概率论与数理统计第一二部分作业题
概率论与数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)若()0,P A = 则A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。
(B )(8)若P(A)P(B)≤,则⊂A B 。
(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
概率论与数理统计习题答案1-2

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。
(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。
(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。
解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。
则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r } (ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC =成立?(3)什么时候关系式B C ⊂是正确的?(4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。
(3)当全系运动员都是三年级学生时。
(4)当全系女生都在三年级并且三年级学生都是女生时`。
1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。
用i A 表示下列事件:(1)没有一个零件是不合格品;(2)至少有一个零件是不合格品;(3)仅仅只有一个零件是不合格品;(4)至少有两个零件是不合格品。
解 (1) n i i A 1=; (2) n i i n i i A A 11===; (3) n i n ij j j i A A 11)]([=≠=;(4)原事件即“至少有两个零件是合格品”,可表示为 nj i j i j i A A ≠=1,;1.4 证明下列各式:(1)A B B A ⋃=⋃;(2)A B B A ⋂=⋂(3)=⋃⋃C B A )()(C B A ⋃⋃;(4)=⋂⋂C B A )()(C B A ⋂⋂(5)=⋂⋃C B A )(⋃⋂)(C A )(C B ⋂ (6) ni i n i i A A 11===证明 (1)—(4)显然,(5)和(6)的证法分别类似于课文第10—12页(1.5)式和(1.6)式的证法。
概率论与数理统计配套习题

Z
=
1, 0,
如果 X + Y 为零或偶数; 如果 X + Y 为奇数.
第三章 连续型随机变量及其分布 第五次作业
3.1 设随机变量 X 服从二项分布 B(2,0.4) .试求 X 的分布函数,并作出它的图像.
8
学号
专业
姓名
作业号
3.4
cx3, 已知随机变量 X 的密度函数为 f (x) =
0 < x < 1; 确定常数 c 的值,并求出 P(−1 < X < 0.5) 与分布函数.
∞
数为 λ p 的泊松分布.[提示: P(Y= k=) ∑ P( X= n)P(Y= k X= n) .] n=k
7
学号
专业
姓名
作业号
2.26 已知 X 与Y 的联合概率函数如下.(1)分别求U = max{X ,Y},V = min{X ,Y}的概率函数;(2)试
求U 与V 的联合概率函数.
X
Y -2 -1 0 1 4
1.27 已知甲袋中装有 a 只红球, b 只白球;乙袋中装有 c 只红球, d 只白球.试求下列事件的概率:(1)合并 两只口袋,从中随机地取一只球,该球是红球;(2)随机地取一只袋,再从该袋中随机地取一只球,该球是红 球;(3)从甲袋中随机地取出一只球放人乙袋,再从乙袋中随机地取出一只球,该球是红球.
1.15 某商店出售晶体管,每盒装 100 只,且已知每盒混有 4 只不合格品.商店采用“缺一赔十”的销售方 式:顾客买一盒晶体管,如果随机地取 1 只发现是不合格品,商店要立刻把 10 只合格品的晶体管放在盒子 中,不合格的那只晶体管不再放回.顾客在一个盒子中随机地先后取 3 只进行测试,试求他发现全是不合格 品的概率.
概率论与数理统计第一章习题解答

概率论与数理统计第一章习题解答《概率论与数量统计》第一章习题解答1、写出下列随机试验的样本空间:(1)记录一个班一次数学考试的平均分数(设以百分制记分)。
(2)生产产品直到有10件正品为止,记录生产产品的总件数。
(3)对某工厂出厂的产品进行检查,合格的产品记上“正品”,不合格的记上“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果。
(4)在单位圆内任意取一点,记录它的坐标。
解:(1)设该班有n人,则该班总成绩的可能值是0,1,2,……,100n。
故随机试验的样本空间S={i/n|i=0,1,2,……,100n}。
(2)随机试验的样本空间S={10,11,12,……}。
(3)以0表示检查到一个次品,1表示检查到一个正品,则随机试验的样本空间S={00,0100,0101,0110,0111,100,1010,1011,1100,1101,1110,1111}。
(4)随机试验的样本空间S={(x,y)|x2+y2<1}。
2、设A,B,C为三个事件,用A,B,C的运算关系表示下列各事件:(1)A发生,B 与C都不发生。
(2)A与B都发生,而C不发生。
(3)A,B,C中至少有一个发生。
(4)A,B,C都发生。
(5)A,B,C都不发生。
(6)A,B,C中不多于一个发生。
(7)A,B,C中不多于两个发生。
(8)A,B,C中至少有两个发生。
解:(1)A B C(2)AB C(3)A∪B∪C (4)ABC(5)A B C(6)A B C∪A B C∪A B C∪A B C(7)S-ABC (8)ABC∪AB C∪A B C∪A BC3、(1)设A,B,C为三个事件,且P(A)=P(B)=P(C)=1/4,P (AB)=P(BC)=0,P(AC)=1/8,求A,B,C至少有一个发生的概率。
(2)已知P(A)=1/2,P(B)=1/3,P(C)=1/5,P(AB)=1/10,P(AC)=1/15,P(BC)=1/20,P(ABC)=1/30,求A∪B,A B,A∪B∪C,A B C,A B C,A B∪C的概率。
《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
考研数学概率论与数理统计第一章测试题(含答案)

考研数学概率论与数理统计第一章测试题(含答案)一、单项选择题(每小题2分,共20分)1.对于任意二事件A 和B ,与B B A = 不等价...的是 ( ) (A)B A ⊂ (B)A B ⊂ (C)φ=B A (D)φ=B A2.设事件A 与事件B 互不相容,则 ( ) (A)0)(=B A P (B))()()(B P A P AB P = (C))(1)(B P A P -= (D)1)(=B A P3.对于任意二事件A 和B ,则以下选项必然成立的是 ( )(A)若φ≠AB ,则B A ,一定独立 (B)若φ≠AB ,则B A ,有可能独立(C)若φ=AB ,则B A ,一定独立 (D)若φ=AB ,则B A ,一定不独立4.设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是 ( ) (A)A 与B 互不相容 (B)A 与B 相容 (C))()()(B P A P AB P = (D))()(A P B A P =-5.设B A ,为任意两个事件,且B A ⊂,0)(>B P ,则下列选项必然成立的是 ( )(A))|()(B A P A P < (B))|()(B A P A P ≤ (C))|()(B A P A P > (D))|()(B A P A P ≥6.设B A ,为两个随机事件,且0)(>B P ,1)|(=B A P ,则必有 ( )(A))()(A P B A P > (B))()(B P B A P >(C))()(A P B A P = (D))()(B P B A P =7.已知1)(0<<B P ,且)|()|(]|)[(2121B A P B A P B A A P += ,则下列选项成立的是( ) (A))|()|(]|)[(2121B A P B A P B A A P += (B))()()(2121B A P B A P B A B AP += (C))|()|()(2121B A P B A P A A P += (D))|()()|()()(2211A B P A P A B P A P B P +=8.将一枚硬币独立地掷两次,引进事件:=1A {掷第一次出现正面},=2A {掷第二次出现正面},=3A {正、反面各出现一次},=4A {正面出现两次},则事件 ( )(A)321,,A A A 相互独立 (B)432,,A A A 相互独立(C)321,,A A A 两两独立 (D)432,,A A A 两两独立9.某人向同一目标独立重复射击,每次射击命中目标的概率为p (10<<p ),则此人第4射击恰好第2次命中目标的概率为 ( )(A)2)1(3p p - (B)2)1(6p p - (C)22)1(3p p - (D)22)1(6p p -10.设C B A ,,是三个相互独立的随机事件,且1)()(0<<<C P AC P ,则在下列给定的四对事件中不.相互独立的是 ( ) (A)B A 与C (B)AC 与C (C)B A -与C (D)AB 与C二、填空题(每小题2分,共14分)1.“C B A ,,三个事件中至少有两个发生”,这一事件可以表示为___2.若事件B A ,满足()()1>+B P A P ,则A 与B 一定____________3.在区间)1,0(中随机地取两个数,则两数之差的绝对值小于21的概率为 4.在一次试验中,事件A 发生的概率为p 。
考研概率论与数理统计章节训练题

第一章 随机事件与概率一、选择题。
1、设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有( ) (A )()()P A B P A > (B )()()P A B P B > (C )()()P AB P A = (D )()()P A B P B =2、将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面}3A ={正、反面各出现一次}, 4A ={正面出现两次},则事件有( )(A )123,,A A A 相互独立 (B )234,,A A A 相互独立 (C )123,,A A A 两两独立 (D )234,,A A A 两两独立 3、对于任意二事件A 和B ,则( )(A )若AB ≠Φ,则,A B 一定独立 (B )若AB ≠Φ,则,A B 有可能独立 (C )若AB =Φ,则,A B 一定独立 (D )若AB =Φ,则,A B 一定不独立 4、A ,B 是两随机事件,当A ,B 发生时事件C 发生,则以下正确的是( )A )、)()(C P AB P ≥ B )、)()()(AB PC P AB C P -=- C )、)()(C P B A P ≤⋃D )、)()(C P B A P ≥⋃5、A ,B ,C 是三个随机事件,其中1)(),(),(0<<C P B P A P ,且已知)|()|()|(C B P C A P C B A P +=⋃,则以下正确的是( )A )、)|()|()|(CB PC A P C B A P +=⋃ B )、)()()(AB P AC P AB AC P +=⋃ C )、)()()(B P A P B A P +=⋃D )、)|()()|()()(B C P B P A C P A P C P += 6、A ,B ,C 是三个随机事件,设以下条件概率均有意义,则以下不正确的是( )A )、)|(1)|(C A P C A P -=B )、1)|()|(=+C A P C A P C )、)|()|()|()|(C AB P C B P C A P C B A P -+=⋃D )、)|()|()|()|()|(C B A P C B P BC A P C B P C A P +=7、A ,B 是两个随机事件,其中0)(,0)(≠≠B P A P ,则以下正确的是( )A )、φ≠AB ,A ,B 一定独立 B )、φ≠AB ,A ,B 不一定独立C )、φ=AB ,A ,B 一定独立D )、φ=AB ,A ,B 不一定独立8、甲袋中有2个白球3个黑球,乙袋中全是白球,今从甲袋中任取2球,从乙袋中任取1球混合后,从中任取1球为白球的概率()A 15 ()B 25()C35()D459、10台洗衣机中有3台二等品,现已售出1台,在余下的9台中任取2台发现均为一等品,则原先售出1台为二等品的概率为()A 310()B28 ()C 210()D3810、若A,B 为任意两个随机事件,则 ( )(A) ()()()P AB P A P B ≤ (B) ()()()PAB P A P B ≥(C) ()()()2P A P B P AB +≤ (D) ()()()2P A P B P AB +≥11、某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为 ( )(A)(B)(C)(D)12、设是两个随机事件,且则必有( )(A)(B) (C) (D)二、填空题1、A ,B 是两随机事件,5.0)(=A P ,7.0)(=B P ,则 ≤≤)(AB P 。
概率论与数理统计习题集与答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= .(2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= . §1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: .(3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: .(5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: .2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A ,(4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= .2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分作业题
1.将下列事件用A、B、C表示出来
(1)A发生,
(2)A与B都发生而C不发生,
(3)三个事件都发生,
(4)三个事件中至少有一个发生,
(5)三个事件中恰好有一个发生,
(6)三个事件中至少有两个发生,
(7)三个事件中恰好有两个发生,
2.一批产品由40件正品和10件次品组成,从中任取4件,问取得正品的概率多大.
3.在100件产品中有5件是次品,从中连续无放回地抽取3次,问第三次才取得次品的概率.
4.从自然数 1,2,...... N 中任取三个数,求以下事件的概率:
(1)第一次取的数恰好小于 K 而后两次取的数均大于 K 。
(2)其中有一个数恰好小于 K 而另两次取的数均大于 K 。
(这里 1 < K < N)
5.一袋中有十个质地、形状相同且编号分别为1、2、…、10的球.今从袋中任意取出三个球并记录球上的号码,求(1)最小号码为5的概率,(2)最大号码为5的概率,(3)一个号码为5,另外两个号码一个大于5,一个小于5的概率。
6.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率。
7.已知,,,试求,,
,,
8.把 6 个小球随机投入 6 个盒子内,设球和盒均可识别,求前三个盒当中有空盒的概率。
9.袋中装有5枚正品硬币、3枚次品硬币(次品硬币两面均印有国徽)。
从袋中任取一枚硬币,将它投掷3次,已知每次均出现国徽,问这枚硬币是正品硬币的概率是多少?
10.甲、乙两人各自向同一目标射击,已知甲命中目标的概率为 0.7,乙命中目标的概率为0.8 求:
(1)甲、乙两人同时命中目标的概率;
(2)恰有一人命中目标的概率;
(3)目标被命中的概率.
11.甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率.
12.一批产品中有20%的次品,现进行重复抽样,共抽取5件样品,分别计算这5件样品中恰好有3件次品及至多有3件次品的概率.
第二部分作业题
1.盒中有10个合格品,3个次品,从盒中逐件抽取产品检验,每件检验后不再放回盒中,以X表示直到取到第一件合格品为止所需检验次数,求X的分布律,并求概率。
2.袋中装有编上号码1,2,…,9的九个性质相同的球,从袋中任取5个球,以X表示所取的5个球中偶数号球的个数,求X的分布律,并求其中至少有两个偶数号球的概率。
3.从某大学到火车站途中有六个路口,假设在各路口遇到红灯的事件相互独立,
且概率都是,(1)以X表示途中遇到的红灯次数,求X的分布律,(2)以
9Y表示汽车行驶途中在停止前所通过的路口数,求Y的分布律。
(3)求从该大学到火车站途中至少遇到一次红灯的概率。
4.对目标独立射击1000次,设每次命中率为0.001,求至少3次命中目标的概率。
5.某信息服务台在一分钟内接到的问讯次数X服从参数为 的泊松分布,已知任一分钟内无问讯的概率为e-6,求在指定的一分钟内至少有2次问讯的概率。
6.假设某汽车站在任何长为t(分)的时间内到达的候车人数N(t)服从参数为3t的泊松分布。
(1)求在相邻两分钟内至少来3名乘客的概率;(3)求在连续5分钟内无乘客到达的概率。
7.设随机变量X的所有可能取值为1,2,3,4,已知正比于k值,求X的分布律及分布函数,并求。
8.设连续型随机变量 X 的分布函数为,求
(1)(2)概率(3)X 的概率密度
9.某人上班地点离家仅一站路.他在公共汽车站候车时间为X(分钟),且X服从指数分布.其概率密度为
.次人每天要在车站候车4次,每次若候车时间超过5分钟,他就改为步行.求甲在一天内步行次数恰好是2次的概率
10.已知公共汽车车门的高度是按男子与车门顶碰头的机会在1%以下来设计的。
假设某城市的男子身高服从正态分布(单位:cm),问车门高度应为多少?
11.在电源电压不超过200v, 200~240v,和超过240v三种情况下,某电器损坏的概率分别为0.01,0.001,和0.1,假设电源电压服从正态分布,且知
电压在250v以下的概率为0.9,现该电器损坏,求损坏时电源电压在200~240v之间的概率.
12..已知X的概率分布为
X0π/2π
P k1/41/21/4
分别求的分布律.
13.设随机变量X的概率密度函数,且在处连续,试求:(1)常数A,B;(2)X的分布函数F(x);(3)的密度函数;
14.已知X的概率密度为,求Y=X2+1的分布函数和概率密度.。