的射击成绩都在9环左右,本班 应该派哪一名选手参赛?如果其他班级参赛选手的成绩 在7环左右,又应该派哪一名选手参赛?
2、两个特殊分布的方差
Profile
5.2
从C而oEpXyrig1h1t 220014-2301114As1po5se1 P6ty1Ltd3..5
666666
DX (1 3.5)2 1 (2 3.5)2 1 (3 3.5)2 1 (4 3.5)2 1
D(aX b) a2DX
Evaluation only. ted w(it2h)A方s差p的os几ne个.S恒li等de变s形for .NET 3.5 Client Profile 5.2
CDopXyrigh(txi20E0X4)-22p0i 11 Aspose Pty Ltd. i 1 E( X EX )2 EX 2 (EX )2
X1 的分布列为
X1 5
6
7
8
9 10
P 0.03 0.09 0.20 0.31 0.27 0.10
ted w第XPi二t2hC名Ao同0sp.学p50yo1击rsig中eh.目0tS.60标2lEi50d靶v0ea的4sl0u-环.f722ao数00tri1o.X1Nn2EA0的o.8T4sn分1pl3y布o..s5列e为C0P.93lit3eynLt tPdr.ofile 5.2
随机变量 X 的方差.其算术平方根 DX 为随机变量X的标
准差,记为 X
3、对方差的几点说明
(1)随机变量的方差和标准差都反映了随机变量取值 偏离于均值的平均程度.方差或标准差越小,则随 机变量偏离于均值的平均程度越小.

高中数学方差与标准差

高中数学方差与标准差
x 甲=16×(27+38+30+37+35+31)=33, x 乙=16×(33+29+38+34+28+36)=33,
课前探究学习
课堂讲练互动
活页规范训练
题型三 用样本的数字特征估计总体的数字特征 例3 14分为了保护学生的视力;教室内的日光灯在使用一段 时间后必须更换;已知某校使用的100只日光灯在必须换掉前的使 用天数如下表:
自学导引 1 一组数据的 最大值与 最小值 的差称为极差
2.设一组样本数据 x1,x2,…,xn,其平均数为 x ,则称 s2

1 n
n
(xi- x )2
i=1
为这个样本的方差,其算术平方根 s

1 n
n
xi- x 2为样本的标准差,分别简称样本方差、样本标
i=1
准差.
课前探究学习
课堂讲练互动
活页规范训练
方差 s2=51[(84-85)2+(84-85)2+(84-85)2+(86-85)2+(87 -85)2]=1.6.
标准差 s= 1.6=25 10.
课前探究学习
课堂讲练互动
活页规范训练
题型二 方差与标准差的应用 例2 从甲 乙两种玉米苗中各抽10株;分别测得它们的株高单 位:cm如下: 甲:25 41 40 37 22 14 19 39 21 42 乙:27 16 44 27 44 16 40 40 16 40 问:1哪种玉米的苗长得高 2哪种玉米的苗长得齐 思路探索 本题主要考查利用平均数和标准差 方差分析数据 的特征 看哪种玉米的苗长得高;只要比较甲 乙两种玉米苗的均高 即可;要比较哪种玉米的苗长得整齐;只要看两种玉米的株高的 方差即可;因为方差体现一组数据波动大小的特征
课前探究学习

高中数学知识点总结及公式大全概率与统计中的期望与方差计算与应用

高中数学知识点总结及公式大全概率与统计中的期望与方差计算与应用

高中数学知识点总结及公式大全概率与统计中的期望与方差计算与应用高中数学知识点总结及公式大全:概率与统计中的期望与方差计算与应用概率与统计是高中数学中的重要分支,它是数学与现实生活相结合的一门学科。

在概率与统计中,期望与方差是举足轻重的两个概念。

本文将为您总结概率与统计的基本概念、公式以及期望和方差的计算与应用。

一、基本概念1. 概率:指事件发生的可能性大小,通常用P(A)表示。

概率的范围在0和1之间,0表示不可能事件,1表示必然事件。

2. 随机变量:将样本空间中每一个样本赋予一个实数值的函数,通常用大写字母X表示。

3. 概率分布:描述随机变量各个取值的概率情况的函数。

常见的概率分布有离散概率分布和连续概率分布。

二、常用公式1. 期望:用来描述随机变量平均取值的大小。

对于离散随机变量X,期望的计算公式为E(X) = Σ(x·P(X=x)),其中x为随机变量的取值,P(X=x)为该取值的概率。

对于连续随机变量X,期望的计算公式为E(X) = ∫(x·f(x))dx,其中f(x)为概率密度函数。

2. 方差:用来描述随机变量取值的离散程度。

对于离散随机变量X,方差的计算公式为Var(X) = Σ((x-E(X))^2·P(X=x));对于连续随机变量X,方差的计算公式为Var(X) = ∫((x-E(X))^2·f(x))dx。

三、期望与方差的计算1. 期望的计算方法:a. 对于离散随机变量:根据期望的计算公式,计算每个取值的概率乘以相应取值的结果,然后将这些结果相加即可。

b. 对于连续随机变量:根据期望的计算公式,计算每个取值的概率密度函数乘以相应取值的结果,然后对这些结果进行积分即可。

2. 方差的计算方法:a. 对于离散随机变量:先计算每个取值与期望的差的平方乘以相应取值的概率,然后将这些结果相加即可。

b. 对于连续随机变量:先计算每个取值与期望的差的平方乘以相应取值的概率密度函数,然后对这些结果进行积分即可。

高中数学知识点:方差

高中数学知识点:方差

第 1 页 共 1 页 高中数学知识点:方差
从数学的角度考虑,人们有时用标准差的平方2s (即方差)来代替标准差,作为测量样本数据分散程度的工具:
2222121[()()()]n s x x x x x x n =-+-++- 要点诠释:
在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差.
数据的离散值程度可以用极差、方差或标准差来描述.极差反映了一组数据变化的幅度;样本方差描述了一组数据围绕平均数波动的大小;样本方差的算术根表示样本的标准差,它也描述了数据对平均数的离散程度.。

方差的计算公式高中

方差的计算公式高中

方差的计算公式高中方差是统计学中常用的一个概念,它用来衡量一组数据的离散程度。

在高中数学中,我们学习了方差的计算公式以及相关的概念与性质。

方差的计算公式如下:方差= (∑(x - μ)²) / n其中,x代表每个数据点,μ代表所有数据点的平均值,n代表数据点的个数。

方差的计算需要先求出数据的平均值,然后计算每个数据点与平均值之差的平方,并对所有差值求和,最后再除以数据点的个数。

方差是用来衡量一组数据的离散程度的指标。

如果一组数据的方差较大,表示数据点之间的差异较大,数据的离散程度较高;反之,如果方差较小,则表示数据点之间差异较小,数据的离散程度较低。

方差的计算公式可以帮助我们更加准确地描述数据的分布情况。

通过计算方差,我们可以了解数据的离散程度,从而对数据进行更深入的分析和解读。

方差的计算公式中,我们首先要计算数据的平均值。

平均值是一组数据的算术平均数,可以通过将所有数据点相加,然后除以数据点的个数来计算得到。

平均值代表了一组数据的集中趋势,它可以帮助我们了解数据的整体水平。

接下来,我们需要计算每个数据点与平均值之差的平方。

这一步的目的是为了消除正负号对方差的影响,使得方差只表示数据点与平均值的距离的大小,而不受数据的正负影响。

我们将所有差值的平方相加,并除以数据点的个数,得到方差的值。

方差的单位是原数据单位的平方,因此方差的值并不直接展示数据的实际大小,而是用来衡量数据的离散程度。

方差的计算公式在统计学中有着广泛的应用。

它可以帮助我们比较不同数据集的离散程度,从而进行数据分析和决策。

在实际应用中,我们可以通过计算方差来评估产品质量的稳定性、衡量股票投资组合的风险、分析科学实验的可靠性等。

方差是统计学中常用的一个概念,它用来衡量一组数据的离散程度。

方差的计算公式可以帮助我们更准确地描述数据的分布情况,从而进行数据分析和决策。

通过学习方差的计算公式,我们可以更好地理解数据的离散程度,提高数据分析的准确性和可靠性。

方差的计算公式高中

方差的计算公式高中

方差的计算公式高中方差是统计学中常用的一种衡量数据变异程度的指标。

在高中数学中,方差的计算公式是学生们需要了解和掌握的重要内容之一。

本文将介绍方差的计算公式以及其在高中数学中的应用。

方差是一个关键的统计量,用于描述一组数据的离散程度。

它衡量的是每个数据点与平均值之间的差异。

方差计算的公式如下:方差= ∑(xi - x̄)² / N其中∑表示求和,xi表示第i个数据点,x̄表示数据的均值,N表示数据的总数。

方差的计算步骤如下:1. 计算数据的均值:将所有数据相加,然后除以数据的总数,即可得到数据的均值x̄。

2. 将每个数据点与均值的差异求平方:对于每个数据点xi,将其与均值x̄的差异求平方,即(xi - x̄)²。

3. 求和:将所有(xi - x̄)²的结果相加,得到总和。

4. 除以数据的总数:将总和除以数据的总数N,得到方差的值。

方差计算公式的解读:方差的计算公式其实是将每个数据点与均值的差异进行平方,并加权求和。

平方的操作使得方差只考虑了离均值的距离的大小,而不考虑数据点是偏离均值的方向。

这样可以确保方差始终为非负数,并且方差值越大,数据的离散程度越高。

方差的计算公式在高中数学中的应用:方差的计算公式在高中数学中常常用于描述实验数据的离散程度。

例如,如果一个班级进行了一次小测验,学生们的分数可以被看作是一组数据。

通过计算这组数据的方差,我们可以判断学生们的成绩分布是否比较集中,或者分散程度是否较高。

此外,方差的计算公式也在高中统计学中起到重要的作用。

在统计学中,我们经常使用样本数据来推断总体数据。

通过计算样本数据的方差,可以帮助我们估计总体数据的方差,并进一步进行统计推断。

总结:方差的计算公式是高中数学中涉及的重要内容之一。

方差通过测量数据点与平均值之间的差异,能够帮助我们判断数据的离散程度。

方差的计算公式简洁明了,易于理解和应用。

在实际应用中,方差的计算公式可以帮助我们分析数据的分布情况,并进行推断和预测。

高中数学教案概率分布的方差与标准差

高中数学教案概率分布的方差与标准差

高中数学教案概率分布的方差与标准差高中数学教案:概率分布的方差与标准差概率分布是概率论中的重要概念,用于描述随机事件发生的规律性。

在高中数学课程中,我们需要了解概率分布的方差与标准差,它们是衡量概率分布离散程度的指标。

本教案将详细介绍方差与标准差的计算方法、性质以及在实际问题中的应用。

1. 方差的计算方法方差是用来度量概率分布离散程度的统计量。

对于离散型随机变量X,其方差的计算公式如下:Var(X) = Σ[(Xi - μ)² * P(Xi)]其中,Xi表示随机变量X的取值,μ表示随机变量X的期望值,P(Xi)表示Xi取值的概率。

例如,某班级学生的考试成绩服从离散型随机变量X,其取值为{60, 70, 80, 90, 100},对应的概率分别为{0.1, 0.2, 0.3, 0.2, 0.2}。

求该班级学生考试成绩的方差。

解:首先计算随机变量X的期望值μ:μ = Σ(Xi * P(Xi)) = 60*0.1 + 70*0.2 + 80*0.3 + 90*0.2 + 100*0.2 = 82然后计算方差Var(X):Var(X) = Σ[(Xi - μ)² * P(Xi)] = (60-82)²*0.1 + (70-82)²*0.2 + (80-82)²*0.3 + (90-82)²*0.2 + (100-82)²*0.2 = 1362. 标准差的计算方法标准差是方差的平方根,它衡量了概率分布离散程度相对于期望值的距离。

标准差的计算公式如下:σ = sqrt(Var(X))继续以前述班级学生考试成绩为例,求该班级学生考试成绩的标准差。

解:首先计算方差Var(X):Var(X) = 136然后计算标准差σ:σ = sqrt(Var(X)) = sqrt(136) ≈ 11.663. 方差与标准差的性质方差和标准差具有以下性质:- 方差和标准差都是非负的。

高中数学中的概率统计应用概率分布计算期望与方差的技巧

高中数学中的概率统计应用概率分布计算期望与方差的技巧

高中数学中的概率统计应用概率分布计算期望与方差的技巧概率统计是高中数学的重要内容之一,其应用广泛且重要。

在概率统计中,我们经常遇到需要计算随机变量的期望和方差的问题。

概率分布是解决这些问题的关键工具之一。

在本文中,我们将介绍一些高中数学中常见的概率分布,以及计算期望和方差的技巧。

1. 离散概率分布离散概率分布指的是随机变量只能取有限个或可列个值的概率分布。

其中,最常见的离散概率分布有二项分布、泊松分布和几何分布。

1.1 二项分布二项分布在实际问题中经常出现,特别是在重复试验的情况下。

假设有n个独立的重复试验,每次试验有成功和失败两种可能结果。

如果成功的概率为p,失败的概率为q=1-p,则随机变量X表示n次试验中成功的次数。

二项分布的概率密度函数为:P(X=k) = C(n,k) * p^k * q^(n-k)其中,C(n,k)表示组合数。

二项分布的期望和方差的计算公式如下:E(X) = npVar(X) = npq1.2 泊松分布泊松分布适用于描述单位时间或空间内随机事件发生的次数。

例如,某地区每小时的交通事故数、每天接到的电话数等。

泊松分布的概率密度函数为:P(X=k) = (λ^k * e^(-λ)) / k!其中,λ代表单位时间或单位空间内平均发生的次数。

泊松分布的期望和方差的计算公式如下:E(X) = Var(X) = λ1.3 几何分布几何分布用于描述一系列独立重复试验中,首次成功所需的试验次数。

例如,投掷一枚硬币直到首次出现正面的次数等。

几何分布的概率密度函数为:P(X=k) = q^(k-1) * p其中,p表示成功的概率,q=1-p表示失败的概率。

几何分布的期望和方差的计算公式如下:E(X) = 1/pVar(X) = q/(p^2)2. 连续概率分布连续概率分布指的是随机变量可以取某个区间内的任意值的概率分布。

最常见的连续概率分布有均匀分布、正态分布和指数分布。

2.1 均匀分布在均匀分布中,随机变量在某一区间内的取值是等可能的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成绩稳定性较好,稳定于8环左右.
如果其他班级参赛选手的射击成绩都在9环左右,本班 应该派哪一名选手参赛?如果其他班级参赛选手的成绩
在7环左右,又应该派哪一名选手参赛?
2、两个特殊分布的方差
(1)若 X 服从两点分布,则 DX p(1 p)
(2)若 X ~ B(n, p) ,则 DX np(1 p)
(2)证明提示:
n
第一步求
k 2Cnk pk (1 p)nk n(n 1) p2 np
k 0
n
2np kCnk pk (1 p)nk 2n2 p2 k 0
n
n p n2 p2 Cnk pk (1 p)nk 2 2 k 0
第二步得 DX np(1 p)
3、方差的性质
(1)线性变化 平移变化不改变方差,但是伸缩变化改变方差
因为 EX1 EX 2 , DX1 D,X所2 以两家单位的工资均值相等, 但甲单位不同职位的工资相对集中,乙单位不同职位的工资 相对分散.这样,如果你希望不同职位的工资差距小一些, 就选择甲单位;如果你希望不同职位的工资差距大一些, 就选择乙单位.
(三)、练习
1 .已知 ~ Bn, p, E 8, D 1.6 ,则 n, p 的值分别是( D )
(2)随机变量的方差与样本的方差有何联系与区别?
随机变量的方差是常数,而样本的方差是随着样本的不同 而变化的,因此样本的方差是随机变量. 对于简单随机样本,随着样本容量的增加,样本方差越来 越接近总体方差,因此常用样本方差来估计总体方差.
(二)、公式运用
1、请分别计算探究中两名同学各自的射击成绩的方差.
X1 5
6
7
8
9 10
P 0.03 0.09 0.20 0.31 0.27 0.10
X2
5
6
7
8
9
P 0.01 0.05 0.20 0.41 0.33
10
9
DX1 (i 8)2 P( X1 i) 1.50 ,DX 2 (i 8)2 P( X 2 i) 0.82
i5
i5
因此第一名同学的射击成绩稳定性较差,第二名同学的射击
D(aX b) a2DX
(2)方差的几个恒等变形
n
DX (xi EX )2 pi i 1 E( X EX )2 EX 2 (EX )2
注:要求方差则先求均值
4、应用举例 (1)计算
例4.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、 方差和标准差.
解:抛掷散子所得点数X 的分布列为
A.100和0.08 B.20和0.4 C. 10和0.2 D. 10和0.8
2. 有一批数量很大的商品的次品率为1%,从中任意地连续取出
设离散型随机变量 X 的分布列为
X x1 x2

xi

xn
P p1 p2 …
pi

pn
则 (xi EX )2描述了 xi (i 1, 2,..., n相) 对于均值 EX
的偏离程度. n
而 DX (xi EX )2 p为i 这些偏离程度的加权平均,刻画 i 1
了随机变量 X 与其均值 EX 的平均偏离程度.我们称 DX为
(1800 -1400) 2 0. 1 40 000
EX 2 1 000 0.4 1 400 0.3 1 800 0.2 2200 0.1 1400
DX 2 (1000 -1400)2 0. 4 (1 400 -1400)2 0.3 (1800 -1400)2 0.2
+ (2200-1400 )2 0.l = 160000 .
X1
2 34 5 6
.
1
11
P
6从而 EX 1 1 2 1 3 1 4 1 5 1 6 1 3.5
666666
DX (1 3.5)2 1 (2 3.5)2 1 (3 3.5)2 1 (4 3.5)2 1
6
6
6
6
(5 3.5)2 1 (6 3.5)2 1 2.92
请问应该派哪名同学参赛?
EX1 8 , EX 2 8
发现两个均值相等
因此只根据均值不能区分这两名同学的射击水平.
1、定性分析
除平均中靶环数以外,还有其他刻画两名同学各自 射击特点的指标吗?
(1)分别画出 X1 , X 2的分布列图.
P
P
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
6
6
X DX 1.71
(2)决策问题 例5.有甲乙两个单位都愿意聘用你,而你能获得如下信息:
甲单位不同职位月工资X1/元
获得相应职位的概率P1
1200 0.4
1400 0.3
1600 0.2
1800 0.1
乙单位不同职位月工资X2/元
1000 1400 1800 2200
获得相应职位的概率P 2
探究:
要从两名同学中挑选出一名,代表班级参加射击比赛.
根据以往的成绩记录,第一名同学击中目标靶的环数
X1 的分布列为
X1 5
6
7
8
9 10
P 0.03 0.09 0.20 0.31 0.27 0.10
第二名同学击中目标靶的环数
X
的分布列为
2
X2
5
6
7
8
9
P 0.01 0.05 0.20 0.41 0.33
0.4 0.3 0.2 0.1
根据工资待遇的差异情况,你愿意选择哪家单位?
解:根据月工资的分布列,利用计算器可算得
EX1 1200 0.4 + 1 400 0.3 + 1600 0.2 + 1800 0.1 =1400
DX1 (1200 -1400) 2 0. 4 (1400 -1400 ) 2 0.3 (1600 -1400 )2 0.2
随机变量 X 的方差.其算术平方根 DX 为随机变量X的标
准差,记为 X
3、对方差的几点说明
(1)随机变量的方差和标准差都反映了随机变量取值 偏离于均值的平均程度.方差或标准差越小,则随 机变量偏离于均值的平均程度越小.
说明:随机变量集中的位置是随机变量的均值;方差或标 准差这种度量指标是一种加权平均的度量指标.
O 5 6 7 8 9 10 X1
O 5 6 7 8 9 X2
(2)比较两个分布列图形,哪一名同学的成绩更稳定?
第二名同学的成绩更稳定.
2、定量分析 怎样定量刻画随机变量的稳定性?
(1)样本的稳定性是用哪个量刻画的? 方差
(2)能否用一个与样本方差类似的量来刻画随机变量 的稳定性呢?
(3)随机变量 X 的方差
相关文档
最新文档