高一数学集合试题及答案

合集下载

高一数学集合试题及答案

高一数学集合试题及答案

高一数学集合试题及答案一、单选题1.已知集合ππ,42k M x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,ππ,24k N x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,则( ) A .N M ⊆ B .M N ⊆ C .M ND .M N ⋂=∅2.已知集合{}0,1,2,3A =,集合{}11B x x =-≤,则A B 等于( ) A .{}3B .{}0,1,2C .{}1,2D .{}0,1,2,33.已知集合{}1,2A =,{}2,3,4B =,则A B =( ) A .{}2B .{}3C .{}1,3D .{}1,24.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则UA 所表示的平面区域的面积为( )A .1πB C .1D .π5.已知集合{A x y ==,{}2B x x =<,则A B =( ) A .RB .∅C .[]1,2D .[)1,26.已知集合2cos ,3n A x x n N π*⎧⎫==∈⎨⎬⎩⎭,{}2230B x x x =--<,则A B =( ) A .{}2,1-- B .{}2,1,1--C .{}1,2D .{}1,1,2-7.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( ) A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,48.已知集合{}1,0,1,2,|sin 02k A B k π⎧⎫=-==⎨⎬⎩⎭,则A ∩B =( ) A .{-1,1} B .{1,2}C .{0,2}D .{0,1,2}9.设集合{}A x y x ==,(){}2,B x y y x ==,则AB =( )A .{}0B .(){}1,1C .{}0,1D .∅10.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞11.已知:2{|560}A x x x =-+>,{|24}xB x =<,记{|,}A B x x A x B -=∈∉,则A B -=( ) A .(3,)+∞ B .(,2](3,)-∞+∞ C .(,2)(3,)-∞⋃+∞D .[3,)+∞12.设集合{A x y ==,(){}ln 2B y y x ==-,(){}2,C x y y x ==,则下列集合不为空集的是( )A .A CB .BC ⋂ C .B A ⋂RD .A B C ⋂⋂13.已知集合{}{}{}21,2,20,1A B xx mx A B ==+-=⋂=∣,则B =( ) A .{}1,1-B .{}2,1-C .{}1,2D .{}1,1,2-14.设全集U =R ,集合{1,0,1,2,3}M =-,{R |1}N x x =∈>,则下面Venn 图中阴影部分表示的集合是( )A .(,1)-∞B .(,1]-∞C .{1,0}-D .{1,0,1}-15.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.若{}}{1020x ax x x +=⊆-=,则=a __________.17.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________.18.已知集合 {}N 24x x A =∈<,{}220x x x B -<=则集合A B 的子集个数为___________.19.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.20.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.21.已知函数()51f x a x=-+-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________.22.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.23.写出集合{1,1}-的所有子集______.24.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______.25.若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______. 三、解答题26.已知集合{}13A x x =<≤,{}3e e B y y =≤≤,{}21C x m x m =<<-.(1)求A B .(2)若A C ⋂=∅,求m 的取值范围.27.设全集U =R ,集合{}|32A x a x a =≤≤+,1|284xB x ⎧⎫=<<⎨⎬⎩⎭.(1)当1a =-时,求()U A B ⋃; (2)若A ∩B =A ,求实数a 的取值范围.28.集合{}{}3621A x x B x m x m =<≤=≤≤+,. (1)若2m =,求,A B A B ;(2)若x B ∈是x A ∈的必要条件,求实数m 的取值范围.29.已知集合{}2560A xx x =--≤∣,集合{}26510B x x x =-+>∣,集合09x m C x x m -⎧⎫=≤⎨⎬--⎩⎭∣.(1)求A B ;(2)若A C C =,求实数m 的值取范围.30.已知全集为U ,集合A ,B ,C 都是U 的子集,用集合U ,A ,B ,C 表示图中的阴影部分.【参考答案】一、单选题 1.A 【解析】 【分析】利用集合的基本关系求解 【详解】解:因为()2πππ,,424k k M x x k x x k ⎧⎫+⎧⎫⎪⎪==+∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭Z Z ,()21π,4k N x x k ⎧⎫+⎪⎪==∈⎨⎬⎪⎪⎩⎭Z ,当k ∈Z 时,21k +是奇数,2k +是整数,所以N M ⊆. 故选:A . 2.B 【解析】 【分析】由交集运算求解即可. 【详解】{}{}{}1102,0,1,2B x x x x A B =-=≤≤∴⋂=∣故选:B 3.A 【解析】 【分析】根据集合的交集运算,即可求得答案. 【详解】集合{}1,2A =,{}2,3,4B =, 则{2}A B =, 故选:A 4.D 【解析】 【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到UA ,即可求出所表示的平面区域的面积; 【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合, 所以(){}22,|1UA x y x y =+<,则UA 所表示的平面区域的面积为π;故选:D 5.D 【解析】 【分析】求函数定义域化简集合A ,解不等式化简集合B ,再利用交集的定义求解作答. 【详解】由y =1≥x ,则[1,)A =+∞,由2x <解得22x -<<,即(2,2)B =-, 所以[1,2)A B ⋂=. 故选:D 6.C 【解析】 【分析】结合余弦型函数的周期性可得到{}1,1,2,2A =--,再得到2230x x --<的解集,进而求解. 【详解】因为2cos3y x π=的最小正周期263T ππ==且1cos32π=, 21cos cos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41cos cos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,,所以{}*|2cos ,1,1,2,23n A x x n N π⎧⎫==∈=--⎨⎬⎩⎭, 又{}{}223013B x x x x x =--<=-<<,所以{}1,2A B =, 故选:C 7.A 【解析】 【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得; 【详解】解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =. 故选:A 8.C 【解析】 【分析】先求{}2,B k k n n Z ==∈,再求交集即可. 【详解】∵集合{}1,0,1,2A =-,{}sin 0?2,2k B k k k n n Z π⎧⎫====∈⎨⎬⎩⎭, 则{}0,2A B =. 故选:C . 9.D 【解析】 【分析】通过集合中点集与数集的概念,再运用集合的交集运算即可得解. 【详解】由题设可得A 为数集,B 为点集,故A B ⋂=∅. 故选:D【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D 11.A 【解析】 【分析】先求出集合,A B ,再按照给的定义计算A B -即可. 【详解】由题意知:|2{A x x =<或3}x >,{|2}B x x =<,故A B -={|3}x x >. 故选:A. 12.C 【解析】 【分析】先化简集合A ,B ,C ,再利用集合的类型和运算求解. 【详解】解:因为集合{{}2A x y x x ===≥,(){}ln 2B y y x R ==-=,且(){}2,C x y y x ==为点集,所以A C ⋂=∅,B C =∅,{}|2=<A x x R,{}|2⋂=<B A x x R ,A B C =∅,故选:C 13.B 【解析】 【分析】根据交集性质求解即可. 【详解】因为{}1A B ⋂=,所以1B ∈, 所以120m +-=,解得1m =.所以{}{}2|202,1B x x x =+-==-,满足{}1A B ⋂=.故选:B 14.D 【解析】根据Venn 图,明确阴影部分表示的集合的含义,即可求得答案. 【详解】由题意,可知Venn 图中阴影部分表示的集合是(){1,0,1}U M N =- ,故选:D 15.A 【解析】 【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案. 【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确; a 是{},,b c a 的元素,所以⑤正确. 故选:A.二、填空题16.0或12-##12-或0【解析】 【分析】由题,先求出}{20x x -=所代表集合,再分别讨论{}10x ax +=作为子集的可能情况即可. 【详解】由}{20x x -=得集合为{}2,故{}10x ax +=为空集或{}2,当{}10x ax +=为{}2时,可得12a =-;当{}10x ax +=为空集时,可得0a =, 故答案为:0或12-17.{}1x x <【解析】 【分析】利用并集概念及运算法则进行计算. 【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<.故答案为:{}1x x < 18.2 【解析】 【分析】先求出A B 然后直接写出子集即可. 【详解】{}{}N 240,1x x A ∈<==,{}{}22002x x x B x x -<=<<={}1A B =,所以集合A B 的子集有∅,{}1.子集个数有2个. 故答案为:2.19.102m -≤≤【解析】 【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答. 【详解】令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤,所以实数m 的取值范围为102m -≤≤.故答案为:102m -≤≤20. 2a =-或23a =或0 30k -<≤ 【解析】 【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足23Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可.【详解】已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-=当0,a B ==∅,满足B A ⊆; 当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a= 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<< 综上结果为:30k -<≤. 故答案为:2a =-或23a =或0;30k -<≤ 21.(,8]-∞【解析】 【分析】根据集合交集的性质,结合子集的性质进行求解即可. 【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞22.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >.23.∅,{}1-,{1},{1,1}- 【解析】【分析】利用子集的定义写出所有子集即可.【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-.24.3【解析】【分析】根据题意21a a -+7=,结合7A =,即可求得a .【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-. 当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去. 当3a =时,满足题意.故答案为:3.25.{}12x x -<<## ()1,2-【解析】【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可.【详解】 因为{}2A x x =<{|22}x x =-<<,101B x x ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<. 故答案为:{}12x x -<<.三、解答题26.(1){}e 3A B x x ⋂=≤≤(2)[0,)+∞【解析】【分析】(1)根据交集的定义直解,(2)分C =∅和C ≠∅两种情况求解(1) 因为{}13A x x =<≤,{}3e e B y y =≤≤, 所以{}e 3A B x x ⋂=≤≤(2)当C =∅时,满足A C ⋂=∅,则21m m ,得13m ≥, 当C ≠∅时,因为A C ⋂=∅,所以2111m m m <-⎧⎨-≤⎩,或2123m m m <-⎧⎨≥⎩, 解得103m ≤<或m ∈∅, 所以103m ≤<, 综上,0m ≥,即m 的取值范围为[0,)+∞27.(1){|1x x ≤或3}x ≥ (2)2(,1)(1,)3-⋃+∞ 【解析】【分析】(1)化简集合B ,根据补集、并集的运算求解;(2)由条件转化为A ⊆B ,分类讨论,建立不等式或不等式组求解即可.(1)当1a =-时,{}3|1A x x =-≤≤,{}1|28|234x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭, {||2U B x x x ∴=≤-或3}x ≥,(){|1U B x x A =≤∴或3}x ≥.(2)由A ∩B =A ,得A ⊆B ,当A =∅时,则3a >a +2,解得a >1,当A ≠∅时,则32231a a a >-⎧⎪+<⎨⎪≤⎩,解得213a -<<, 综上,实数a 的取值范围是2(,1)(1,)3-⋃+∞. 28.(1){}35A B x x ⋂=<≤,{|26}x x AB ≤≤=; (2)5,32⎡⎤⎢⎥⎣⎦ 【解析】【分析】(1)将m 的值代入集合B ,然后根据交集与并集的定义即可求解; (2)由题意,可得A B ⊆,根据集合的包含关系列不等式组求解即可得答案.(1)解:当2m =时,{|25}B x x =≤≤,又{}36A x x =<≤,所以{}35A B x x ⋂=<≤,{|26}x x AB ≤≤=;(2) 解:因为x B ∈是x A ∈的必要条件,所以A B ⊆,即(3,6][,21]m m ⊆+,所以有3216m m ≤⎧⎨+≥⎩,解得532≤≤m , 所以实数m 的取值范围为5,32⎡⎤⎢⎥⎣⎦. 29.(1)1|13x x ⎧-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)(]3,1--.【解析】【分析】(1)根据一元二次不等式的解法求出集合A 、B ,即可求出A B ; (2)由A C C =,可知A C ⊆,得到不等式组,即得.(1)∵{}2560A xx x =--≤∣,{}26510B x x x =-+>∣, {|16}A x x ∴=-≤≤,1|3B x x ⎧=<⎨⎩或12x ⎫>⎬⎭, ∴1|13A B x x ⎧⋂=-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)∵{|16}A x x =-≤≤,0{|9}9x m C x x m x m x m -⎧⎫=≤=≤<+⎨⎬--⎩⎭∣, 由A C C =,得A C ⊆,961m m +>⎧∴⎨≤-⎩,解得31m -<≤-, ∴实数m 的值取范围为(]3,1--.30.()()()()U A B C A B A C B C ⎡⎤⎡⎤⋂⋂⋂⋂⋃⋂⋃⋂⎣⎦⎣⎦【解析】【分析】根据韦恩图,利用交集,并集与补集的概念及运算求解.【详解】根据韦恩图可知:阴影部分为:()()()()U A B C A B A C B C ⎡⎤⎡⎤⋂⋂⋂⋂⋃⋂⋃⋂⎣⎦⎣⎦.。

高一数学集合试题答案及解析

高一数学集合试题答案及解析

高一数学集合试题答案及解析1.集合S={x|x≤10,且x∈N*},A S,B S,且A∩B={4,5},(B)∩A={1,2,3},(A)∩(B)={6,7,8},求集合A和B.【答案】A={1,2,3,4,5},B={4,5,9,10}.【解析】如下图所示.因为A∩B={4,5},所以将4,5写在A∩B中.因为(B)∩A={1,2,3},所以将1,2,3写在A中.因为(B)∩(A)={6,7,8},所以将6,7,8写在S中A,B外.因为(B)∩A与(B)∩(A)中均无9,10,所以9,10在B中.故A={1,2,3,4,5},B={4,5,9,10}.【考点】本题主要考查集合的交集,集合的补集。

点评:涉及实数构成集合问题,常常借助于韦恩图。

2.已知集合A={ |-≤x≤},则必有 ()A.-1∈A B.0∈A C.∈A D.1∈A【答案】D【解析】∵,-≤x≤,∴x=1,2,即A={1,2},∴1∈A.故选D.【考点】元素与集合的关系点评:本题先根据x是正整数和-≤x≤确定集合A,再判断各元素是否属于集合。

3.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是()A.(0,1)B.(,1)C.(-∞,0)D.(0,+∞)【答案】C【解析】因为函数f(x)的定义域是(0,1),所以,即,,故选C。

【考点】本题主要考查函数的概念,指数函数的图象和性质。

点评:简单题,解答指数不等式,通常要化为同底数指数,利用指数函数的单调性,转化为代数不等式。

4.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B= ()A.{x|x≥-1}B.{x|x≤2}C.{x|0<x≤2}D.{x|-1≤x≤2}【答案】A【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【考点】本题主要考查集合的并集。

点评:简单题,借助于数轴求集合的并集。

5.满足{0}∪B={0,2}的集合B的个数是 ()A.1B.2C.3D.4【答案】B【解析】依题意知,B中至少含有元素2,故B可能为{2},{0,2},共两个.【考点】本题主要考查集合的子集,集合的并集。

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典一、单选题1.设I 为全集,1S 、2S 、3S 是I 的三个非空子集且123S S S I ⋃⋃=.则下面论断正确的是( )A .()123I S S S ⋂⋃=∅B .()123I I S S S ⊆⋂C .123I I I S S S ⋂⋂=∅D .()123I I S S S ⊆⋃2.已知集合*{|15,N }A x x x =-<<∈,{|03}B x x =≤≤,则A B =( ) A .[0,3]B .[1,5)-C .{1,2,3,4}D .{}1,2,33.若集合302x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x << B .{}3x x > C .{}2x x >-D .{}3x x >-4.已知集合{}220A x x x =->,{}0,1B =,则()R A B ⋂=( )A .[]0,1B .{}0,1C .[]0,2D .{}0,1,25.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( ) A .{6,8}B .{2,3,6,8}C .{2}D .{2,6,8}6.已知集合{}{}|2,|(1)0A x x B x x x =>=->,则A B ⋃=( ) A .(-∞,0) B .()(),01,-∞⋃+∞ C .()(),02,-∞⋃+∞D .(2,+∞)7.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤8.已知A B ⊆R ,则( ) A .A B =R B .()A B ⋃=R R C .()()A B ⋂=∅R RD .()AB =RR9.设集合{}{lg(3)},2,x M x N y x N yy x M =∈=-==∈∣∣,则( ) A .M N ⊆B .N M ⊆C .{0,1,2}M N ⋂=D .{0,1,2,4}MN =10.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3-B .[2,3)-C .(2,2)-D .[2,2)-11.设全集{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =,则下图中的阴影部分表示的集合为( )A .{}4B .{}5C .{}1,2D .{}3,512.已知集合{3,2,1,0,1}A =---,301x B x Zx +⎧⎫=∈<⎨⎬-⎩⎭,则A B =( ) A .[3,1)- B .[3,1]- C .{3,2,1,0,1}--- D .{2,1,0}--13.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B =( ) A .(),1-∞B .[)1,+∞C .(]2,0-D .()0,114.设全集U =R ,集合{}21A x x =-≤,{}240xB x =-≥,则集合()UAB =( )A .()1,2B .(]1,2C .[)1,2D .[]1,215.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.记关于x 的不等式220x x a a -+-≤的解集为A ,集合{}12B x x =-≤<,若A B ,则实数a 的取值范围为___________.17.已知集合2{2,}x 与{4,}x 相等,则实数x =__________.18.已知{}12A x x =-<≤,{}20B x x =-≤<,A B =________________.19.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________20.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.21.已知集合{}{}214,0,1,2,4A x x B =≤<=,则A B ⋂=___________.22.写出集合{1,1}-的所有子集______.23.若集合1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则集合M 、N 之间的关系是______.24.用符号“∈”或“∉”填空: (1)34______N ;(2)4-______Z ;(3)13______Q ;(4)2π-______R .25.若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______. 三、解答题26.已知集合{}21,3,A a =,()(){}|120B x x x a =---=,是否存在实数a ,使得A B A ⋃=若存在,求出a 的值;若不存在,说明理由.27.已知全集为实数集R ,集合{A x y ==,(){}lg 2B x y x ==-. (1)求A B 及()R B A ;(2)设集合{}1C x x a =<<,若C A ⊆,求实数a 的取值范围.28.设全集U R =,已知集合{}1,2A =,{|03}B x x =≤≤,集合C 为不等式组10240x x +≥⎧⎨-≤⎩的解集.(1)写出集合A 的所有子集; (2)求UB 和BC ⋃.29.已知集合11{|}A x a x a =-≤≤+,5|03x B x x -⎧⎫=≤⎨⎬+⎩⎭. (1)若3a =-,求A B ;(2)在①A B =∅,②()R B A R ⋃=,③A B B ⋃=,这三个条件中任选一个作为已知条件,求实数a 的取值范围.30.已知{}1,2,3,4,5,6,7,8U =,(){}1,8U A B ⋂=,(){}2,6U A B ⋂=,()(){}4,7UU A B ⋂=,求集合A ,B .【参考答案】一、单选题 1.C 【解析】 【分析】画出关于123S S S I ⋃⋃=且含7个不同区域的韦恩图,根据韦恩图结合集合的交并补运算确定各选项中对应集合所包含的区域,并判断包含关系. 【详解】将123S S S I ⋃⋃=分为7个部分(各部分可能为空或非空),如下图示:所以1A B D E S =⋃⋃⋃、2A B C F S =⋃⋃⋃、3S A C D G =⋃⋃⋃, 则1I S C F G =⋃⋃,2I S D E G =⋃⋃,3I S B E F =⋃⋃,所以23S S A B C D F G ⋃=⋃⋃⋃⋃⋃,故()123I S S S F G ⋂⋃=⋃,A 错误;23I I S S E ⋂=,故231I I S S S ⋂⊆,B 错误; 123I I I S S S ⋂⋂=∅,C 正确;23II S S B D E F G ⋃=⋃⋃⋃⋃,显然1S 与23I I S S ⋃没有包含关系,D 错误.故选:C 2.D【解析】 【分析】根据集合的交集的概念可求出结果. 【详解】 {1,2,3,4}A =, {1,2,3}A B ⋂=.故选:D 3.C 【解析】 【分析】解分式不等式确定集合A ,再由并集的定义计算. 【详解】解:依题意,{}30232x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C . 4.B 【解析】 【分析】 化简集合A ,求出RA 后,再根据交集的概念运算可得解.【详解】{}220A x x x =->{|0x x =<或2}x >,R{|02}A x x =≤≤,所以()R {0,1}A B =. 故选:B 5.A 【解析】 【分析】由已知,先有集合U 和集合A 求解出UA ,再根据集合B 求解出()UA B ⋂即可.【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8UA =,又因为{}2,6,8B =,所以(){}6,8U A B =. 故选:A. 6.B 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据并集的定义计算可得; 【详解】解:由(1)0x x ->,解得1x >或0x <,所以{}|(1)0{|1B x x x x x =->=>或0}x <,又{}|2A x x =>,所以()(),01,A B ⋃=-∞⋃+∞;故选:B 7.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 8.B 【解析】 【分析】画出韦恩图,对四个选项一一进行判断. 【详解】画出韦恩图,显然A B ≠R ,A 错误;()A B ⋃=R R ,故B 正确, ()()A B B ⋂=RR R,C 错误;()AB ≠RR ,D 错误.故选:B 9.D 【解析】 【分析】先用列举法写出集合M 和集合N ,再判定他们之间的关系即可得出答案. 【详解】根据题意,{}{|3,}0,1,2M x x x N =<∈={}0,1,2M =时,{}1,2,4N =所以选项D 正确. 故选:D. 10.D【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答. 【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-, 所以[2,2)A B ⋂=-. 故选:D 11.D 【解析】 【分析】图中阴影部分表示()U A B ⋂,再根据交集和补集的定义即可得出答案. 【详解】解:图中阴影部分表示()U A B ⋂,因为{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =, 所以{}3,5,6UA =,所以(){}3,5U A B =. 故选:D. 12.D 【解析】 【分析】根据解分式不等式的方法,结合集合交集的定义进行求解即可. 【详解】因为30311x x x +<⇒-<<-,所以{}2,1,0B =--,而{3,2,1,0,1}A =---, 所以A B ={2,1,0}--,故选:D 13.B 【解析】 【分析】求出定义域得到集合B ,从而求出补集和交集. 【详解】{}()212,1A x x =-<<=-,{}()00,B x x ∞=>=+,所以(][),21,RA =-∞-⋃+∞,所以()[)1,RA B ∞⋂=+.故选:B. 14.C【分析】解不等式化简集合A ,B ,再利用补集、交集的定义计算作答. 【详解】解不等式21-≤x 得:13x ≤≤,则[1,3]A =, 解不等式240x -≥得:2x ≥,则[2,)B =+∞,(,2)UB =-∞,所以()[1,2)UA B =.故选:C 15.A 【解析】 【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案. 【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确; a 是{},,b c a 的元素,所以⑤正确. 故选:A.二、填空题16.()1,2-【解析】 【分析】首先将不等式变形,再对a 与1a -分三种情况讨论,分别求出集合A ,根据集合的包含关系得到不等式组,即可求出参数a 的取值范围; 【详解】解:原不等式220x x a a -+-≤可变形为()()10x a x a -+-≤, 当1a a ,即12a =时,12A ⎧⎫=⎨⎬⎩⎭,满足题意; 当1a a <-,即12a <时,{}1A x a x a =≤≤-,所以112a a ≥-⎧⎨-<⎩,解得1a >-,所以112a -<<;当1a a ,即12a >时,{}1A x a x a =-≤≤,所以21112a a a ⎧⎪<⎪-≥-⎨⎪⎪>⎩,解得122a <<.综上可得1a 2-<<,即()1,2a ∈-; 故答案为:()1,2- 17.2 【解析】 【分析】由已知,两集合相等,可借助集合中元素的的互异性列出方程组,解方程即可完成求解. 【详解】因为集合2{2,}x 与{4,}x 相等,则242x x ⎧=⎨=⎩,解得2x =.故答案为:2.18.{}10x x -<<【解析】 【分析】由交集运算求解即可. 【详解】A B ={}{}{}122010x x x x x x -<≤⋂-≤<=-<<故答案为:{}10x x -<< 19.5,66ππ⎛⎫⎪⎝⎭【解析】 【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭.故答案为:5,66ππ⎛⎫⎪⎝⎭.20.5 【解析】 【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人. 【详解】设第一、二题都没答对的有x 人, 则()()206166635x -+-++= ,所以5x = 故答案为:521.{}1【解析】 【分析】根据集合的交集的定义进行求解即可 【详解】当0x =时,不等式214x ≤<不成立, 当1x =时,不等式214x ≤<成立, 当2x =时,不等式214x ≤<不成立, 当4x =时,不等式214x ≤<不成立, 所以{}1A B ⋂=, 故答案为:{}122.∅,{}1-,{1},{1,1}- 【解析】 【分析】利用子集的定义写出所有子集即可. 【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-. .M N 【解析】 【分析】从两个集合的元素特征入手整理化简,再判定两集合的包含关系进行求解. 【详解】因为121,Z ,Z 244k k M x x k x x k ⎧⎫⎧⎫+==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 1+2,Z =,Z 424k k N x x k x x k ⎧⎫⎧⎫==+∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,若x M ∈,则21(21)244k k x +-+==, 因为Z k ∈,所以21Z k -∈,所以x ∈N ,所以M N ⊆, 又因为0N ∈,0M ∉,所以M N .故答案为:M N .24. ∉, ∈, ∈ ∈【解析】【分析】(1)利用元素与集合的关系判断.(2)利用元素与集合的关系判断.(3)利用元素与集合的关系判断.(4)利用元素与集合的关系判断.【详解】 解:34∉N ; 4-∈Z ;13∈Q ; 2π-∈R .故答案为:∉,∈,∈,∈25.{}12x x -<<## ()1,2-【解析】【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可.【详解】 因为{}2A x x =<{|22}x x =-<<,101B x x ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<. 故答案为:{}12x x -<<.三、解答题26.存在,2【解析】【分析】先得到B A ⊆,分别讨论1a =-和1a ≠-两种情况即可.【详解】由A B A ⋃=,得B A ⊆,当21a +=,即1a =-时,{1}B =,此时21a =不合题意,故1a ≠- 当1a ≠-时,{}1,2B a =+,因为B A ⊆,所以2a A +∈ 所以23a +=或22a a +=,解得1a =或2a =, 当1a =时,21a =不合题意;当2a =时,{}1,3,4A =,{}1,4B =,符合题意,综上所述,存在实数2a =,使得A B A ⋃=成立. 27.(1){|1}A B x x =≥,R (){|12}B A x x =≤≤ (2)(,3]a ∈-∞【解析】【分析】(1)先求出集合A 、B ,再求A B ,R ()B A ; (2)对C 是否为∅分类讨论,分别求出a 的范围.(1) 由1030x x -≥⎧⎨-≥⎩可得{}|13A x x =≤≤ 又{|20}{|2}B x x x x =->=>,则R {|2}B x x =≤ 所以{|1}A B x x =≥,R (){|12}B A x x =≤≤ (2)当1a ≤时,C =∅,此时C A ⊆;当1a >时,C A ⊆,则13a ;综上可得(,3]a ∈-∞28.(1)∅,{1},{2},{1,2};(2)U B {|0x x =<或3}x >,{|13}B C x x ⋃=-≤≤.【解析】【分析】(1)直接写出集合A 的所有子集即可;(2)直接写出U B ,求得C ,再求B C ⋃即可. (1)因为{}1,2A =,故A 的所有子集为∅,{}{}{}1,2,1,2.(2)因为{}|12C x x =-≤≤,U B ={|0,x x <或3}x >,{|13}B C x x ⋃=-≤≤. 29.(1){|45}A B x x ⋃=-≤≤(2)答案见解析【解析】【分析】(1)分别求出集合A 和集合B ,求并集即可; (2)选①,根据集合A 和集合B 的位置在数轴上确定端点的关系,列出不等式组即可求解,选②,先求出R A ,再根据条件在数轴确定端点位置关系列出不等式组即可求解, 选③,得到A B ⊆,根据数轴端点位置关系列出不等式组即可求解.(1)因为3a =-,所以{|42}A x x =-≤≤-,又因为{|35}B x x =-<≤,所以{|45}A B x x ⋃=-≤≤.(2)若选①A B =∅:则满足15a ->或13a +≤-, 所以a 的取值范围为{|4a a ≤-或6}a >. 若选②()R B A R ⋃=:所以{|1R A x x a =<-或1}x a >+,则满足1315a a ->-⎧⎨+≤⎩,所以a 的取值范围为{|24}a a -<≤. 若选③A B B ⋃=: 由题意得A B ⊆,则满足1315a a ->-⎧⎨+≤⎩所以a 的取值范围为{|24}a a -<≤30.A ={1 , 3 , 5 , 8},B ={ 2 , 3 , 5 , 6}.【解析】【分析】利用韦恩图,将各个集合进行表示,据图可以写出A ,B .【详解】由题可得如图韦恩图,可知A ={1 , 3 , 5 , 8},B ={ 2 , 3 , 5 , 6}.。

高一数学集合试题答案及解析

高一数学集合试题答案及解析

高一数学集合试题答案及解析1.已知集合M={},P={},则M P=()A.B.(3,)C.{3,}D.{(3,)}【答案】D【解析】即求两个一次函数与图象的交点,并用点集形式给出.因为M={(x,y)|x+y=2},P={(x,y)|x-y=4},所以M∩P=={(3,-1)},故选D。

【考点】本题主要考查交集的概念、二元一次方程组解法。

点评:本题主要考查交集的概念、二元一次方程组解法。

应特别注意结合中元素是有序数对。

2.对于非空集合M、P,把所有属于M而不属于P的元素组成的集合称为M与P的差集,记作,用数学符号描述这一集合则__________________,且在下列给出的4个集合中,必与相等的集合的序号是______________.①M;②P;③;④;⑤【答案】,且,③【解析】由定义,表示的是在M中而不在P中的元素,∴,且,从而表示的是在M中且在P中的元素,故选③.【考点】本题主要考查差集的概念、集合中元素的性质。

点评:这是一道新定义问题,考查学生的学习能力、阅读能力。

3.设全集U={x||x|<4,且x∈Z},S={-2,1,3},且P是U的子集,若P S,则这样的集合PU共有()A.5个B.6个C.7个D.8个【答案】D【解析】U=,由P S知,而,∴共有子集U个.一般地,有n个元素的集合有2n个子集,有2n-1个真子集.【考点】本题主要考查子集的概念。

点评:注意从集合中元素的有无、多少依次考虑。

一般地,有n个元素的集合有2n个子集,有2n-1个真子集。

特别注意空集是任何集合的子集。

P=()4.已知全集U={x|x为小于或等于20的素数},P={3,7,11,17},则UA.{5,9,13,19}B.{1,5,13,19}C.{2,5,13,19}D.{1,2,5,13,19}【答案】C【解析】U={2,3,5,7,11,13,17,19},由补集的概念比较两个集合即得,选C。

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析1.设全集,集合,则等于()A.B.C.D.【答案】D【解析】由,,所以.故选D.【考点】集合的简单运算.2.已知集合,,则().A.B.C.D.【答案】A【解析】因为,所以;又因为,所以.【考点】集合的运算.3.已知全集U=R,A={x|﹣3<x≤6,},B={x|x2﹣5x﹣6<0,}.求:(1)A∪B;(2).【答案】(1);(2).【解析】解题思路:由题意,先解出一元二次不等式,化简集合B,再求出集合B的补集,再由交、并的运算法则解出即可.规律总结:在处理集合间的运算问题时,往往先化简集合,再结合数轴求集合间的交、并、补集. 试题解析:(1),则;(2),则 .【考点】交、并、补集的运算.4.已知集合,,且,则实数的值是.【答案】.【解析】∵,,∴.【考点】集合间的关系.5.已知集合,则满足A∩B=B的集合B可以是( )A.{0,}B.{x|-1≤x≤1}C.{x|0<x<}D.{x|x>0}【答案】C【解析】利用复合函数的值域知识可得A={y|0<y},因为A∩B=B,所以B A,所以答案是C.【考点】(1)复合函数;(2)集合的运算.6.已知全集,设集合,集合,若,求实数a的取值范围.【答案】.【解析】先解方程,的x=a,-4将a,与-4比较进行讨论,再利用得进行求解.试题解析:因为,又因为2分当时满足,此时 4分当时若,则 6分当时,满足,此时 8分综合以上得:实数的取值范围,所以 10分.【考点】1.一元二次不等式的解法;2.集合的运算.7.已知全集则()A.B.C.D.【答案】C.【解析】找出全集U中不属于A的元素,确定出A的补集,找出既属于A补集又属于B的元素,即可确定出所求的集合,∵全集U={1,2,3,4},A={1,2},∴∁UA={3,4},又B={2,3},则(∁UA)∪B={2,3,4},故选C.【考点】交、并、补集的混合运算.8.以知集合,则=()A.B.C.D.【答案】C【解析】,即,,,【考点】指数不等式的运算和集合的运算9.集合,,则.【答案】【解析】根据,集合A与集合B中的公共元素为4,7,所以【考点】集合的运算10.已知集合,,则=A.B.C.D.【答案】A【解析】,,,故选:A.【考点】集合的运算11.已知,集合,.(Ⅰ)若,求,;(Ⅱ)若,求的范围.【答案】(Ⅰ),;(Ⅱ).【解析】(Ⅰ)将代入得到集合,然后计算并集和交集;(Ⅱ)结合数轴由,集合B的左端点大于等于1,右端点小于等于4,于是,特别注意端点值是否可以取等号。

高一数学集合试题答案及解析

高一数学集合试题答案及解析

高一数学集合试题答案及解析1.已知U={x|-1≤x≤3},A={x|-1<x<3},B={x|x2-2x-3=0},C={x|-1≤x<3},则下列关系正确的是 ()A. A=BB.B=CC.(B) CD.A C【答案】A【解析】B={-1,3},A={-1,3},∴A=B.【考点】本题主要考查集合的子集,集合的补集。

点评:综合题,综合应用集合、方程及不等式知识解题。

2.集合S={x|x≤10,且x∈N*},A S,B S,且A∩B={4,5},(B)∩A={1,2,3},(A)∩(B)={6,7,8},求集合A和B.【答案】A={1,2,3,4,5},B={4,5,9,10}.【解析】如下图所示.因为A∩B={4,5},所以将4,5写在A∩B中.因为(B)∩A={1,2,3},所以将1,2,3写在A中.因为(B)∩(A)={6,7,8},所以将6,7,8写在S中A,B外.因为(B)∩A与(B)∩(A)中均无9,10,所以9,10在B中.故A={1,2,3,4,5},B={4,5,9,10}.【考点】本题主要考查集合的交集,集合的补集。

点评:涉及实数构成集合问题,常常借助于韦恩图。

3.已知集合A={x|ax2-2x+1=0}.(1)若A中恰好只有一个元素,求实数a的值;(2)若A中至少有一个元素,求实数a的取值范围.【答案】(1) a=0,或a=1 (2) a≤1【解析】(1)∵A中恰好只有一个元素,∴方程ax2-2x+1=0恰好只有一个根.当a=0时,方程的解为x=满足题意;当a≠0时,Δ=(-2)2-4a=0,∴a=1.∴所求a的值为a=0,或a=1.(2)∵A中至少有一个元素,∴方程ax2-2x+1=0有实数根.当a=0时,恰有一个根x=满足题意;当a≠0时,Δ≥0,即(-2)2-4a≥0,解得a≤1.∴所求实数a的取值范围是a≤1【考点】集合的表示、元素与集合的关系点评:本题是一个综合问题,既考查了集合的表示方法、元素与集合的关系,又用到一元二次方程根与系数的关系来确定的取值。

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为()A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x<7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=8>7,∴22∉{x|x<7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N*},用列举法表示C=________.【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N*,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x+6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--1=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.。

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典一、单选题1.从集合{},,,a b c d 的所有子集中任取一个,这个集合恰是集合{},a b 的子集的概率是( )A .35B .25C .14D .182.已知集合{}260A x R x x =∈+-<,集合1133x B x R -⎧⎫=∈≥⎨⎬⎩⎭,则A B =( )A .{}32x x -<<B .{}02x x <≤C .{}02x x ≤<D .{}3x x >-3.已知集合{}1,2,3,4A =,2{|log ,}B y y x x x A ==-∈,则A B =( ) A .{}1,2B .{}1,3C .{}1,2,3D .{}1,3,44.已知集合U =R ,则正确表示集合U ,1{}1M =-,,{}²|0N x x x =+=之间关系的维恩图是( )A .B .C .D .5.已知集合2cos ,3n A x x n N π*⎧⎫==∈⎨⎬⎩⎭,{}2230B x x x =--<,则A B =( ) A .{}2,1-- B .{}2,1,1--C .{}1,2D .{}1,1,2-6.已知集合{}|21xA x =>,{}22B xy x x ==-∣,则A B =( ) A .()0,+∞ B .(]0,2 C .(]1,2 D .[)2,+∞7.已知集合{}{}1,(2)0A x x B x x x =<=-<,则A B ⋃=( ) A .(0,1)B .(1,2)C .(,2)-∞D .(0,)+∞8.已知集合{}24A x x =≤,{}1B y y =≥-,则A B =( )A .∅B .[]1,2-C .[)2,-+∞D .[)1,2-9.已知集合{}220A x x x =--≤,{}2log B x x k =>.若A B =∅ ,则实数k 的取值范围为( ) A .02k <≤B .04k <<C .2k ≥D .4k ≥10.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( ) A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1-11.设集合{}09A x x =∈≤≤N ,{}1,2,3,6,9,10B =-,则()AA B ⋂=( ).A .{}0,1,4,5,7,8B .{}1,4,5,7,8C .{}2,3,6,9D .∅12.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .A B C = B .A B = C .()S A B ⋂=∅ D .SSABC13.设集合{|12}A x x =-<<,{|2}B x a x a =-<<,若{|10}A B x x =-<<,则A B ⋃=( ) A .(2,1)- B .(2,2)- C .(1,2)-D .(0,2)14.已知全集{}0,1,2,3,4,5U A B ==,(){}1,2,4UA B =,B =( )A .{}0B .{}3,5C .{}0,3,5D .{}1,2,415.已知集合{}ln ,1A y y x x ==>,1,12xB y y x ⎧⎫⎪⎪⎛⎫==>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .102y y ⎧⎫<<⎨⎬⎩⎭B .{}01y y <<C .112y y ⎧⎫<<⎨⎬⎩⎭D .∅二、填空题16.若{}}{1020x ax x x +=⊆-=,则=a __________.17.已知集合{}2|210A x ax x =+-=,若集合A 中只有一个元素,则实数a 的取值的集合是______18.已知集合2{2,}x 与{4,}x 相等,则实数x =__________.19.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},则a =_______;已知U 是全集,集合A ={0,2, 4},UA ={-1, 1},UB ={-1, 0, 2},则B =_____.20.设集合(){},A x y y x ==,()3,1x B x y y x +⎧⎫==⎨⎬-⎩⎭,则A B =______.21.已知集合{}4194,A x x n n *==-+∈N ,{}6206,B y y n n *==-+∈N ,将A B 中的所有元素按从大到小的顺序排列构成一个数列{}n a ,则数列{}n a 的前n 项和的最大值为___________.22.设集合(),5P =-∞,[),Q m =+∞,若P Q =∅,则实数m 的取值范围是______. 23.已知集合{}0,1,2A =,则集合{}3,B b b a a A ==∈=______.(用列举法表示) 24.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______. 25.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.三、解答题26.已知集合{}2280A x x x =+-≤.集合106x B xx -⎧⎫=<⎨⎬-⎩⎭,设集合()R I A B =. (1)求I ;(2)当x I ∈时,求函数9()1f x x x =+-的最小值.27.已知全集U =R ,集合{}04A x x =≤≤,(){}lg 2B x y x ==-. (1)求()UA B ;(2)若集合()0,C a =,且C A B ⊆,求实数a 的取值范围.28.已知全集U =R ,{}|42A x x =-≤<,{}|13B x x =-<≤,P ={x |x ≤0或52x ≥},求 (1)()U B P ⋃ (2)()()U A B P ⋂⋂29.已知全集U =R ,集合{}32A x x =-<<,{}|16B x x =≤≤,{}|121C x a x a =-≤≤+. (1)求()U A B ;(2)若()C A B ⊆⋃,求实数a 的取值范围.30.设全集{2}U xx =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣.求UA ,()UA B ⋂,A B ,()UA B【参考答案】一、单选题 1.C 【解析】 【分析】集合{},,,a b c d 的子集个数共16个,集合{},a b 的子集个数共4个,利用古典概型的概率公式求解即可. 【详解】集合{},,,a b c d 的子集有∅,{}a ,{}b ,{}c ,{}d ,{},a b ,{},a c ,{},a d ,{},b c ,{},b d ,{},c d ,{},,a b c ,{},,a b d ,{},,a c d ,{},,b c d ,{},,,a b c d 共16个,其中∅,{}a ,{}b ,{},a b 这4个集合是{},a b 的子集, 因此所求概率为41164=. 故选:C 2.C 【解析】 【分析】本题首先通过解不等式260x x +-<得出{}32A x x =-<<,然后通过解不等式1133x -≥得出{}0B x x =≥,最后通过交集的相关性质即可得出结果.【详解】260x x +-<,()()320x x +-<,32x -<<,{}32A x x =-<<,1133x -≥,11x -≥-,0x ≥,{}0B x x =≥, 则{}02A B x x ⋂=≤<, 故选:C. 3.A 【解析】 【分析】根据对数的运算求出集合B ,再根据交集的定义可求出结果. 【详解】当1x =时,21log 11y =-=, 当2x =时,22log 21y =-=, 当3x =时,23log 3y =-, 当4x =时,24log 42y =-=, 所以2{1,2,log 3}B =, 所以A B ={1,2}. 故选:A 4.A 【解析】 【分析】先求得集合N ,判断出,M N 的关系,由此确定正确选项. 【详解】∵{}{}2|1,00N x x x =-=+=,1{}1M =-,, ∴{1}M N ⋂=-,故A 正确,BCD 错误. 故选:A. 5.C 【解析】 【分析】结合余弦型函数的周期性可得到{}1,1,2,2A =--,再得到2230x x --<的解集,进而求解. 【详解】 因为2cos3y x π=的最小正周期263T ππ==且1cos32π=, 21cos cos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41cos cos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,,所以{}*|2cos ,1,1,2,23n A x x n N π⎧⎫==∈=--⎨⎬⎩⎭, 又{}{}223013B x x x x x =--<=-<<,所以{}1,2A B =, 故选:C 6.B 【解析】 【分析】先求出集合A ,B ,再根据交集定义即可求出. 【详解】因为{}|0A x x =>,{}|02B x x =≤≤,所以(]0,2A B =. 故选:B. 7.C 【解析】 【分析】求出集合B ,由并集的定义即可求出答案. 【详解】因为{}{}(2)002B x x x x x =-<=<<,则}{2A B x x ⋃=<. 故选:C. 8.B 【解析】 【分析】求出集合A ,利用交集的定义可求得集合A B . 【详解】因为{}{}2422A x x x x =≤=-≤≤,所以[]1,2A B ⋂=-.故选:B. 9.D 【解析】 【分析】由于A B =∅ ,B 集合所表示的区间在A 集合之外. 【详解】由220x x --≤ ,解得12x -≤≤ ,即[]1,2A =- ,A B =∅ ,2log 2k ∴≥ ,4k ≥ ;故选:D. 10.C 【解析】 【分析】求出集合A 的解集,取交集运算即可. 【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =. 故选:C. 11.A 【解析】 【分析】根据集合的运算直接可得. 【详解】解:依题意{}0123456789A ,,,,,,,,,=,{}1,2,3,6,9,10B =-, 所以{}2,3,6,9A B ⋂=,故(){}0,1,4,5,7,8AA B ⋂=.故选:A . 12.D 【解析】 【分析】根据集合A ,B ,C 的关系求解即可. 【详解】集合A ,B ,C 的关系如下图,由图可知只有SSABC 正确.故选:D. 13.B 【解析】 【分析】由{}10A B x x ⋂=-<<,求出0a =,{}20B x x =-<<,由此能求出A B . 【详解】集合{}12A x x =-<<,{}2B x a x a =-<<,{}10A B x x ⋂=-<<,0a ∴=,{}20B x x ∴=-<<,满足题意则(2,2)=-A B . 故选:B . 14.C 【解析】【分析】根据条件可得1,2,4∈UB ,则1,2,4B ∉,结合条件即可得答案.【详解】 因为(){}1,2,4UAB =,所以1,2,4∈UB ,则1,2,4B ∉,又{}0,1,2,3,4,5U A B ==,所以0,3,5B ∈,即{}0,3,5B =. 故选:C 15.A 【解析】 【分析】根据题意求出,A B 后运算 【详解】由题意,A B 为对应函数的值域,(0,)A =+∞,1(0,)2B =故1(0,)2A B =故选:A二、填空题16.0或12-##12-或0【解析】 【分析】由题,先求出}{20x x -=所代表集合,再分别讨论{}10x ax +=作为子集的可能情况即可. 【详解】由}{20x x -=得集合为{}2,故{}10x ax +=为空集或{}2,当{}10x ax +=为{}2时,可得12a =-;当{}10x ax +=为空集时,可得0a =, 故答案为:0或12-17.{}0,1-【解析】 【分析】分0a =和0a ≠两种情况保证方程2210ax x 只有一个解或重根,求出a 的值即可. 【详解】当0a =时,2210ax x 只有一个解12x =, 则集合2{|210}A x ax x =+-=有且只有一个元素,符合题意;当0a ≠时,若集合A 中只有一个元素, 则一元二次方程2210ax x 有二重根, 即440a ∆=+=,即 1.a =-综上,0a =或1-,故实数a 的取值的集合为{}0,1.- 故答案为:{}0,1.- 18.2 【解析】 【分析】由已知,两集合相等,可借助集合中元素的的互异性列出方程组,解方程即可完成求解. 【详解】因为集合2{2,}x 与{4,}x 相等,则242x x ⎧=⎨=⎩,解得2x =.故答案为:2.19. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1 【解析】 【分析】利用补集的定义,依次分析即得解 【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8}; 若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},故{1,3,4}UU A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},UA ={-1, 1},故{1,0,1,2,4}UU A A =⋃=-,UB ={-1, 0, 2},故B ={1, 4}故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4}20.()(){}1,1,3,3--【解析】 【分析】联立方程组,求出交点坐标,即可得到答案. 【详解】解方程组31y xx y x =⎧⎪+⎨=⎪-⎩,得11x y =-⎧⎨=-⎩或33x y =⎧⎨=⎩. 故答案为:()(){}1,1,3,3--.21.1472【解析】 【分析】由题意设4194n b n =-+,6206m c m =-+,根据n m b c =可得326m n -=,从而312194n n a b n ==-+,即可得出答案.【详解】设4194n b n =-+,由41940n b n =-+>,得48n ≤ 6206m c m =-+,由62060m c m =-+>,得34m ≤A B 中的元素满足n m b c =,即41946206n m -+=-+,可得326m n -=所以223m n =+,由,*m n N ∈,所以3,*n k k N =∈ 所以312194n n a b n ==-+,要使得数列{}n a 的前n 项和的最大值,即求出数列{}n a 中所以满足0n a ≥的项的和即可. 即121940n a n =-+≥,得16n ≤,则116182,2a a == 所以数列{}n a 的前n 项和的最大值为121618221614722a a a ++++=⨯= 故答案为:147222.5m ≥【解析】 【分析】由交集和空集的定义解之即可. 【详解】(),5P =-∞,[),Q m =+∞ 由P Q =∅可知,5m ≥ 故答案为:5m ≥23.{0,3,6}【解析】 【分析】根据给定条件直接计算作答. 【详解】因{}0,1,2A =,而{}3,B b b a a A ==∈,所以{0,3,6}B =. 故答案为:{0,3,6}24.{}0,1,4【解析】 【分析】根据集合的运算法则计算. 【详解】由已知{4}A =,{0,1}B =,所以{0,1,4}A B =.故答案为:{0,1,4}.25.13,2⎡⎫--⎪⎢⎣⎭ 【解析】【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围.【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩, 解得132a -<-. a ∴的取值范围为[3-,1)2-. 故答案为:[3-,1)2-. 三、解答题26.(1){}26x x <<;(2)7.【解析】【分析】(1)化简集合,然后利用补集的定义及交集的定义运算即得;(2)利用基本不等式即得.(1)∵{}{}228042A x x x x x =+-≤=-≤≤,{}10166x B x x x x -⎧⎫=<=<<⎨⎬-⎩⎭, ∴{R 4A x x =<-或}2x >,(){}R 26I A B x x =⋂=<<;(2) 当x I ∈时,()11,5x -∈,∴99()111711f x x x x x =+=-++≥=--, 当且仅当911x x -=-,即4x =取等号, 所以函数9()1f x x x =+-的最小值为7. 27.(1)()4,+∞(2)02a <≤【解析】【分析】(1)先求出集合B ,再按照并集和补集计算()U A B 即可;(2)先求出[)0,2A B =,再由C A B ⊆求出a 的取值范围即可.(1){}2B x x =<,{}4A B x x ⋃=≤,()()4,U A B ⋃=+∞;(2) [)0,2A B =,由题得()[)0,0,2a ⊆故02a <≤.28.(1){|0x x ≤或52x ≥} (2){}|02x x <<【解析】【分析】(1)先进行补集运算,再进行并集运算即可;(2)先求A B 和U P ,再求交集即可. (1)因为{}|13B x x =-<≤,P ={0|x x ≤或52x ≥}, 所以U B ={1x ≤-或3x >},所以()U B P ⋃={0|x x ≤或52x ≥}. (2)因为{}|42A x x =-≤<,{}|13B x x =-<≤,P ={0|x x ≤或52x ≥} 所以{}12A B x x ⋂=-<<,502U P x x ⎧⎫=<<⎨⎬⎩⎭, 所以()(){}02U A B P x x ⋂⋂=<<.29.(1){})1(|3U x x A B ⋂=-<<;(2)5(,2)(2,]2-∞-⋃-. 【解析】【分析】(1)利用补集及交集的定义运算即得;(2)利用并集的定义可得{}36A B x x ⋃=-<≤,然后分C =∅和C ≠∅讨论即得.(1)∵全集U =R , {}|16B x x =≤≤,∴{1U B x x =<或}6x >,又集合{}32A x x =-<<,∴{})1(|3U x x A B ⋂=-<<;(2) ∵{}32A x x =-<<,{}|16B x x =≤≤, ∴{}36A B x x ⋃=-<≤,又()C A B ⊆⋃, ∴当C =∅时,121a a ->+,∴2a <-,当C ≠∅时,则12113216a a a a -≤+⎧⎪->-⎨⎪+≤⎩, 解得522a -<≤, 综上,实数a 的取值范围为5(,2)(2,]2-∞-⋃-. 30.{22U A x x =-≤≤∣或10}x ≥,(){2}U A B =,{28}A B x x ⋂=<≤∣,(){22U A B x x ⋂=-≤≤∣或8}x >【解析】【分析】依据补集定义求得U A ,再依据交集定义求得()U A B ⋂;依据交集定义求得A B ,再依据补集定义求得()U A B . 【详解】{2}U x x =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣,则{22U A x x =-≤≤∣或10}x ≥,则(){2}U A B = {28}A B x x ⋂=<≤∣,则(){22U A B x x ⋂=-≤≤∣或8}x >。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学集合检测题
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合{}{}1,1,2,2,|,M N y y x x M =--==∈,则M N ⋂是 A M B {}1,4 C {}1 D Φ
2. 设全集U =R ,集合2{|1}A x x =≠,则U C A =
A. 1
B. -1,1
C. {1}
D. {1,1}-
3. 已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A = A. {|02}x x x ≤≥或 B. {|02}x x x <>或 C. {|2}x x ≥ D. {|2}x x >
4. 设全集{}0,1,2,3,4I =----,集合{}0,1,2M =--,{}0,3,4N =--,则()I M N =
A .{0}
B .{}3,4--
C .{}1,2--
D .∅
5.已知集合M={x N|4-x N}∈∈,则集合M 中元素个数是 A .3 B .4 C .5 D .6
6. 已知集合{}1,0,1-=A ,则如下关系式正确的是 A A A ∈ B 0A C A ∈}0{ D ∅A
7.集合}22{<<-=x x A ,}31{<≤-=x x B ,那么=⋃B A
A.}32{<<-x x
B.}21{<≤x x
C.}12{≤<-x x
D.}32{<<x x 8.已知集合}01|{2=-=x x A ,则下列式子表示正确的有 ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{
A .1个
B .2个
C .3个
D .4个
9.已知2U U={1,2,23},A={|a-2|,2},C {0}a a A +-=,则a 的值为 A .-3或1 B .2 C .3或1 D .1 10. 若集合}8,7,6{=A ,则满足A B A =⋃的集合B 的个数是
A. 1
B. 2
C. 7
D. 8
11.已知集合M={x|x 1},N={x|x>}a ≤-,若M N ≠∅,则有 A .1a <- B .1a >- C . 1a ≤- D .1a ≥-
12、已知全集{}{}{}0,1,2,4,6,8,10,2,4,6,1U A B ===,则()U C A B ⋃= A
{}0,1,8,10 B {}1,2,4,6 C {}0,8,10
D Φ
选择题答案
二、填空题:
13.设U ={三角形},A ={锐角三角形},则U C A = . 14. 已知A={0,2,4},C U A={-1,1},C U B={-1,0,2},求B= 。

15、已知全集{}
{}{}22,4,1,1,2,7U U a a A a C A a =-+=+==则 16
集合
{}{}{}0,2,4,6,1,3,1,3,1,0,2U U A C A C B ==--=-则集合B
= 。

17、已知全集U =R ,集合A ={x |1≤2x +1<9},则C U A = 18.设全集R B C A x x B a x x A R =⋃<<-=<=)(},31{},{且,则实数a 的取值范围是________________
三、解答题:解答应写出文字说明,证明过程或演算步骤.
19.若A={3,5},2{|0}B x x mx n =++=,A B A =,{5}A B =,求m 、n 的值。

20.已知集合2{|320}A x x x =-+=,}{
12=-+-=m mx x x B .若
A B A =,求实数m 的取值范围。

21已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,若A B =∅,求实数a 的取值范围。

22.设22{|190}A x x ax a =-+-=,2{|560}B x x x =-+=, 若A B A B =,求a 的值。

23. 若集合{}2,12,4a a A --=,{}9,1,5a a B --=,且{}9=B A ,求a 的值。

答案
1—5 ADCBC 6—10 DACDD 11—12 AA。

相关文档
最新文档