MIDAS GTS 部份材料转换(等效刚度)

合集下载

MIDAS_GTS帮助文件-后处理

MIDAS_GTS帮助文件-后处理

概要GTS中的后处理操作是在后处理工作目录树(Post-Work Tree)、特性窗口(Property Window)、 后处理工具条(Toolbar)中进行。

后处理工作目录树(Post-Work Tree)后处理工作目录树中列有各种分析结果。

双击要查看的项目,则工作窗口上将显示等值线图,在后处理工作目录树上的关联菜单(在项目上按右键)上选择表格<Table>命令,则分析结果的内容将显示在表格上。

<后处理工作目录树的组成>在后处理工作目录树的上方有保存当前状态的图形表现设置事项的(Post Style)风格目录以及保存当前图形的表现方式以及数据类型的图形(Figure)目录。

z后处理风格(Post Style)目录中可以保存后处理图形表现的各种选项,可以用于查看其它数据结果时。

在后处理风格(Post Style)根目录上按鼠标右键,使用弹出的关联菜单中的保存当前后处理风格(<Save Current Post Style>)命令保存当前的图形表现设置。

当需要在当前窗口中适用保存的图形表现风格时,在相应风格名称上双击即可。

有关后处理风格的设置参见后处理风格(Post Style)。

z图形(Figure)将同时保存当前工作窗口模型的后处理风格和正在查看的结果数据。

将重要的数据或准备在计算书中使用的图形事先保存为图形时,会给后续的工作带来方便。

在图形(Figure)根目录上按鼠标右键,使用弹出的关联菜单中的保存结果图形(<Save Result Figure>)命令保存当前后处理风格和数据。

当需要重新查看图形内容时,在保存的图形名称上双击即可。

查看分析结果、修改图形的表现风格等操作也可在后处理工作条上进行。

各种图形表现的设置可在特性窗口(Property Window)进行。

后处理工具条(Toolbar)后处理操作的工具条有后处理数据工作条和后处理显示风格工具条。

Midas_GTS软件在边坡三维稳定分析中的应用_帅红岩

Midas_GTS软件在边坡三维稳定分析中的应用_帅红岩
(2)通过对边坡的有限元计算 , 该处边坡主要 的薄弱部位是含角砾粘土层 , 可能形成潜在的滑动 面 , 且可能从剪应力集中部位剪出 , 发生浅层滑动破 坏。
(3)通过用 M idas/G T S 模拟三维边坡 , 得到了 边坡变形 、最大剪应变的分布情况 , 从模拟结果可以 看出 , M idas/G T S 能够较好地模拟三维边坡的真实 情况 , 稳定性分析结果与实际相符 , 可以作为边坡稳 定性分析的一种有力可靠的工具和手段 。
帅红岩 、韩文喜 、赵晋乾 :M idas/ G TS 软件在边坡三维稳定分析中的应用
1 0 5
坏 , 同时可以得到坡体的破坏滑动面 。
3 边坡三维数值模型分析实例
3 .1 工程概况 该边坡最大高程约 540 m , 相对高差约 110 m ,
平均坡向 195°, 边坡下部较陡 , 中上部较缓 , 其下部 平均坡度约 40°, 中上部平均坡度约 30°, 局部形成 天然马道 , 植被发育 。 边坡出露地层主要为第四系 坡积粘土 、含碎石粘土 、含粘土块石 、含角砾粘土 、含 粘土碎石及志留系页岩组成 , 揭露覆盖层厚度 2 .20 ~ 38 .00 m , 页岩产状为 320°~ 344°∠56°~ 61°, 岩 层内倾 。 边坡东西两侧各发育一条冲沟 , 西侧冲沟 平时无流水 , 为降雨时边坡的主要排水通道 , 切割深 度约 3 m , 宽约 4 m ;东侧冲沟常年见流水 , 流量较 小 , 冲沟切割深度约 5 m , 宽约 5 m 。 边坡地下水埋 深较深 , 基本位于覆盖层中部 。 3 .2 物理力学参数的选取
4 结语
(1)工况 2 与工况 1 相比 , 由于地震水平加速 度的增大 , 使边坡的岩土体变得松散 , 粘聚力减小 , 边坡抗滑力降低 。暴雨的过程 , 一方面使岩土体孔 隙水压力骤然增大和潜在滑面的摩擦系数降低 , 岩 土体的有效应力降低 , 使抗滑力减少 ;另一方面由于 在坡体内部形成渗流场 , 加大边坡下滑力 。水平方 向位移 、总位移 、最大剪应变均不同程度的增大 , 稳 定性系数明显降低 , 工况 1 下稳定性 系数为 1.63 , 工况 2 下稳定性系数为 1.15 。

midas-gts数值分析方法介绍

midas-gts数值分析方法介绍
大或在横向有结构连接; B、地质条件沿地下结构纵向
变化较大,软硬不均; C、隧道线路存在急曲线。
七-3、抗震分析
2、反应位移法分析
1)计算荷载及其组合: A、地震作用(土层相对位移、结构惯性力和结构周围剪力作用),
可由一维土层地震反应分析得到;对于进行了工程场地地震安全 性评价工作的,应采用其得到的位移随深度的变化关系;对未进 行工程场地地震安全性评价工作的,可通过计算公式推算。 B、 非地震作用(土压、水压、自重等)取值、分类应按 《地铁设计规范》执行; C、抗震设计荷载组合应按《建筑抗震设计规范》规定执行。
或粘弹性人工边界等合理的人工边界条件,地震波通过约束边界输入。 当采用振动法输入时,一般采用输入基岩加速度,结构对于基岩
作相对运动,在结构上施加惯性力来实现,这是一种不考虑振动传播 时间的分析方法。
七-3、抗震分析
3、时程法分析 1)地震动参数。根据地勘或安评报告,选用地层动弹模、动泊
松比、加速度时程函数、地震持续时间等。采用三组50年超越概率为 10%地震(E2地震)的基岩加速度时程函数进行时程法分析,取其中 最不利影响结果与反应位移法结果比较。
地铁结构常用分析类型具体实例操作: 1、线性静力分析(荷载-结构模型); 2、施工阶段分析(地层-结构模型); 3、抗震分析。
七-2、施工阶段分析
1、一般问题可采用平面应变分析;涉及到不规则地下结构、交叉隧 道等空间问题需进程三维模型分析。 2、三维分析两种建模方法,分别生成六面体单元和四面体单元。
一般情况下,对于埋置于地层中的隧道和 地下车站结构,应按地面至剪切波速大于 500m/s且其下卧各岩土的剪切波速均不小于 500m/s的土层顶面的距离确定基岩面的深度
地震动峰值位移表 地震动峰值位移调整表

midas GTS NX的线性和非线性动力分析

midas GTS NX的线性和非线性动力分析
隧道爆破影响分析爆破影响分析线性时程分析图形01gtsnx的动力分析概要02自由场分析ffa03反应谱分析04二维等效线性分析05线性时程分析直接积分振型叠加06非线性时程分析直接积分法07非线性时程分析强度折减法08振动加速度级的输出非线性时程分析直接积分法非线性时程分析概要等效线性分析虽然对线性时程分析进行了改善但是不能模拟非线性特性较为明显的材料或接近共振的状态对于非线性特性较为明显的岩土材料需要使用非线性时程分析方法对于核电工业设施建筑桥梁地铁隧道等重要的工程需要进行上部结构下部基础地基的协同分析23线性等效线性非线性分析的应力应变关系比较不同应变范围适用的动力分析方法状态线性非线性液化侧向流动分析方法线性分析等效线性分析非线性分析液化分析有效应力分析2014年类别线性时程分析非线性时程分析叠加原理o对于不同荷载结果可以使用线性叠加结果大小与荷载大小成比例o不能线性叠加不同荷载结果共振o激振频率与固有频率相同或接近时发生o随着响应的变化固有频率也会发生变化o在与初始固有频率不同的激振频率作用下也有可能发生共振平衡点平衡点o力的平衡点只有一个o力的平衡点只有o力的平衡点会有多个o力的平衡点会有多个非线性时程分析直接积分法非线性时程分析与线性时程分析的比较24个结果o对于谐振荷载会输出较为规律的结果o材料非线性特性较为明显时时程结果看起来会不规则初始条件o不受初始条件影响o受初始条件影响非线性动力分析过程高级非线性分析选项牛顿准牛顿刚度的更新收敛加速稳定化通过线搜索和时间分割保证分析的成功tangentmatrixresidualforce用户自定义时间步骤可调整各步骤的时间步长按需要的精确度进行更有效率的分析100dtsec与非线性静态分析相同非线性时程分析直接积分法25与非线性静力分析的荷载分割概念类似equationsolvelinesearchconvergencestatecheckadvancetimestepbisecttimestepmoreiteration110001timesec需要使用hht的噪音消除功能分析过程中因时间步长的修改产生的噪音与非线性静态分析相同非线性动力分析希尔伯特黄变换hhtalpha法可考虑数值衰减的一般化的newmark方法使用数值衰减系数修正平衡方程最小化正确度损失可消除高频区域的噪音dampingfinternalfexternalfdampingfinter

MIDASGTS建模培训教程

MIDASGTS建模培训教程

面组是由一组有序的面组成. 子面是共边的. 线组延伸 面组
/gts
MIDAS
GTS
程序界面介绍
选择 (过滤 &方法)
工具栏 捕捉
工作目录树 (Pre/Post)
缩放
视图栏
工作窗口 动态视图
特性窗口
输出窗口
坐标 (GCS, WCS)
单位系统
/gts
输入值 (表达式) 预览 重置 在已定义方向的长度或距离
SIN, COS, TAN, 三角函数 etc. Frequently-used Mathematical Expressions
/gts
MIDAS
GTS
定义方向/坐标轴/平面
实体 基准轴 基准面 定义方向 / 基准轴 基准轴方向 基准面法向 选择过滤
/gts
MIDAS
GTS
几何体(Geometry)的类型
/gts
MIDAS
GTS
顶点
顶点 • (x,y,z) 空间坐标
/gts
MIDAS
GTS
线和线组
E1
E2 线 • 连接两个顶点 •圆弧、圆、多段线等都是线的几何形式
GTS
形状组合 形状 面组 实体

线组
线
顶点
/gts
MIDAS
GTS
线和线组举例
外部轮廓线组 (1条边线) 内部轮廓线组 (1条边线)
形状

圆开始/结束顶点
形状
子形 状 线组 边线 顶点
子形 状
线组
边线 顶点
1 wire
5 edges 5 vertices
D. 应力变化较大的位置
E. 岩土或结构形状变化位置

MIDAS GTS理论分析_2

MIDAS GTS理论分析_2

第二篇MIDAS/GTS的岩土分析第二篇 MIDAS/GTS的岩土分析岩土的有限元分析模型包含节点、单元、边界条件。

节点决定模型的位置,单元决定形状和材料特性,边界条件决定连接状态。

岩土分析就是为了分析岩土及与岩土连接的结构在荷载作用下的反应。

岩土分析因为岩土材料特性、地下水以及地形等因素的不确定性,所以其分析结果受输入的条件的影响较大。

因为岩土的构成非常复杂,所以完全真实地模拟岩土材料的刚度特性是非常困难和不现实也是不经济的。

在明确分析目的的情况下,适当简化分析模型是必要的。

例如,模拟埋深较大的隧道时,将上部覆土高度内的岩土都用有限元网格来模拟是不经济的。

此时可模拟适当范围内的岩土,将上部覆土按外部荷载输入也是比较经济的方法。

另外,使用有限元方法模拟岩土时,用户应对有限元的理论和分析方法具有一定程度的了解,这样在模拟岩土时才能合理简化和模拟。

另外,应根据分析的目的选择单元的类型以及确定模型的范围。

在设计中如果关心的是位移、应力以及支护的内力,则应该将模型的范围扩大一些,单元也应该细分一些。

但是像安全鉴定等探讨岩土结构的安全性时,则可以将模型缩小一些,外部边界条件也可以使用弹簧来模拟。

做特征值分析时,为了避免产生局部振型的产生,应尽量简化模型。

特别是在初步设计阶段(preliminary design phase)可从简单的模型开始分析,逐渐增加复杂度直到得到比较理想的结果。

建立数值分析模型时主要考虑事项如下:决定节点位置时,主要考虑结构的几何形状、材料、截面类型、荷载状态等需要节点位置的因素的影响。

需要建立节点的位置如下:第二篇MIDAS/GTS的岩土分析A. 需要输出分析结果的位置B. 需要输入荷载的位置C. 材料变化的位置或规划的边界D. 应力变化较大的位置E. 岩土或结构形状变化位置线单元(桁架单元、梁单元等)虽然不受单元大小的影响,但是面单元和实体单元受单元大小、形状、分布的影响,所以对应力变化较大或应力集中位置应细分单元。

MIDAS_GTS帮助文件-工具

MIDAS_GTS帮助文件-工具

单位系统z功能定义模型的单位系统,在建模过程中可随时更改单位系统,对已经输入的数据不会有影响。

z命令主菜单: 工具 > 单位系统...(Tools > Unit System...)z输入<单位系统>参数设置z功能定义环境参数,包括自动保存文件的时间间隔、捕捉和选择的敏感度设置、数据的容许误差。

z命令主菜单: 工具 > 参数设置...(Tools > Preference...)z输入<参数设置-1><参数设置-2><参数设置-3>地形数据生成器z功能通过三维等高线地图(DXF格式)生成地表。

z命令主菜单: 工具 > 地形数据生成器>运行...(Tools> Terrain Geometry Maker > Run... ...)步骤1(Step1):通过主菜单:工具 > 地形数据生成器>运行...<地形数据生成器窗口>步骤2(Step2):<导入DXF对话框>步骤3(Step3):<地层几何对话框>步骤4(Step4):<模型区域选取>步骤5(Step5):<地层几何区域模型>步骤6(Step6):主菜单: 工具>地形数据生成器> 导入....地震波数据生成器z功能GTS内部存取历年来的地震波数据库,通过地震波数据生成器可以生成地震波、反应谱及设计反应谱数据,并以图形形式显现。

z命令主菜单: 工具 > 地震波数据生成器...(Tools> Seismic Data Generator... )程序中记录了北美从1940到1990年30多种地震数据。

设计反应谱-8中2:- UBC 88, 94 Dynamic, Uniform Building Code- UBC 97 Dynamic, Uniform Building Code- ATC 3-06 Provision, Applied Technology Council- NBC(1995)- Newmark Hall Design Spectrum- IBC 2000- Eurocode-8, 1996 (Design)- Eurocode-8, 1996 (Elastic)- China (GB50011-2001)- China Shanghai(DGJ08-9-2003)- China (JTJ004-89)- China (GBJ111-87)- Japan (AIJ, 2000)- KBC (2005)- Design response spectra per Structure Design Criteria of the Architectural Institute of Korea (1992, 2000) - Design response spectrum per Seismic Design Criteria of the Korean Highway Bridges Standards Specifications 举例<example><地震反应谱生成对话框><地震反应谱对话框>梁z功能公路隧道和铁路隧道衬砌设计,对梁单元的抗拉抗压验算。

MIDAS_GTS帮助文件-分析

MIDAS_GTS帮助文件-分析

分析工况z功能定义分析工况,只有定义了分析工况才能进行分析。

针对一个荷载工况只能做一种类型的分析。

在分析工况中要指定分析模型、荷载组、边界组,即将三者联系起来并指定做某种分析。

z命令主菜单: 分析 > 分析工况...(Analysis > Analysis Case...)z输入<分析工况>添加(Add)添加新的分析工况。

编辑(Modify)修改已经建立的分析工况。

复制(Copy)复制已经建立的分析工况。

删除(Delete)删除已经建立的分析工况。

<添加/编辑分析工况>名称(Name)输入分析工况名称。

说明(Description)输入对分析工况的描述,可不输入。

分析类型(Analysis Type)选择分析类型。

程序中提供了八种分析类型。

1. 静力分析(Static)2. 施工阶段分析(Construction Stage)3. 特征值分析(Eigenvalue)4. 反应谱分析(Response Spectrum)5. 时程分析(Time History)6. 稳定流分析(Seepage(Steady-State))7. 非稳定流分析(Seepage(Transient))8. 固结分析(Consolidation)z参考分析前同时要确认一般分析控制(General Analysis Control)和分析选项(Analysis Option)。

分析类型 - 静力分析做静力分析。

定义分析模型和分析控制。

<添加/编辑分析控制-静力分析>分析模型(Analysis Model)选择分析中使用的单元组、边界组、荷载组。

激活和钝化均以组为单位。

分析控制(Analysis Control)点击右侧的定义分析控制选项。

静力分析的分析控制中要定义非线性分析控制选项。

分析类型 - 施工阶段分析做施工阶段分析。

因为施工阶段分析中使用的单元组、荷载组、边界组均在定义施工阶段命令中进行,所以在这里仅需定义分析控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.钢砼材料参数定义:
采用等效方法进行计算,将钢材的弹性模量折算给相邻的砼:
折算后砼弹性模量
-原砼弹性模量
钢材弹性模量-钢材Fra bibliotek截面面积- 砼截面面积
4.围护桩转成连续墙,等刚度转换
1)钻孔桩:
设钻孔桩径为D,桩净距为t,如图所示,则单根桩应等价为长D+t的壁式地下墙,若等价后的地下墙厚为h,则由等刚度转换的原则可得:
若采用一字相切排列,t<<D,则h=0.838D.
2)SMW工法桩:
式中: ——型钢之弹模与惯性矩
——混凝土弹性模量
5.灌浆后土体刚度
E‘=2~3E
E‘-灌浆后土体刚度
E-灌浆后土体刚度
相关文档
最新文档