2020新观察中考数学模拟卷4 (答案解析)

合集下载

2020年中考数学模拟试卷04含解析

2020年中考数学模拟试卷04含解析

2020年中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点M(1﹣m,2﹣m)在第三象限,则m的取值范围是()A.m>3 B.2<m<3 C.m<2 D.m>2【答案】D【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.根据题意知,解得m>2,故选:D.2.已知x=2是方程2x﹣3a+2=0的根,那么a的值是()A.﹣2 B.C.2 D.【答案】C【解析】根据一元一次方程的解定义,将x=2代入已知方程列出关于a的新方程,通过解新方程即可求得a的值.∵x=2是方程2x﹣3a+2=0的根,∴x=2满足方程2x﹣3a+2=0,∴2×2﹣3a+2=0,即6﹣3a=0,解得,a=2;故选:C.3.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【答案】B【解析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.4.某高速公路概算总投资为79.67亿元,请将79.67亿用科学记数法表示为()A.7.967×101B.7.967×1010C.7.967×109D.79.67×108【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于79.67亿有10位,所以可以确定n=10﹣1=9.79.67亿=7 967 000 000=7.967×109.故选:C.5.已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()A.36πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【解析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.由勾股定理得:圆锥的母线长==10,∵圆锥的底面周长为2πr=2π×6=12π,∴圆锥的侧面展开扇形的弧长为12π,∴圆锥的侧面积为:×12π×10=60π.故选:C.6.已知,且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.0<k<C.0<k<1 D.<k<1【答案】D【解析】利用第二个方程减去第一个方程,得到一个不等式,根据﹣1<x﹣y<0得到一个不等式,组成不等式组解这个不等式即可.第二个方程减去第一个方程得到x﹣y=1﹣2k,根据﹣1<x﹣y<0得到:﹣1<1﹣2k<0即解得<k<1,k的取值范围为<k<1.故选:D.7.如图所示实数a,b在数轴上的位置,以下四个命题中是假命题的是()A.a3﹣ab2<0 B.C.D.a2<b2【答案】B【解析】由数轴可知a>0,b<0,且|a|<|b|,由此可判断a+b<0,a﹣b>0,再逐一检验.依题意,得a>0,b<0,且|a|<|b|,∴a+b<0,a﹣b>0,A、a3﹣ab2=a(a+b)(a﹣b)<0,正确;B、∵a+b<0,∴=﹣(a+b),错误;C、∵0<a<a﹣b,∴<,正确;D、∵(a+b)(a﹣b)<0,∴a2﹣b2<0,即a2<b2,正确.故选:B.8.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP,若阴影部分的面积为9π,则弦AB的长为()A.3 B.4 C.6 D.9【答案】C【解析】本题可先由题意OD=PC=r,再根据阴影部分的面积为9π,得出R2﹣r2=9,即AD==3,进而可知AB=2×3=6.设PC=r,AO=R,连接PC,⊙O的弦AB切⊙P于点C,故AB⊥PC,作OD⊥AB,则OD∥PC.又∵AB∥OP,∴OD=PC=r,∵阴影部分的面积为9π,∴πR2﹣πr2=9π,即R2﹣r2=9,于是AD==3.∵OD⊥AB,∴AB=3×2=6.故选:C.9.因为sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因为sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=()A.B.C.D.【答案】C【解析】阅读理解:240°=180°+60°,因而sin240°就可以转化为60°的角的三角函数值.根据特殊角的三角函数值,就可以求解.∵当α为锐角时有sin(180°+α)=﹣sinα,∴sin240°=sin(180°+60°)=﹣sin60°=﹣.故选:C.10.如图,两个反比例函数和(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,下列说法正确的是()①△ODB与△OCA的面积相等;②四边形PAOB的面积等于k2﹣k1;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.A.①②B.①②④C.①④D.①③④【答案】C【解析】根据反比例函数系数k所表示的意义,对①②③④分别进行判断.①A、B为上的两点,则S△ODB=S△OCA=k2,正确;②由于k1>k2>0,则四边形PAOB的面积应等于k1﹣k2,错误;③只有当P的横纵坐标相等时,PA=PB,错误;④当点A是PC的中点时,点B一定是PD的中点,正确.故选:C.第二部分非选择题(共110分)二.填空题(本大题共6小题,每小题4分,共24分.)11.分解因式:ax2﹣2ax+a=.【答案】a(x﹣1)2【解析】本题考查了用提公因式法和公式法进行因式分解,先提公因式a,再利用完全平方公式继续分解因式.ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2.12.暑假中,小明,小华将从甲、乙、丙三个社区中随机选取一个参加综合实践活动,若两人不在同一社区,则小明选择到甲社区、小华选择到乙社区的可能性为.【答案】【解析】画树状图得:,∵共有9种等可能的结果,小明选择到甲社区、小华选择到乙社区的有1种情况,∴小明选择到甲社区、小华选择到乙社区的可能性为:.故答案为:.13.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E =度.【答案】80【解析】设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.【答案】12【解析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.如图,点A,B,是⊙O上三点,经过点C的切线与AB的延长线交于D,OB与AC交于E.若∠A =45°,∠D=75°,OB=,则CE的长为.【答案】2【解析】连接OC,如图,∵∠A=45°,∠D=75°,∴∠ACD=60°,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠BOC=2∠A=90°,∴OB∥CD,∴∠CEO=∠ACD=60°,在Rt△COE中,sin∠CEO=,∴CE===2.故答案为2.16.如图,点A是反比例函数y=图象上的任意一点,过点A做AB∥x轴,AC∥y轴,分别交反比例函数y=的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则S△DEC﹣S△BEA=.【答案】【解析】点A是反比例函数y=图象上的任意一点,可设A(a,),∵AB∥x轴,AC∥y轴,点B,C,在反比例函数y=的图象上,∴B(,),C(a,),∴AB=a,AC=,∴S△DEC﹣S△BEA=S△DAC﹣S△BCA=××(a﹣a)=××a=.故答案为:.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:﹣12019+|﹣2|+2cos30°+(2﹣tan60°)0.【解析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.解:原式=﹣1+2﹣++1=2.18.(本小题满分8分)先化简,,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x的值代入求值.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.解:原式=[﹣]÷=•=﹣,∵x≠±1且x≠0,∴在﹣1≤x≤2中符合条件的x的值为x=2,则原式=﹣=﹣2.19.(本小题满分8分)如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.【解析】(1)①以E为圆心,以EM为半径画弧,交EF于H,②以B为圆心,以EM为半径画弧,交EF于P,③以P为圆心,以HM为半径画弧,交前弧于G,④作射线BG,则∠CBN就是所求作的角.(2)证明△ABC≌△DEF可得结论.解:(1)如图所示,即为所求;(2)∵CM∥DF,∴∠MCE=∠F,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF,∴AC=DF.20.(本小题满分8分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【解析】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得5000×=750(册).答:学校购买其他类读物750册比较合理.21.(本小题满分8分)某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?销售价(元/箱)类别/单价成本价(元/箱A品牌20 32B品牌35 50【解析】解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:,解得:.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.22.(本小题满分10分)如图,在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过AC的中点E作FG ∥AD,交BA的延长线于点F,交BC于点G,(1)求证:AE=AF;(2)若BC=AB,AF=3,求BC的长.【解析】解:(1)∵∠BAC=90°,AD平分∠BAC,∴∠DAB=∠CAB=×90°=45°,∵FG∥AD,∴∠F=∠DAB=45°,∠AEF=45°,∴∠F=∠AEF,∴AE=AF;(2)∵AF=3,∴AE=3,∵点E是AC的中点,∴AC=2AE=6,在Rt△ABC中,AB2+AC2=BC2,AB2+32=()2,AB=,BC=.23.(本小题满分10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=(1)求该反比例函数和一次函数的解析式;(2)连接OB,求S△AOC﹣S△BOC的值;(3)点E是x轴上一点,且△AOE是等腰三角形请直接写出满足条件的E点的个数(写出个数即可,不必求出E点坐标).【解析】解:(1)∵AD⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=3,tan∠AOD==,∴OD=2,∴A(﹣2,3),∵点A在反比例函数y=的图象上,∴n=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B(m,﹣1)在反比例函数y=﹣的图象上,∴﹣m=﹣6,∴m=6,∴B(6,﹣1),将点A(﹣2,3),B(6,﹣1)代入直线y=kx+b中,得,∴,∴一次函数的解析式为y=﹣x+2;(2)由(1)知,A(﹣2,3),直线AB的解析式为y=﹣x+2,令y=0,∴﹣x+2=0,∴x=4,∴C(4,0),∴S△AOC﹣S△BOC=OC•|y A|﹣OC•|y B|=×4(3﹣1)=4;(3)设E(m,0),由(1)知,A(﹣2,3),∴OA2=13,OE2=m2,AE2=(m+2)2+9,∵△AOE是等腰三角形,∴①当OA=OE时,∴13=m2,∴m=±,∴E(﹣,0)或(,0),②当OA=AE时,13=(m+2)2+9,∴m=0(舍)或m=4,∴E(4,0),③当OE=AE时,m2=(m+2)2+9,∴m=﹣,∴E(﹣,0),即:满足条件的点P有四个.24.(本小题满分12分)如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.(1)求证:∠ACD=∠F;(2)若tan∠F=①求证:四边形ABCD是平行四边形;②连接DE,当⊙O的半径为3时,求DE的长.【解析】(1)证明:∵CD与⊙O相切于点D,∴OD⊥CD,∵半径OD⊥直径AB,∴AB∥CD,∴∠ACD=∠CAB,∵∠EAB=∠F,∴∠ACD=∠F;(2)①证明:∵∠ACD=∠CAB=∠F,∴tan∠GCD=tan∠GAO=tan∠F=,设⊙O的半径为r,在Rt△AOG中,tan∠GAO==,∴OG=r,∴DG=r﹣r=r,在Rt△DGC中,tan∠DCG==,∴CD=3DG=2r,∴DC=AB,而DC∥AB,∴四边形ABCD是平行四边形;②作直径DH,连接HE,如图,OG=1,AG==,CD=6,DG=2,CG==2,∵DH为直径,∴∠HED=90°,∴∠H+∠HDE=90°,∵DH⊥DC,∴∠CDE+∠HDE=90°,∴∠H=∠CDE,∵∠H=∠DAE,∴∠CDE=∠DAC,而∠DCE=∠ACD,∴△CDE∽△CAD,∴=,即=,∴DE=.25.(本小题满分14分)如图,在平面直角坐标系xOy第一象限中有正方形OABC,A(4,0),点P(m,0)是x轴上一动点(0<m<4),将△ABP沿直线BP翻折后,点A落在点E处,在OC上有一点M(0,t),使得将△OMP沿直线MP翻折后,点O落在直线PE上的点F处,直线PE交OC 于点N,连接BN.(I)求证:BP⊥PM;(II)求t与m的函数关系式,并求出t的最大值;(III)当△ABP≌△CBN时,直接写出m的值.【解析】解:(Ⅰ)由折叠知,∠APB=∠NPB,∠OPM=∠NPM,∵∠APN+∠OPN=180°,∴2∠NPB+2∠NPM=180°,∴∠NPB+∠NPM=90°,∴∠BPM=90°,∴BP⊥PM;(Ⅱ)∵四边形OABC是正方形,∴∠OAB=90°,AB=OA,∵A(4,0),∴AB=OA=4,∵点P(m,0),∴OP=m,∵0<m<4,∴AP=OA﹣OP=4﹣m,∵M(0,t),∴OM=t,由(1)知,∠BPM=90°,∴∠APB+∠OPM=90°,∵∠OMP+∠OPM=90°,∴∠OMP=∠APB,∵∠MOP=∠PAB=90°,∴△MOP∽△PAB,∴,∴,∴t=﹣m(m﹣4)=﹣(m﹣2)2+1∵0<m<4,∴当m=2时,t的最大值为1;(Ⅲ)∵△ABP≌△CBN,∴∠CBN=∠ABP,BP=BN,由折叠知,∠ABP=∠EBP,∠BEP=∠BAP=90°,∴NE=PE,∠NBE=∠PBE,∴∠CBN=∠NBE=∠EBP=∠PBA,∴∠CBE=∠ABE=45°,连接OB,∵四边形OABC是正方形,∴∠OBC=∠OBA=45°,∴点E在OB上,∴OP=ON=m,∴PN=m,∵OM=t,∴MN=ON=OM=m﹣t,如图,过点N作OP的平行线交PM的延长线于G,∴∠OPM=∠G,由折叠知,∠OPM=∠NPM,∴∠NPM=∠G,∴NG=PN=m,∵GN∥OP,∴△OMP∽△NMG,∴,∴=①,由(2)知,t=﹣m(m﹣4)②,联立①②解得,m=0(舍)或m=8﹣.。

北京市2020年中考数学模拟试卷四含答案

北京市2020年中考数学模拟试卷四含答案

北京市2020年中考数学模拟试卷四学校 姓名 准考证号一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1. 下面的多边形中,内角和与外角和相等的是(A ) (B ) (C ) (D )2.已知实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是A .a >bB .|a |<|b |C .ab >0D .﹣a >b3.2019年春运期间,全国铁路有23天旅客发送量每天超过1000万人次,那么这23 天约发送旅客总人次是(A )2.3×103 (B )2.3×104 (C )2.3×107 (D )2.3×1084.右图是某几何体的三视图,该几何体是(A )三棱锥 (B )三棱柱 (C )长方体 (D )正方体5.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是A .50°B .60°C .70°D .80° 6.如果2320a a +-=,那么代数式2231-3()93a a a a +•-+的值为A .1B .12 C .13 D . 147.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从 长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程为 A.7512x x +=+ B. 2175x x ++= C. 7512x x -=+ D. 275x x+= 8.某市组织全民健身活动,有100名男选手参加由跑、跳、投等10个田径项目组成的“十项全能”比赛.其中25名选手的一百米跑成绩排名,跳远成绩排名与10项总成绩的排名情况如图所示,甲、乙、丙表示三名男选手,下面有3个推断: ①甲的一百米跑成绩排名比10项总成绩排名靠前; ②乙的一百米跑成绩排名比10项总成绩排名靠后; ③丙的一百米跑成绩排名比跳远成绩排名靠前. 其中合理的是 (A )①(B )②(C )①②(D )①③二、填空题(本题共16分,每小题2分)9.若2x -在实数范围内有意义,则实数x 的取值范围是 .10.为了解同学们对网络游戏的喜好和作业量多少的相关性,小明随机对年级50名同学进行了调查,并将调查的情况进行了整理,如下表:O跳远成绩排名10项总成绩排名100100丙O一百米跑成绩排名 10项总成绩排名100甲乙如果小明再随机采访一名同学,那么这名同学是“喜欢网络游戏并认为作业多”的可能性 .“不喜欢网络游戏并认为作业不多”的可能性. (填“>”,“=”或 “<”) 11.分解因式:22xy xy x -+= .12.如图,将△ABC 沿BC 所在的直线平移得到△DEF .如果AB =7,GC =2,DF =5,那么GE = .(第12题图) (第13题图)13.如图,△ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AD=2,△ABC的周长为14,则BC 的长为 .14.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国; 乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程为 .15.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索和竿的长度.设绳索长x 尺,竿长y 尺,可列方程组为 .16.如图,方格纸中每个小正方形的边长都是1,A ,B ,C ,D 均落在格点上.(1)S △BDC :S △BAC =________;(2)点P 为BD 的中点,过点P 作直线l ∥BC ,分别过点B 作BM ⊥l 于点M ,过点C 作CN ⊥l 于点N ,则矩形BCNM 的面积为________.认为作业多认为作业不多合计 喜欢网络游戏18 9 27 不喜欢网络游戏8 15 23 合计262450BAGCE DF作业量多少网络游戏的喜好三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:213tan 60()12233---+-°.18.解不等式组:()+2124132x x x x -≥-⎧⎪⎨+>⎪⎩19.下面是小东设计的“过直线上一点作这条直线的垂线”的尺规作图过程.已知:直线l 及直线l 上一点A . 求作:直线AB ,使得AB ⊥l .作法:①以点A 为圆心,任意长为半径画弧,交直线l 于C ,D 两点;②分别以点C 和点D 为圆心,大于21CD 长为半径画弧, 两弧在直线l 一侧相交于点B ; ③作直线AB .所以直线AB 就是所求作的垂线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵AC = ,BC = ,∴AB ⊥l ( ).(填推理的依据).20.已知关于x 的方程2220x x m -+-=有两个不相等的实数根. (1)求m 的取值范围;(2)如果m 为正整数,且该方程的根都是整数,求m 的值.21.如图,在△ABC 中,CD 平分∠ACB ,CD 的垂直平分线分别交AC ,DC ,BC 于点E ,F ,G ,连接DE ,DG .(1)求证:四边形DGCE 是菱形;(2)若∠ACB =30°,∠B =45°,ED =6,求BG 的长.22.如图,AB 是⊙O 的直径,AE 是弦,C 是AE 的中点,过点C 作⊙O 的切线交BA 的延长线于点G ,过点C 作CD ⊥AB 于点D ,交AE 于点F . (1)求证:GC ∥AE ;(2)若sin ∠EAB =53,OD AE 的长.23.如图,在平面直角坐标系xOy 中,直线l :y =x +1与y 轴交于点A ,与函数xky =(x >0)的图象交于点B (2,a ).(1)求a 、k 的值; (2)点M 是函数xky =(x >0)图象上的一点,过点M 作平行于y 轴的直线,交直线l 于点P ,过点A 作平行于x 轴的直线交直线MP 于点N ,已知点M 的横坐标为m . ①当23=m 时,求MP 的长; ②若MP ≥PN ,结合函数的图象, 直接写出m 的取值范围.24.2019年初,电影《流浪地球》和《绿皮书》陆续热播,为了解某大学1800名学生对两部电影的喜爱程度,调查小组随机抽取了该大学20名学生对两部电影打分,过程如下. 收集数据 20名大学生对两部电影的打分结果如下:《流浪地球》 78 75 99 98 79 67 88 78 76 98 88 79 97 91 78 80 93 90 99 99 《绿皮书》 88 79 68 97 85 74 96 84 92 97 89 81 91 75 80 85 91 89 97 92 整理、描述数据 绘制了如下频数分布直方图和统计表,请补充完整.(说明:60≤x<70表示一般喜欢,70≤x<80表示比较喜欢,80≤x<90表示喜欢,90≤x<100表示超级喜欢)分析数据、推断结论),25.如图,点E 在弦AB 所对的优弧上,且»BE为半圆,C 是»BE 上一动点,连接CA ,CB , 已知AB =4cm ,设B ,C 两点间的距离为x cm ,点C 到弦AB 所在直线的距离为1y cm , A ,C 两点间的距离为2y cm .小明根据学习函数的经验,分别对函数1y ,2y ,随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值;(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2)并画出函数y 1,y 2的图象;(3)结合函数图象,解决问题:①连结BE ,则BE 的长约为 cm .②当以A ,B ,C 为顶点组成的三角形是直角三角形时,BC 的长度约为 cm .26.在平面直角坐标系xOy 中,抛物线c bx ax y ++=2过原点和点A (-2,0). (1)求抛物线的对称轴;(2)横、纵坐标都是整数的点叫做整点.已知点B (0,23),记抛物线与直线AB 围成的封闭区域(不含边界)为W .①当=1a 时,求出区域W 内的整点个数;②若区域W 内恰有3个整点,结合函数图象,直接写出的取值范围.27.如图,在正方形ABCD 中,E 是边BC 上一动点(不与点B ,C 重合),连接DE ,点C关于直线DE 的对称点为C ʹ,连接ACʹ并延长交直线DE 于点P ,F 是AC ′中点,连接DF .(1)求∠FDP 的度数;(2)连接BP ,请用等式表示AP ,BP ,DP 三条线段之间的数量关系,并证明. (3)连接AC ,若正方形的边长为2,请直接写出△ACC ′的面积最大值.28.对于平面直角坐标系xoy 中的点P 和图形G 上任意一点M ,给出如下定义:图形G 关于原点O 的中心对称图形为G′,点M 在G′上的对应点为M′,若∠MP M′=90°,则称 点P 为图形G ,G′的“直角点”,记作Rt(G ,P ,G′). 已知点A (-2,0),B (2,0),C (0, 32).(1) 如图1,在点P 1(1,1),P 2(0,3),P 3(0,-2)这三个点中,Rt(OA,P,OA′)是 ;(2) 如图2,⊙D 的圆心为D (1,1),半径为1,在直线b x y +=3上存在点P ,满足Rt(⊙D ,P ,⊙D′),求b 的取值范围;(3)⊙T 的半径为3,圆心(t,t 33),若⊙T 上存在点P ,满足 Rt(△ABC ,P ,△ABC′),直接写出⊙T 的横坐标的取值范围.数 学一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.x ≥2 10.>11.x (y-1)212.145. 13.5 14.1 15.2175x x++= 16.5:1,152; 三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分) 17.(本小题满分5分)解:原式392=-………………………………… 4分. ………………………………… 5分18.(本小题满分5分)7=-()+2124(1)13(2)2x x xx -≥-⎧⎪⎨+>⎪⎩由(1)得,x ≤2 ………………………………… 2分 由(2)得,x >-1 ………………………………… 4分∴不等式的解集为-1<x ≤2 ……………………………… 5分 19.(本小题满分5分)(1)略; ………………………………2分 (2)AD ,BD ;依据:“到线段两个端点距离相等的点在这条线段的垂直平分线上”或“三线合一”. ………………………………5分20.(本小题满分5分)解:(1)∵方程有两个不相等的实数根.∴4420m ∆=-->(). ∴ 3m <. ……………………… 2分(2)∵ 3m <且m 为正整数, ∴ 1m =或2. ……………………… 3分 当1m =时,原方程为2210x x --=.它的根不是整数,不符合题意,舍去; 当2m =时,原方程为220x x -=.∴ (2)0x x -=.∴ 120,2x x ==.符合题意. 综上所述,2m = …………………………… 5分 21.(本小题满分5分)(1)证明:∵EG 垂直平分DC ∴DE =CE ,∴EDC ECD ∠=∠. ∵CD 平分ECG ∠, ∴ECD DCG ∠=∠. ∴EDC DCG ∠=∠.∴DE ∥GC . ………………………………1分 同理DG ∥EC .∴四边形DGCE 是平行四边形. ∵DE =CE ,∴四边形DGC E 是菱形. ……………………………… 2分 (2)解:Q 四边形DGCE 是菱形, ∴DG =DE =6. ∵DG //EC ,∴030DGB ACB ∠=∠=. ……………………………… 3分 如图,过点D 作DH ⊥BG 于点H ,∴13DH DG ==. ∴HG = ……………………………… 4分 ∵45B ∠=︒,∴BH =DH =3.∴3BG =+ ……………………………… 5分22.(本小题满分5分)(1)证明:连接OC ,交AE 于H.∵C 是弧AE 的中点,∴OC ⊥AE . ............ ......1分 ∵GC 是⊙O 的切线, ∴OC ⊥GC .∴∠OHA=∠OCG =90°.∴GC ∥AE . .............. .....2分(2)解: ∵OC ⊥AE ,CD ⊥AB ,∴∠OCD =∠EAB .∴3sin sin 5OCD EAB ∠=∠=.在Rt △CDO 中,OD∴OC =∴AB =连接BE.∵AB 是⊙O 的直径,∴∠AEB =90°.在Rt △A EB 中,∵3sin 5BE EAB AB ∠==,∴BE =∴AE = ...................….........5分23.(本小题满分6分)解:(1)由题意,得A (0,1) .∵直线l 过点B (2,a ),∴3a =. .................…..........1分 ∵反比例函数(0)k y x x=>的图象经过点B (2,3),∴6k =. .................…..........2分 (2)①由题意,得335(,4),(,)222M P .∴32MP =; .................…..........4分②3062m m <≤≥或. .................…..........6分24.(本小题满分6分)……………………………4分(1)720 …………………………………5分 (2)答案不唯一,如: 喜欢《流浪地球》理由:在被调查者中,喜欢《流浪地球》的众数高于喜欢《绿皮书》的众数.喜欢《绿皮书》理由:在被调查者中,喜欢《绿皮书》的中位数高于喜欢的《流浪地球》中位数;为《绿皮书》打分在80分以上的有16人,而为《流浪地球》打分在80分以上的只有12人 …………………………………6分流浪地球25.(本小题满分6分)解:(1)5.70. ………………………1分(2)画出2y 的图象.……………………….3分(3)①6;………………………4分 ②6,4.47.……………………….6分 26.(本小题满分6分)解:(1)∵二次函数2y x ax b =-+在0x =和4x =时的函数值相等.∴对称轴为直线2x =. ……………… 1分 (2)① 不妨设点M 在点N 的左侧.∵对称轴为直线2x =,2MN =,∴点M 的坐标为(1,1),点N 的坐标为(3,1).……………… 2分∴22ax -=-=,11a b =-+. ∴4a =,4b =. ……………… 4分 ② 15b <≤. ……………… 6分27.(本小题满分7分)解:(1)由对称可知 CD =C ′D ,∠CDE =∠C ′DE .在正方形ABCD 中,AD =CD ,∠ADC =90°, ∴AD =C ′D .又∵F 为AC ′中点,∴DF ⊥AC ′,∠ADF =∠C ′DF .……………………………………………………1分∴∠FDP =∠FDC ′+∠EDC ′=12∠ADC =45°.…………………2分(2)结论:BP+DP.……………………………………………………3分如图,作AP′⊥AP交PD延长线于P′,∴∠P AP′=90°.在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP′=∠BAP.由(1)可知∠APD=45°,∴∠P′=45°.∴AP=AP′……………………………………………………4分在△BAP和△DAP′中,BA DABAP DAP AP AP=⎧⎪'∠=∠⎨⎪'=⎩,∴△BAP≌△DAP′(SAS)……………………………………………………5分∴BP=DP′.∴DP+BP=PP′.(31……………………………………………………7分PBAP'PBA28.(本小题满分7分)解:(1)P 1,P 3. …………………………………2分(2)当b >0时,点O 到直线的距离为时,.…………………………4分当b <0时,.∴.………6分(3).………………………7分b x y +=312+222+=b 222--=b 222222+≤≤--b 2929≤≤-t。

2020新观察中考模拟卷4

2020新观察中考模拟卷4

三、解答题(共 8 题,共 72 分) 17. (8 分)计算:[x4·x2-(-3x3)2]÷4x6.
18.(8 分)如图,在四边形 ABCD 中,∠A=∠C=90°,BE 平分∠ABC, DF 平分∠ADC. 求证:BE∥DF.
19.(8 分)某校在校园文化艺术节期间,举办了 A 合唱,B 群舞,C 书法,D 演讲共四个项目的比赛, 要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅 不完整的统计图,请根据统计图中信息解答下列问题: (1)本次调查的学生总人数是__________人; (2)请将条形统计图补充完整; (3)若全校共有 1800 名学生,请估计该校报名 参加书法和演讲比赛的学生共有多少人?
下列事件为必然事件的是( )
A.有 1 个球是黑球 B.有 1 个球是白球
C. 2 个都是黑球 D.2 个都是白球
4.如图是由 5 个相同的小正方体组成的几何体,该几何题的左视图是( )
A.
B.
C.
5.下列标志中,既是中心对称图形,又是轴对称图形的是(
D. )
A.
B.
C.
D.
6.在反比例函数 y=1-x k图象的每一支上,y 都随 x 的增大而增大,则 k 的取值范围是(
3
fcc1509 录入
23. (10 分)如图 1,在□ABCD 中,点 E 在 AB 上,点 F 在直线 AD 上,∠ECF=∠B=α. (1) 若α=90°,求证: CCEF=CBCD; (2) 如图 2,若α≠90°,求证: CCEF=CBCD; (3) 如图 3,若 AC⊥EF,且CCDF=34,EM⊥BC,求 tan∠EMF 的值.
2020 年武汉新观察中考数学模拟卷(四)

辽宁大连2020年中考数学模拟试卷 四(含答案)(含答案)

辽宁大连2020年中考数学模拟试卷 四(含答案)(含答案)

辽宁大连2020年中考数学模拟试卷四一、选择题1.﹣2的相反数是( )A.﹣B.﹣2C.D.22.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是( )3.据统计,中国水资源总量约为27500亿立方米,居世界第六位,其中数据27500亿用科学记数法表示为()A.2.75×108B.2.75×1012C.27.5×1013D.0.275×10134.在平面直角坐标系中,已知点P在x轴下方,在y轴右侧,且点P到x轴的距离为3,到y轴的距离为4,则点P的坐标为()A.(﹣3,4)B.(﹣4,3)C.(3,﹣4)D.(4,﹣3)5.若点P(m﹣1,3)在第二象限,则m的取值范围是( )A.m>1B.m<1C.m≥﹣1D.m≤16.晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是( )A. B. C. D.7.下列计算正确的是()A.x3•x2=2x6B.x4•x2=x8C.(﹣x2)3=﹣x6D.(x3)2=﹣x5A.1; B.计算:无锡春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:与反比例函数的图象交于点,探究得:的值为常数t=()米.答案为:中,,∴△a=×b=×(3)若该校共有1300名学生,则全校选择“音乐舞蹈”社团的学生人数是1300×35%=455(人)答:全校选择“音乐舞蹈”社团的学生人数是1300×35%=455人.21.解:∵支付给春秋旅行社旅游费用为28000元,当旅游人数是30时,30×800=24000元,低于28000元.∴这次旅游超过了30人.∴假设这次旅游员工人数为x人,根据题意列出方程得:∵[800﹣(x﹣30)×10]x=28000,∴x2﹣110x+2800=0,解得:x1=40,x2=70,当x1=40时,800﹣10(x﹣30)=700>700(符合题意)当x2=70时,800﹣10(x﹣30)=400<500(不合题意,舍去)答:该单位这次共有40员工去天水湾风景区旅游.22.解:(1)∵一次函数y1=k1x+2与反比例函数的图象交于点A(4,m)和B(﹣8,﹣2),∴K2=(﹣8)×(﹣2)=16﹣2=﹣8k1+2∴k1=(2)∵一次函数y1=k1x+2与反比例函数的图象交于点A(4,4)和B(﹣8,﹣2),∴当y1>y2时,x的取值范围是﹣8<x<0或x>4;(3)由(1)知,.∴m=4,点C的坐标是(0,2)点A的坐标是(4,4).∴CO=2,AD=OD=4.∴.∵S梯形ODAC:S△ODE=3:1,∴S△ODE=S梯形ODAC=×12=4,即OD•DE=4,∴DE=2.∴点E的坐标为(4,2).又点E在直线OP上,∴直线OP的解析式是.∴直线OP与的图象在第一象限内的交点P的坐标为().故答案为:,16,﹣8<x<0或x>423.解:24.解:(1)由y=x2-4x+3得到y=(x-3)(x-1),C(0,3),∴A(1,0),B(3,0).设直线BC的表达式为y=kx+b(k≠0),则b=3,3k+b=0,解得k=-1,b=3.∴直线BC的表达式为y=-x+3;(2)由y=x2-4x+3得到y=(x-2)2-1,∴抛物线y=x2-4x+3的对称轴是x=2,顶点坐标是(2,-1).∵y1=y2,∴x1+x2=4.令y=-1,代入y=-x+3,得x=4.∵x1<x2<x3(如答图),∴3<x3<4,即7<x1+x2+x3<8.25.解:(1)①∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∵AD=AB,∴△ABC,△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∴△BCE≌△ACF.②∵△BCE≌△ACF,∴BE=AF,∴AE+AF=AE+BE=AB=AC.(2)设DH=x,由由题意,CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,∴AC==2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30°,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴==2,∴AE=2FH.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.∵∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴=,∵AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴==,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHN=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC==a,AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM=a,∴==.故答案为.。

2020新观察中考模拟卷4 (答案解析)

2020新观察中考模拟卷4 (答案解析)

2020年武汉新观察中考数学模拟卷(四)一、选择题(共10小题,每小题3分,共30分) 1.有理数-3的绝对值为( )A.-3B.3C. 13D.- 13【答案】B .2.二次根式x -1有意义,则x 为( )A .x ≤1B .x >1C .x ≥1D .x ≠1 【答案】C .3.一个不透明的袋子中只有1个黑球,2个白球,每个球除颜色外都相同,从中任意换出2个球, 下列事件为必然事件的是( )A.有1个球是黑球B.有1个球是白球C. 2个都是黑球D.2个都是白球 【答案】B .4.如图是由5个相同的小正方体组成的几何体,该几何题的左视图是( )A. B. C. D.【答案】A .5.下列标志中,既是中心对称图形,又是轴对称图形的是( ) A. B.C.D.【答案】A .6.在反比例函数y =1-kx 图象的每一支上,y 都随x 的增大而增大,则k 的取值范围是( )A . k <0B . k <1C . k >0D . k >1 【答案】D .7.某校有甲、乙两辆校车接送教师上、下班,现在有A 、B 两名教师各自随机选择搭乘一辆校车返程回家,两名教师刚好搭乘同一辆校车的概率是( )A. 12B. 14C. 34D. 13【答案】A .8.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校. 如图描述了他上学的情景,下列说法中错误的是( )A.修车时间为15分钟B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.自行车发生故障时离家距离为1000米 【答案】A .D E A B O C9. 如图,⊙O的直径为13,弦AB=12,∠ACB=90°,AC、BC分别交⊙O于D、E两点,则DE的长为()A. 6B. 6.5C. 5D. 4 2【答案】C.10. 如图,将面积为1的正方形平均分成两个矩形,其中一个矩形的面积记为S1,再将另一个矩形平均分成两个正方形,其中一个正方形的面积记为S2,……,按这种方式一直分下去,则1S1+1S2+1S3+1S4+……+1S2020的值为()A.20192020 B. 22020-2 C. 22021-2 D.22021-222020-2【答案】C.二、填空题(每小题3分,共18分)11. 计算41的结果为____________.【答案】12.12.小刚参加射击比赛,成绩统计如表所示:则小刚本次射击成绩的中位数是____________.【答案】8.5.13.计算:3396922+--+--xxxxx=_______________.【答案】12xx2-9.14.如图,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转至△ADE处,使点B落在BC的延长线上的D点处,则∠BDE=_________.【答案】80°.第14题第16题15.二次函数y=ax2+bx+c(a、b、c为常数,a≠0)中,x与y的部分对应值如下表:当m>0,n<0时,下列结论:①b+2a=0;②at2+bt-a-b≥0;③4ac-b24a<0;④a+c>b. 其中一定正确的是_____________.【答案】①②③.16.如图,菱形ABCD中,∠ABC=∠BEA=60°,AE=2,BE=6. 连DE,则DE=_________. 【答案】4 3 .提示:作AM=AE,∠EAM=120°可得△AED≌△ABM,BM=DE=12+36 =4 3三、解答题(共8题,共72分)17. (8分)计算:[x4·x2-(-3x3)2]÷4x6.解:原式=-2.成绩(环) 6 7 8 9 10次数 1 2 2 3 2x0 -2 2y n m n18.(8分)如图,在四边形ABCD 中,∠A =∠C =90°,BE 平分∠ABC , DF 平分∠ADC . 求证:BE ∥DF . 解:略.19.(8分)某校在校园文化艺术节期间,举办了A 合唱,B 群舞,C 书法,D 演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图,请根据统计图中信息解答下列问题: (1)本次调查的学生总人数是__________人; (2)请将条形统计图补充完整;(3)若全校共有1800名学生,请估计该校报名 参加书法和演讲比赛的学生共有多少人?解:(1)本次调查的学生总人数是120÷60% =200(人) ; (2)C 项目人数为200-(120+52+8)=20(人) ; (3)估计该校报名参加书法和演讲比赛的学生共有1800×20+8200=252(人).20. (8分)如图,△ABC 的三个顶点在格点上, 用无刻度的直尺在网格上画图.(1)在BC 上找一点D ,使AD 平分∠BAC ; (2)直接写出BDCD的值___________;(3)在直线AD 上找一点E ,连CE ,使CE ∥AB .解:(1)取点M ,使BM // AC ,BM =AB ,连AM 交BC 于D ;(2) 54;(3)在BM 上取点N ,在AC 的延长线取点P , 使CP =MN =1,连CN 交AD 于E .21. (8分)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两点,∠DAB =2∠ABC , 过点B 作⊙O 的切线交AD 的延长线于M . (1)求证:弧CD =弧BC ; (2)连接CM 交AB 于N 点,若tan ∠ABC =12,求CNMN.解析:(1)连CD ,OC ,则∠OBC =∠OCB ,又∠BAD =∠BCD ,∴∠DCO =∠BCO ,∴OC ⊥BD , ∴弧BC =弧CD .(2)过C 点作CH ⊥AB 于点H ,设CH =1,BH =2,则12+(2-R )2=R 2,∴R =54, OH =2-54=34, ∴tan ∠COA =13/4=43=BM 2R ,∴BM =103.A BC△MBN∽△CHN,CNMN=310.22. (10分)某科技公司用160 万元作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售. 已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分. 设公司销售这种电子产品的年利润为s(万元). (注:若上一年盈利,则盈利不计人下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1) 请求出y(万件)与x(元/件)之间的函数关系式;(2) 求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3) 假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.23. (10分)如图1,在□ABCD 中,点E 在AB 上,点F 在直线AD 上,∠ECF =∠B =α. (1) 若α=90°,求证:CE CF =BC CD; (2) 如图2,若α≠90°,求证:CE CF =BC CD; (3) 如图3,若AC ⊥EF ,且CF CD =34,EM ⊥BC ,求tan ∠EMF 的值.解:(1)证△CBE ≌△CDF ;(2) 过C 作CH ⊥AB 于H ,CN ⊥AD 于N ,易证△CBH ∽△CDN ,∴CB CD =CHCN ,又∵△CEH ∽△CNF ,∴CE CF =CH CN =CBCD(3) 由(2)知CE CF =BC CD ,∴△ABC ∽△CEF ,∴EF AC =CF CD =34,作CN ⊥AD 于N ,延长ME 交直线AD 于K ,则∠AFE =∠ACN ,∴△EFK ∽△ACN , ∴FK CN =EF AC =34,tan ∠EMF =34.24. (12分)已知抛物线y =ax 2+n 过A (-2,0)和C (-1,-3)两点,交x 轴于另一点B . (1) 求抛物线的解析式;(2) 如图1,点P 在抛物线上,P A 、PB 交y 轴于M 、N ,若M 、N 的纵坐标分别为m 、n ,求m 、n 的关系;(3) 如图2,过C 作直线CF 、CE 分别交x 轴于M 、N ,且CM =CN ,交抛物线于E 、F 两点,若EF 的解析式为y =k 1x +b ,求k 1的值.解:(1)y =x 2-4;(2)设P A 的解析式为y =kx +2k , 与y =x 2-4联立,得x 2-kx -2k -4=0, 即:-2x P =-2k -4,∴x P =k +2.同理,设PB 的解析式为y =tx -2t ,得x P =t -2. ∴k +2=t -2, k -t =-4.又可得m =2k ,n =-2t ,∴m +n =2(k -t )=-8.(3) 过C 作CG ⊥y 轴,EG ⊥CG 于G ,FH ⊥CG 于H ,设E (n ,n 2-4),F (t ,t 2-4). 由tan ∠ECG =tan ∠FCG ,得n 2-4+3n +1=-3-(t 2-4)t +1,∴n +t =2.联立y =x 2-4、y =k 1x +b ,得:x 2-k 1x -(b +4)=0,∴k 1=n +t =2.。

2020年江西中考数学模拟试卷(四)

2020年江西中考数学模拟试卷(四)

中考数学模拟试卷(时间:120分钟,满分:120分).、选择题(共 6小题,每小题 3分,满分18分,每小题只有一个正确的选项)1 .实数3的倒数是( )A. - -iB.1C. - 3D. 33 32 .下列图形中,随机抽取一张是轴对称图形的概率是()B- 23 .如图是由四个小正方体叠成的一个立体图形,那么它的俯视图是(4 .已知点M (1-2mx m-1)在第四象限,则 m 的取值范围在数轴上表示正确的是()5 .如图所示,△ OAC^ABAD 都是等腰直角三角形,/ ACOhADB=90 ,反比例函数过点B,与OA 交于点P,且OA-Ad=18,则点P 的横坐标为()D. 1D.-A- 0, 1在第一象限的图象经A. 9 B . 6 C . 3 D . 3,f26.(3分)如图,二次函数y=ax2+bx+c (aw 0)的图象的顶点在第一象限,且过点(0, 1)和(-1, 0),下列结论:①abv0,②b2>4,③0va+b+cv 2,④0V b< 1,⑤当x>-1时,y >0.其中正确结论的个数是()A. 2个B. 3个C. 4个D. 5个二、填空题(本小题共6小题,每小题3分,共18分)7.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,500亿用科学记数法表示为 .8.已知关于x的方程2x2+ax+a-2=0.当该方程的一个根为1时,则a的值为,该方程的另一根为9.如图,正八边形ABCDEFGH内接于。

O,则/ DAE的度数是 .A HD E10.如图,在矩形ABCD43, AB=4,点E, F分别在BC, CD上,将△ ABE沿AE折叠,使点B落在AC上的点B'处, 又将△ CEF沿EF折叠,使点C落在直线EB'与AD的交点C'处,DF=.- 上一一•,、一一一••••一山山—11.二次函数产了工的图象如图所不,点A0位于坐标原点,点A I, A2, A3,…,A2011在y轴的正半轴上,点B I ,B2, B3,…,B2011在二次函数y=T-K 位于第一象限的图象上,若^ A0B1A1, AA I B2A2, AA2B3A3,…,△ A2010B 2011A2011 都为等边三角形,则A A2010B2011A2011 的边长=12.如图,在Rt^ABC中,/AC由90°, / B= 30°, AC= 2, E为斜边AB的中点,点P在射线.BC上,连接AP、PE,将4AEP沿PE所在直线折叠,得到△ EPA ,当△ EPA与△ BEP 的重叠部分的面积恰好为△ ABP面积的四分之一,则此时BP的长为.三、解答题(本大题共5个小题,每小题6分,共30分)2 1—x + -y = 2 ①13.(1)解方程组:3 2.x-3y=- 27 ②1(2)先化简,再求值:x(x+2) — (x+1)(x — 1),其中x= —2.14.如■■图。

2020年中考数学全真模拟试卷(四)(解析版)

2020年中考数学全真模拟试卷(四)(解析版)

2020年中考数学全真模拟试卷(四)(考试时间:90分钟;总分:120分)班级:___________姓名:___________座号:___________分数:___________一、单选题(每小题3分,共30分)1.12-的值是()A.12-B.12C.2-D.2【答案】B【解析】根据绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0即可求解【详解】根据负数的绝对值是它的相反数,得11 22 -=.故选B.【点睛】本题考查了绝对值的性质,熟练掌握绝对值的定义和性质是解题的关键.2.某区公益项目“在线伴读”平台开通以来,累计为学生在线答疑15000次.用科学记数法表示15000是()A.0.15×106B.1.5×105C.1.5×104D.15×105【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:用科学记数法表示15000是:1.5×104.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、不是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.【点睛】此题主要考查对轴对称图形和中心对称图形的识别,熟练掌握,即可解题.4.如图,几何体的左视图是( )A.B.C.D.【答案】A【解析】根据从左边看得到的图形是左视图,可得答案.【详解】解:如图所示,其左视图为:.故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.5.某班体育课上老师记录了7位女生1分钟仰卧起坐的成绩(单位:个)分别为:28,38,38,35,35,38,48,这组数据的中位数和众数分别是()A.35,38B.38,38C.38,35D.35,35【答案】B【解析】出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.【详解】把这些数从小到大排列为:28,35,35,38,38,38,48,最中间的数是38,则中位数是38;∵38出现了3次,出现的次数最多,∵这组数据的众数是38;故选B.【点睛】此题考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数;众数是一组数据中出现次数最多的数.6( )A.5B C.±5D.【答案】A【解析】根据算术平方根的定义即可求解.【详解】故答案选A..【点睛】本题考查的知识点是算术平方根,解题的关键是熟练的掌握算术平方根.7.正八边形的每一个外角的度数是()A .30B .45︒C .60︒D .135︒ 【答案】B【解析】根据多边形的外角和为360度,再用360度除以边数即可得到每一个外角的度数.【详解】∵多边形的外角和为360度,∵每个外角度数为:360°÷8=45°,故选:B .【点睛】考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数直接让360度除以外角.8.关于x 的一元二次方程210ax x +-=有实数根,则a 的取值范围是()A .14a >-B .14a ≥-C .14a ≥-且0a ≠D .14a >-且0a ≠ 【答案】C【解析】从两方面考虑①方程要是一元二次方程,则二次项系数不能为0;②利用根的判别式∵≥0列出不等式求解.【详解】解:要使方程210ax x +-=为一元二次方程则a≠0此时∵关于x 的方程210ax x +-=有实数根,∵214(1)140a a =-⨯⨯-=+解得:14 a-,故答案为14a≥-且0a≠,选C.【点睛】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,∵≥0.在本题中切记二次项系数不能为0.9.一元一次不等式组的解集在数轴上表示为()A.B.C.D.【答案】A【解析】试题分析:解不等式①得:x>﹣1,解不等式②得:x≤2,∵不等式组的解集是﹣1<x≤2,表示在数轴上,如图所示:.故选A.考点:解一元一次不等式组;在数轴上表示不等式的解集.10.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE△AB于E,PF△AC于F,则EF的最小值为( )A.2B.2.2C.2.4D.2.5【答案】C【解析】根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【详解】连接AP,∵在∵ABC中,AB=3,AC=4,BC=5,∵AB2+AC2=BC2,即∵BAC=90°,又∵PE∵AB于E,PF∵AC于F,∵四边形AEPF是矩形,∵EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∵EF的最小值为2.4,故选:C.【点睛】本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.二、填空题(每小题4分,共28分)11.分解因式:24xy x -=_________________.【答案】x (y+2)(y -2)【解析】首先提公因式x ,然后利用平方差公式分解即可;【详解】解:224)4(2)((2)x y x y y y x x --+-==故答案为:x (y+2)(y -2)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 12有意义时,x 应满足的条件是______. 【答案】8x >.【解析】直接利用二次根式的定义和分数有意义求出x 的取值范围.【详解】有意义,可得:80x ->,所以8x >, 故答案为:8x >.【点睛】本题考查了二次根式有意义的条件,熟练掌握是解题的关键.13.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为______个. 【答案】24【解析】分析:首先设黄球的个数为x 个,根据题意得:1212x +=13,解此分式方程即可求得答案. 详解:设黄球的个数为x 个, 根据题意得:1212x +=13, 解得:x =24,经检验:x =24是原分式方程的解;∵黄球的个数为24.故答案为24点睛:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.已知点(1 )A a ,,(2 )B b ,在反比例函数2y x=-的图象上,则a ,b 的大小关系是__________. 【答案】a b <【解析】由反比例函数y =-2x可知函数的图象在第二、第四象限内,可以知道在每个象限内,y 随x 的增大而增大,根据这个判定则可.【详解】∵反比例函数中y =-2x中20k =-<, ∵此函数的图象在二、四象限内,在每个象限内,y 随x 的增大而增大,∵0<1<2,∵A、B两点均在第四象限,∵a<b.故答案为:a<b.【点睛】本题考查了反比例函数图象上点的坐标特征,熟练掌握该特征是本题解题的关键.15.如图,把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若△EFG=50°,则△2=_________.【答案】100°【解析】试题解析:如图,∵长方形纸片ABCD的边AD∵BC,∵∵3=∵EFG=50°,根据翻折的性质,∵1=180°-2∵3=180°-2×50°=80°,又∵AD∵BC,∵∵2=180°-∵1=180°-80°=100°.16.如图,已知△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点,如果点M在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点N在线段CA上由C点向A点运动,若使△BDM与△CMN全等,则点N的运动速度应为_____厘米/秒.【答案】2或3【解析】分两种情形讨论①当BD=CM=6,BM=CN时,∵DBM∵∵MCN,②当BD=CN,BM=CM时,∵DBM∵∵NCM,再根据路程、时间、速度之间的关系求出点N的速度.【详解】解:∵AB=AC,∵∵B=∵C,①当BD=CM=6厘米,BM=CN时,∵DBM∵∵MCN,∵BM=CN=2厘米,t=22=1,∵点N运动的速度为2厘米/秒.②当BD=CN,BM=CM时,∵DBM∵∵NCM,∵BM=CM=4厘米,t=42=2,CN=BD=6厘米,∵点N 的速度为:62=3厘米/秒. 故点N 的速度为2或3厘米/秒.故答案为2或3.【点睛】本题考查等腰三角形的性质、全等三角形的判定和性质,用分类讨论是正确解题的关键.17.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线143y x =-+上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S n =_____.【答案】194n -(或2292n -) 【解析】分别过点P 1、P 2、P 3作x 轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【详解】如图,分别过点P 1、P 2、P 3作x 轴的垂线段,垂足分别为点C 、D 、E ,∵P 1(3,3),且∵P 1OA 1是等腰直角三角形,∵OC=CA 1=P 1C=3,设A 1D=a ,则P 2D=a ,∵OD=6+a ,∵点P 2坐标为(6+a ,a ),将点P 2坐标代入y=-13x+4,得:-13(6+a )+4=a , 解得:a=32, ∵A 1A 2=2a=3,P 2D=32, 同理求得P 3E=34、A 2A 3=32, ∵12311391339639,3,222422416S S S =⨯⨯==⨯⨯==⨯⨯=、…… ∵S n =194n -(或2292n -). 故答案为194n -(或2292n -). 【点睛】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题.三、解答题一(每小题6分,共18分)18.计算:201()2sin30(20172-︒--. 【答案】2【解析】分析:根据负整指数幂的的性质,二次根式的性质,特殊角的三角函数值,零次幂的性质求解即可. 详解:原式=142212-+⨯-=2.点睛:此题主要考查了实数的混合运算,关键是熟记并灵活运用负整指数幂的的性质,二次根式的性质,特殊角的三角函数值,零次幂的性质计算即可.19.先化简,再求值:,其中满足【答案】原式=x 2−1−x2+2xx(x+1)×(x+1)2x(2x−1)=x+1x2∵∵x2=x+1原式=x+1x+1=1【解析】试题分析:先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后整体代入求值.原式=·原式=1.考点:分式的化简求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.20.如图,在△ABC中,△ABC=80°,△BAC=40°,AB的垂直平分线分别与AC、AB交于点D、E.(1)在图中作出AB的垂直平分线DE,并连接BD.(2)证明:△ABC△△BDC.【答案】(1)见解析(2)证明见解析【解析】(1)分别以A、B为圆心,大于12AB的长为半径画弧,两弧交于两点,过两点作直线,即为AB的垂直平分线;(2)由线段垂直平分线的性质,得DA=DB,则∵ABD=∵BAC=40°,从而求得∵CBD=40°,即可证出∵ABC∵∵BDC.【详解】(1)如图,DE即为所求;(2)∵DE是AB的垂直平分线,∵BD=AD,∵∵ABD=∵A=40°,∵∵DBC=∵ABC﹣∵ABD=80°﹣40°=40°,∵∵DBC=∵BAC,∵∵C=∵C,∵∵ABC∵∵BDC.【点睛】本题考查了作图——基本作图,相似三角形的判定,线段垂直平分线的性质,熟练掌握相关的性质与判定定理是解题的关键.四、解答题二(每小题8分,共24分)21.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?【答案】(1)2013;2016;(2)54°;(3)460人;(4)20400人【解析】(1)由图中的数据进行判断即可;(2)先求得“短跑”在扇形图中所占的百分比为15%,进而得到α=360°×15%=54°;(3)依据2017年抽取的学生总数,即可得到喜欢羽毛球和短跑的学生数量;(4)依据喜欢乒乓球和羽毛球两项运动的百分比,即可估计我市2017年喜欢乒乓球和羽毛球两项运动的人数.【详解】解:(1)由图可得,2013年抽取的调查人数最少;2016年抽取的调查人数中男生、女生人数相等;故答案为:2013,2016;(2)1﹣35%﹣10%﹣15%﹣25%=15%,∵α=360°×15%=54°;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有(600+550)×(25%+15%)=460(人);(4)我市2017年喜欢乒乓球和羽毛球两项运动的大约有34000×(25%+35%)=20400(人).【点睛】本题考查的是折线统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.折线统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【答案】(1)每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个(2)3【解析】(1)根据“每辆大客车的乘客座位数-小客车乘客座位数=15;6辆大客车乘客+5辆小客车乘客=310”列出二元一次方程组解之即可.(2)根据题意,设租用a辆小客车才能将所有参加活动的师生装载完成,利用“大客车乘客+小客车乘客≥310+20”解之即可.【详解】(1)设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y个,根据题意,得15 56310 y xx y-=⎧⎨+=⎩解得2035 xy=⎧⎨=⎩答:每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个.(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则20a+35(11-a)≥310+20,解得a≤32 3 ,符合条件的a的最大整数为3.答:租用小客车数量的最大值为3.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解决本题的关键是找到题目中蕴含的数量关系. 23.如图1,在Rt△ABC中,△ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE的中点,联结CM,点G在线段CM上,作△GDN=△AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)如图1,当点G和点M、C不重合时,求证:DG=DN.【答案】(1)见解析;(2)见解析【解析】本题主要考查菱形及全等三角形的应用(1)先由MD为BE的中位线,可证MD∵EN且MD=12BE,又∵GDN+∵DNE=180°,可证四边形MDNE为平行四边形,从而可证平行四边形DMEN为菱形(2)取BE中点F,连接DM,DF,利用(1)的结论可证∵DMG∵∵DFN,即可得出答案【详解】证明:(1)如图2中,∵AM=ME.AD=DB,∵DM∵BE,∵∵GDN+∵DNE=180°,∵∵GDN=∵AEB,∵∵AEB+∵DNE=180°,∵AE∵DN,∵四边形DMEN是平行四边形,∵11,,22DM BE EM AE AE BE,∵DM=EM,∵四边形DMEN是菱形.(2)如图1中,取BE的中点F,连接DM、DF.由(1)可知四边形EMDF是菱形,∵∵AEB=∵MDF,DM=DF,∵∵GDN=∵AEB,∵∵MDF=∵GDN,∵∵MDG=∵FDN,∵∵DFN=∵AEB=∵MCE+∵CME,∵GMD=∵EMD+∵CME,、在Rt∵ACE中,∵AM=ME,∵CM=ME,∵∵MCE=∵CEM=∵EMD,∵∵DMG=∵DFN,∵∵DMG∵∵DFN,∵DG=DN.【点睛】本题的关键是掌握菱形的性质及判断以及全等三角形的判定五、解答题三(每小题10分,共20分)24.平行四边形ABCD的对角线相交于点M,△ABM的外接圆交AD于点E且圆心O恰好落在AD边上,连接ME,若△BCD=45°(1)求证:BC为△O切线;(2)求△ADB的度数;(3)若ME=1,求AC的长.【答案】(1)详见解析;(2)∵ADB=30°;(3)AC=2AM=【解析】(1)连接OB,根据平行四边形的性质得到∵BAD=∵BCD=45°,根据圆周角定理得到∵BOD=2∵BAD =90°,根据平行线的性质得到OB∵BC,即可得到结论;(2)连接OM,根据平行四边形的性质得到BM=DM,根据直角三角形的性质得到OM=BM,求得∵OBM =60°,于是得到∵ADB=30°;(3)连接EM,过M作MF∵AE于F,根据等腰三角形的性质得到∵MOF=∵MDF=30°,设OM=OE=r,解直角三角形即可得到结论.【详解】(1)证明:连接OB,∵四边形ABCD是平行四边形,∵∵BAD=∵BCD=45°,∵∵BOD=2∵BAD=90°,∵AD∵BC,∵∵DOB+∵OBC=180°,∵∵OBC=90°,∵OB∵BC,∵BC为∵O切线;(2)解:连接OM ,∵四边形ABCD 是平行四边形,∵BM =DM ,∵∵BOD =90°,∵OM =BM ,∵OB =OM ,∵OB =OM =BM ,∵∵OBM =60°,∵∵ADB =30°;(3)解:连接EM ,过M 作MF ∵AE 于F ,∵OM =DM ,∵∵MOF =∵MDF =30°,设OM =OE =r ,1,2FM r OF ∴==EF r ∴= 222EF FM EM +=221122r r r ⎛⎫⎛⎫∴-+= ⎪ ⎪ ⎪⎝⎭⎝⎭解得:r∵AE =2r =∵AE是∵O的直径,∵∵AME=90°,∵AM∵AC=2AM=【点睛】本题考查了切线的判定,圆周角定理,平行四边形的性质,等腰直径三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.25.如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为254时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.【答案】(1)A(﹣1,0),y=ax+a;(2)y=25x2﹣45x﹣65;(3)以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1,7)或(1,4).【解析】(1)由抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于两点A、B,求得A点的坐标,作DF∵x轴于F,根据平行线分线段成比例定理求得D的坐标,然后利用待定系数法即可求得直线l的函数表达式.(2)设点E(m,ax2﹣2ax﹣3a),知HE=(ax+a)﹣(ax2﹣2ax﹣3a)=﹣ax2+3ax+4a,根据直线和抛物线解析式求得点D的横坐标,由S∵ADE=S∵AEH+S∵DEH列出函数解析式,根据最值确定a的值即可;(3)分以AD为矩形的对角线和以AD为矩形的边两种情况利用矩形的性质确定点P的坐标即可.【详解】解:(1)令y=0,则ax2﹣2ax﹣3a=0,解得x1=﹣1,x2=3∵点A在点B的左侧,∵A(﹣1,0),如图1,作DF∵x轴于F,∵DF ∵OC , ∵OF CD OA AC=, ∵CD =4AC , ∵4,OF CD OA AC== ∵OA =1,∵OF =4,∵D 点的横坐标为4,代入y =ax 2﹣2ax ﹣3a 得,y =5a ,∵D (4,5a ),把A 、D 坐标代入y =kx +b 得045,k b k b a -+=⎧⎨+=⎩解得,k a b a =⎧⎨=⎩∵直线l 的函数表达式为y =ax +a .(2)如图2,过点E 作EH ∵y 轴,交直线l 于点H ,设E (x ,ax 2﹣2ax ﹣3a ),则H (x ,ax +a ).∵HE =(ax +a )﹣(ax 2﹣2ax ﹣3a )=﹣ax 2+3ax +4a ,由223y ax a y ax ax a =+⎧⎨=--⎩得x =﹣1或x =4, 即点D 的横坐标为4,∵S ∵ADE =S ∵AEH +S ∵DEH =52(﹣ax 2+3ax +4a )253125228a x a ⎛⎫=--+ ⎪⎝⎭. ∵∵ADE 的面积的最大值为1258a , ∵12525,84a = 解得:25a =, ∵抛物线的函数表达式为y =25x 2﹣45x ﹣65(3)已知A (﹣1,0),D (4,5a ).∵y =ax 2﹣2ax ﹣3a ,∵抛物线的对称轴为x =1,设P (1,m ),①若AD为矩形的边,且点Q在对称轴左侧时,则AD∵PQ,且AD=PQ,则Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∵∵ADP=90°,∵AD2+PD2=AP2,∵52+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,即a2=17,∵a>0,∵a,∵P1(1,7),②若AD为矩形的边,且点Q在对称轴右侧时,则AD∵PQ,且AD=PQ,则Q(4,5a),此时点Q与点D重合,不符合题意,舍去;③若AD是矩形的一条对角线,则AD与PQ互相平分且相等.∵x D+x A=x P+x Q,y D+y A=y P+y Q,∵x Q=2,∵Q(2,﹣3a).∵y P=8a∵P(1,8a).∵四边形APDQ为矩形,∵∵APD=90°∵AP2+PD2=AD2∵(﹣1﹣1)2+(8a)2+(1﹣4)2+(8a﹣5a)2=52+(5a)2即a2=14,∵a>0,∵a=1 2∵P2(1,4)综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1)或(1,4).【点睛】本题是二次函数的综合题,考查了待定系数法求一次函数的解析式,二次函数图象上点的坐标特征,以及矩形的判定,根据平行线分线段成比例定理求得D的坐标是本题的关键.。

湖北武汉2020年中考数学模拟试卷 四(含答案)

湖北武汉2020年中考数学模拟试卷 四(含答案)

湖北武汉2020年中考数学模拟试卷 四一、选择题1.-|-32|的相反数是( )A.32 B.-23 C.23 D.-32 2.式子在实数范围内有意义,则x 的取值范围是( )A .x >0 B .x ≥-1 C .x ≥1 D .x ≤13.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( )A.61 B.31 C.21 D.324.下列轴对称图形中,对称轴条数最少的是( )A.等腰直角三角形B.等边三角形C.正方形D.长方形5.如图所示,右面水杯的俯视图是( )6.园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S (m )2与工作时间t (h )的函数关系的图象如图所示,则休息后园林队每小时绿化面积为( )A.100m 2B.50m 2C.80m 2D.40m 27.在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是( )A.12 B.13 C.14 D.168.反比例函数y=0.5kx -1(k 为非零常数)的图象在其所在象限内,y 的值随x 值的增大而增大,那么函数y=2k -1xx 的图象经过第( )象限.A.一、二B.一、三C.二、三D.二、四9.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣4B.C.π﹣2D.10.如图,在第1个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是( )二、填空题11.a是9的算术平方根,而b的算术平方根是4,则a+b= 12.甲、乙两人进行射击测试,每人20次射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=2.5,则射击成绩较稳定的是(填“甲”或“乙”).13.约分:=14.如图,△ABC中,如果AB=30,BC=24,AC=27,DN∥GM∥AB,EG∥DF∥AC,则图中阴影部分的三个三角形周长之和为________.15.如图,抛物线y=﹣2x2+2与x轴交于点A、B,其顶点为E.把这条抛物线在x轴及其上方的部分记为C1,将C1向右平移得到C2,C2与x轴交于点B、D,C2的顶点为F,连结EF.则图中阴影部分图形的面积为 .三、计算题16.计算:(x4)3+(x3)4﹣2x4•x8四、解答题17.如图,在△ABC中,AB=AC.D 是BC上一点,且AD=BD.将△ABD绕点A逆时针旋转得到△ACE.(1)求证:AE∥BC;(2)连结DE,判断四边形ABDE的形状,并说明理由.18.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA19.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:(1)本次调查一共随机抽取了 个参赛学生的成绩;(2)表1中a= ;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是 ;(4)请你估计,该校九年级竞赛成绩达到80分以上的学生约有 人.表1 知识竞赛成绩分组统计表20.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(不需求出利润的最大值)(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)五、作图题21.如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP= .六、综合题22.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是弧AB的中点,求EG•ED的值.23.如图,在矩形ABCD中,AB=6,BC=8,点P从点B出发以每秒2个单位长度的速度向终点C 运动,点P不与点B重合,以BP为边在BC上方作正方形BPEF,设正方形BPEF与△ABC的重叠部分图形的面积为S(平方单位),点P的运动时间为t(秒).(1)用含t的代数式表示线段PC的长;(2)当点E落在线段AC上时,求t的值;(3)在点P运动的过程中,求S与t之间的函数关系式;(4)设边BC的中点为O,点C关于点P的对称点为C′,以OC′为边在BC上方作正方形OC ′MN,当正方形OC′MN与△ACD重叠部分图形为三角形时,直接写出t的取值范围.24.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.参考答案1.答案为:A.2.答案为:C.3.答案为:B 4.A5.D6.B7.答案为:C.8.D9.C10.答案为:C.11.答案为:19,12.答案为:乙.13.答案为:14.8115.答案为:4.16.原式=0;17.(1)证明:由旋转性质得∠BAD=∠CAE,∵AD=BD,∴∠B=∠BAD,∵AB=AC,∴∠B=∠DCA;∴∠CAE=∠DCA,∴AE∥BC.(2)解:四边形ABDE是平行四边形,理由如下:由旋转性质得AD=AE,∵AD=BD,∴AE=BD,又∵AE∥BC,∴四边形ABDE是平行四边形.18.证明:因为AOM与MOB都为直角三角形、共用OM,且∠MOA=∠MOB所以MA=MB所以∠MAB=∠MBA因为∠OAM=∠OBM=90度所以∠OAB=90-∠MAB ∠OBA=90-∠MBA所以∠OAB=∠OBA19.解:(1)本次调查一共随机抽取学生:18÷36%=50(人),故答案为50;(2)a=50﹣18﹣14﹣10=8,故答案为8;(3)本次调查一共随机抽取50名学生,中位数落在C组,故答案为C;(4)该校九年级竞赛成绩达到80分以上的学生有500×=320(人),故答案为320.20.21.解:如图:(1)作出线段B1、C1连接即可;(2)画出直线CD,点D坐标为(﹣1,﹣4),(3)连接PB,∵PB2=BC2=12+32=10,PC2=22+42=20,∴PB2+BC2=PC2,∴△PBC为等腰直角三角形,∴∠PCB=45°,∴tan∠BCP=1,故答案为1.22.解:(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=AE2=18.23.解:(1)BP=2t,PC=BC﹣BP=8﹣2t,∵,∴0<t≤4.故PC=﹣2t+8(0<t≤4).(2)当点P落在线段AC上时,∵EP∥AB,∴△CPE∽△CBA,∴,即,解得:t=.(3)按P点运动的过程中正方形BPEF与△ABC的重叠部分图形的形状不同分3种情况考虑:①当0<t≤时,如图1所示.此时S=BP2=(2t)2=4t2;②当<t≤3时,如图2所示.此时BF=BP=2t,PC=8﹣2t,AF=6﹣2t,∵NP∥AB,FM∥BC,∴△CNP∽△CAB∽△MAF,∴,∴NP=PC=6﹣t,FM=AF=8﹣t.S=BC•AB﹣PC•NP﹣FM•AF=×6×8﹣(8﹣2t)(6﹣t)﹣(8﹣t)(6﹣2t)=﹣+28t﹣24;③当3<t≤4时,如图3所示.∵PQ∥AB,∴△CPQ∽△CBA,∴,∴PQ=PC=6﹣t.S=BC•AB﹣PC•PQ=×8×6﹣(8﹣2t)(6﹣t)=﹣t2+12t.(4)根据P点的运动,画出正方形OC′MN与△ACD重叠部分图形为三角形时的临界点.①当P点开始往右移动时,正方形OC′MN与△ACD重叠部分图形为三角形,达到图4所示情况时不再为三角形.此时:OC′=ON,∵点O为线段BC的中点,ON∥AB,∴ON为△CAB的中位线,∴OC′=ON=AB=3,CC′=OC′+OC=3+4=7,∴PC=CC′==8﹣2t,解得:t=.即0<t<;②当P点运动到图5所示情况时,正方形OC′MN与△ACD重叠部分图形开始为三角形.此时MC′=CC′=OC′,OC=OC′+CC′=4,∴MC′=,CC′=,∴PC=CC′==8﹣2t,解得:t=;③当P点运动到图6所示情况,正方形OC′MN与△ACD重叠部分图形为三角形,P再运动一点时不再为三角形.此时OC′=ON=AB=3,CC′=OC﹣OC′=4﹣3=1,∴PC=CC′==8﹣2t,解得:t=.综上知:当正方形OC′MN与△ACD重叠部分图形为三角形时,t的取值范围为:0<t<和<t≤.24.解:(1)∵A点为直线y=x+1与x轴的交点,∴A(﹣1,0),又B点横坐标为2,代入y=x+1可求得y=3,∴B(2,3),∵抛物线顶点在y轴上,∴可设抛物线解析式为y=ax2+c,把A、B两点坐标代入可得,解得,∴抛物线解析式为y=x2﹣1;(2)△ABM为直角三角形.理由如:由(1)抛物线解析式为y=x2﹣1可知M点坐标为(0,﹣1),∴AM=,AB===3,BM==2,∴AM2+AB2=2+18=20=BM2,∴△ABM为直角三角形;(3)当抛物线y=x2﹣1平移后顶点坐标为(m,2m)时,其解析式为y=(x﹣m)2+2m,即y=x2﹣2mx+m2+2m,联立y=x,可得,消去y整理可得x2﹣(2m+1)x+m2+2m=0,∵平移后的抛物线总有不动点,∴方程x2﹣(2m+1)x+m2+2m=0总有实数根,∴△≥0,即(2m+1)2﹣4(m2+2m)≥0,解得m≤,即当m≤时,平移后的抛物线总有不动点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年武汉新观察中考数学模拟卷(四)一、选择题(共10小题,每小题3分,共30分) 1.有理数-3的绝对值为( )A .-3B .3C . 13D .- 13【答案】B .2.二次根式x -1有意义,则x 为( )A .x ≤1B .x >1C .x ≥1D .x ≠1 【答案】C .3.一个不透明的袋子中只有1个黑球,2个白球,每个球除颜色外都相同,从中任意换出2个球, 下列事件为必然事件的是( )A .有1个球是黑球B .有1个球是白球C . 2个都是黑球D .2个都是白球 【答案】B .4.如图是由5个相同的小正方体组成的几何体,该几何题的左视图是( )A .B .C .D .【答案】A .5.下列标志中,既是中心对称图形,又是轴对称图形的是( ) A . B .C .D .【答案】A .6.在反比例函数y =1-kx 图象的每一支上,y 都随x 的增大而增大,则k 的取值范围是( )A . k <0B . k <1C . k >0D . k >1 【答案】D .7.某校有甲、乙两辆校车接送教师上、下班,现在有A 、B 两名教师各自随机选择搭乘一辆校车返程回家,两名教师刚好搭乘同一辆校车的概率是( )A . 12B . 14C . 34D . 13【答案】A .8.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校. 如图描述了他上学的情景,下列说法中错误的是( ) A .修车时间为15分钟 B .学校离家的距离为2000米C .到达学校时共用时间20分钟D .自行车发生故障时离家距离为1000米 【答案】A .D E A B O C9. 如图,⊙O 的直径为13,弦AB =12,∠ACB =90°,AC 、BC 分别交⊙O 于D 、E 两点, 则DE 的长为( ) A . 6 B . 6.5 C . 5 D . 4 2 【答案】C .10. 如图,将面积为1的正方形平均分成两个矩形,其中一个矩形的面积记为S 1,再将另一个矩形平均分成两个正方形,其中一个正方形的面积记为S 2,……,按这种方式一直分下去,则1S 1+1S 2+1S 3+1S 4+……+1S 2020的值为( ) A . 20192020 B . 22020-2 C . 22021-2 D . 22021-222020-2【答案】C .二、填空题(每小题3分,共18分) 11. 计算41的结果为____________. 【答案】12.12.小刚参加射击比赛,成绩统计如表所示:则小刚本次射击成绩的中位数是____________. 【答案】8.5.13.计算: 3396922+--+--x x x x x =_______________. 【答案】12xx 2-9.14.如图,在△ABC 中,∠B =40°,将△ABC 绕点A 逆时针旋转至△ADE 处,使点B 落在BC 的延长线上的D 点处,则∠BDE =_________. 【答案】80°.第14题 第16题15.二次函数y =ax 2+bx +c (a 、b 、c 为常数,a ≠0)中,x 与y 的部分对应值如下表:当m >0,n <0时,下列结论:① b +2a =0;② at 2+bt -a -b ≥0;③ 4ac -b24a<0; ④ a +c >b . 其中一定正确的是_____________. 【答案】①②③.16.如图,菱形ABCD 中,∠ABC =∠BEA =60°,AE =2,BE =6. 连DE ,则DE =_________. 【答案】4 3 .提示:作AM =AE ,∠EAM =120°可得△AED ≌△ABM ,BM = DE =12+36 =4 3三、解答题(共8题,共72分)17. (8分)计算:[x 4·x 2-(-3x 3)2]÷4x 6. 解:原式=-2.成绩(环) 6 7 8 9 10 次数 12232x 0 -2 2 y n m n18.(8分)如图,在四边形ABCD 中,∠A =∠C =90°,BE 平分∠ABC , DF 平分∠ADC . 求证:BE ∥DF . 解:略.19.(8分)某校在校园文化艺术节期间,举办了A 合唱,B 群舞,C 书法,D 演讲共四个项目的比赛,要求每位学生必须参加且仅参加一项,小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图,请根据统计图中信息解答下列问题: (1)本次调查的学生总人数是__________人; (2)请将条形统计图补充完整;(3)若全校共有1800名学生,请估计该校报名 参加书法和演讲比赛的学生共有多少人?解:(1)本次调查的学生总人数是120÷60% =200(人) ; (2)C 项目人数为200-(120+52+8)=20(人) ; (3)估计该校报名参加书法和演讲比赛的学生共有1800×20+8200=252(人).20. (8分)如图,△ABC 的三个顶点在格点上, 用无刻度的直尺在网格上画图.(1)在BC 上找一点D ,使AD 平分∠BAC ; (2)直接写出BDCD的值___________;(3)在直线AD 上找一点E ,连CE ,使CE ∥AB .解:(1)取点M ,使BM // AC ,BM =AB ,连AM 交BC 于D ;(2) 54;(3)在BM 上取点N ,在AC 的延长线取点P , 使CP =MN =1,连CN 交AD 于E .21. (8分)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两点,∠DAB =2∠ABC , 过点B 作⊙O 的切线交AD 的延长线于M . (1)求证:弧CD =弧BC ; (2)连接CM 交AB 于N 点,若tan ∠ABC =12,求CNMN.解析:(1)连CD ,OC ,则∠OBC =∠OCB ,又∠BAD =∠BCD ,∴∠DCO =∠BCO ,∴OC ⊥BD , ∴弧BC =弧CD .(2)过C 点作CH ⊥AB 于点H ,设CH =1,BH =2,则12+(2-R )2=R 2,∴R =54, OH =2-54=34, ∴tan ∠COA =13/4=43=BM 2R ,∴BM =103.ABC△MBN∽△CHN,CNMN=310.22. (10分)某科技公司用160 万元作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售. 已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分. 设公司销售这种电子产品的年利润为s(万元). (注:若上一年盈利,则盈利不计人下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1) 请求出y(万件)与x(元/件)之间的函数关系式;(2) 求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3) 假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.23. (10分)如图1,在□ABCD 中,点E 在AB 上,点F 在直线AD 上,∠ECF =∠B =α. (1) 若α=90°,求证:CE CF =BC CD; (2) 如图2,若α≠90°,求证:CE CF =BC CD; (3) 如图3,若AC ⊥EF ,且CF CD =34,EM ⊥BC ,求tan ∠EMF 的值.解:(1)证△CBE ≌△CDF ;(2) 过C 作CH ⊥AB 于H ,CN ⊥AD 于N ,易证△CBH ∽△CDN ,∴CB CD =CHCN ,又∵△CEH ∽△CNF ,∴CE CF =CH CN =CBCD(3) 由(2)知CE CF =BC CD ,∴△ABC ∽△CEF ,∴EF AC =CF CD =34,作CN ⊥AD 于N ,延长ME 交直线AD 于K ,则∠AFE =∠ACN ,∴△EFK ∽△ACN , ∴FK CN =EF AC =34,tan ∠EMF =34.24. (12分)已知抛物线y =ax 2+n 过A (-2,0)和C (-1,-3)两点,交x 轴于另一点B . (1) 求抛物线的解析式;(2) 如图1,点P 在抛物线上,P A 、PB 交y 轴于M 、N ,若M 、N 的纵坐标分别为m 、n ,求m 、n 的关系;(3) 如图2,过C 作直线CF 、CE 分别交x 轴于M 、N ,且CM =CN ,交抛物线于E 、F 两点,若EF 的解析式为y =k 1x +b ,求k 1的值.解:(1)y =x 2-4;(2)设P A 的解析式为y =kx +2k , 与y =x 2-4联立,得x 2-kx -2k -4=0, 即:-2x P =-2k -4,∴x P =k +2.同理,设PB 的解析式为y =tx -2t ,得x P =t -2. ∴k +2=t -2, k -t =-4.又可得m =2k ,n =-2t ,∴m +n =2(k -t )=-8.(3) 过C 作CG ⊥y 轴,EG ⊥CG 于G ,FH ⊥CG 于H ,设E (n ,n 2-4),F (t ,t 2-4). 由tan ∠ECG =tan ∠FCG ,得n 2-4+3n +1=-3-(t 2-4)t +1,∴n +t =2.联立y =x 2-4、y =k 1x +b ,得:x 2-k 1x -(b +4)=0,∴k 1=n +t =2.。

相关文档
最新文档