第九章 细胞信号转导-2013课件
合集下载
细胞信号转导PPT课件

在细胞内传递信息的小分子物质,如:Ca2+、cAMP、cGMP、 DAG、IP3等
目录
(一)环核苷酸 1. cAMP 的合成与分解
腺苷酸环化酶 (adenylate cyclase,AC)
ATP AMP
cAMP
磷酸二酯酶 (phosphodiesterase, PDE)
目录
cAMP的作用,举例:调节PKA的活性
有些细胞间信息物质能对同种细胞或分 泌细胞自身起调节作用,称为自分泌信号 (autocrine signal)
例如 生长因子 肿瘤的形成
目录
目录
受体 Receptor
膜受体
胞内受体
Ligand 配体
目录
目录
受体:是细胞膜上或细胞内能特异识 别生物活性分子并与之结合的成分,其 化学本质是蛋白质,个别是糖脂
蛋白激酶A (PKA)
(cAMP-dependent protein kinase)
R: 调节亚基 C: 催化亚基
RC RC
PKA的激活Rຫໍສະໝຸດ CR C目录
PKA(丝氨酸、苏氨酸蛋白激酶)
ATP
ADP
Thr Ser
-OH
蛋白激酶
Thr Ser -O-PO32-
酶蛋白
磷酸化的 酶蛋白
目录
PKA的作用
⑴ 对代谢的调节作用
一氧化氮(NO)
+ O2
一氧化氮合酶 (NOS)
NADP+
NADPH+H+
+ NO
精氨酸
瓜氨酸
一氧化氮
NO, 可活化可溶性GC,并抑制 磷酸二酯酶活性,从而使细胞内 cGMP浓度升高。再通过cGMP依 赖的蛋白激酶G(PKG)发挥生理 功能
目录
(一)环核苷酸 1. cAMP 的合成与分解
腺苷酸环化酶 (adenylate cyclase,AC)
ATP AMP
cAMP
磷酸二酯酶 (phosphodiesterase, PDE)
目录
cAMP的作用,举例:调节PKA的活性
有些细胞间信息物质能对同种细胞或分 泌细胞自身起调节作用,称为自分泌信号 (autocrine signal)
例如 生长因子 肿瘤的形成
目录
目录
受体 Receptor
膜受体
胞内受体
Ligand 配体
目录
目录
受体:是细胞膜上或细胞内能特异识 别生物活性分子并与之结合的成分,其 化学本质是蛋白质,个别是糖脂
蛋白激酶A (PKA)
(cAMP-dependent protein kinase)
R: 调节亚基 C: 催化亚基
RC RC
PKA的激活Rຫໍສະໝຸດ CR C目录
PKA(丝氨酸、苏氨酸蛋白激酶)
ATP
ADP
Thr Ser
-OH
蛋白激酶
Thr Ser -O-PO32-
酶蛋白
磷酸化的 酶蛋白
目录
PKA的作用
⑴ 对代谢的调节作用
一氧化氮(NO)
+ O2
一氧化氮合酶 (NOS)
NADP+
NADPH+H+
+ NO
精氨酸
瓜氨酸
一氧化氮
NO, 可活化可溶性GC,并抑制 磷酸二酯酶活性,从而使细胞内 cGMP浓度升高。再通过cGMP依 赖的蛋白激酶G(PKG)发挥生理 功能
精品医学课件-细胞信号转导

游的蛋白激酶,通过多种途径逐级磷酸化细胞内某 些蛋白,进一步影响相关基因的表达。
52
53
多种途径逐 级磷酸化
54
2. JAK-STAT途径
• 配体:干扰素、白介素等细胞因子 • 受体:酪氨酸蛋白激酶型受体 • 效应蛋白及其作用:胞质PTK(非受体型的PTK),如JAK
(Janus kinase)。活化的JAK激活其底物信号转导子和转 录激活子(signal transducer and activator of transcription, STAT),STAT激活一系列后续蛋白质,调节基因表达。
• 两种形式:载体介导和通道介导
10
(二)主动转运(active transport)
1. 原发性主动转运
• ATP直接供能 • Na+-K+泵,ATP酶活性
11
2. 继发性主动转运或协同转运
• ATP间接供能 • Na+依赖式转运体蛋白
12
(三)胞吐与胞吞式转运
• 胞吐:通过一个耗能过程将细胞内物质分泌到细 胞外的过程。(固有性胞吐、调节性胞吐)
虽然这些微小的蛋白质看不见摸不着, 但是它们与我们的日常生活息息相关, 如果没有G蛋白偶联受体,人类根本无 法生存下去。如果没有视紫质,我们将 看不见光线;如果没有嗅觉受体,我们 将闻不见气味;如果没有β-肾上腺素受 体,我们将无法调节血糖;如果没有毒 蕈碱受体,乙酰胆碱将无法将心跳速度 限定在合理范围内;如果没有5-羟色胺 受体,我们甚至无法感受幸福……
15
(三)化学通讯
• 间接通讯方式:信 号分子→靶细胞
• 分3类:
1. 内分泌(endocrine) --血液循环 2. 旁分泌(paracrine) --扩散作用 3. 自分泌(autocrine) --同类或同一细胞 (常见于癌变细胞)
52
53
多种途径逐 级磷酸化
54
2. JAK-STAT途径
• 配体:干扰素、白介素等细胞因子 • 受体:酪氨酸蛋白激酶型受体 • 效应蛋白及其作用:胞质PTK(非受体型的PTK),如JAK
(Janus kinase)。活化的JAK激活其底物信号转导子和转 录激活子(signal transducer and activator of transcription, STAT),STAT激活一系列后续蛋白质,调节基因表达。
• 两种形式:载体介导和通道介导
10
(二)主动转运(active transport)
1. 原发性主动转运
• ATP直接供能 • Na+-K+泵,ATP酶活性
11
2. 继发性主动转运或协同转运
• ATP间接供能 • Na+依赖式转运体蛋白
12
(三)胞吐与胞吞式转运
• 胞吐:通过一个耗能过程将细胞内物质分泌到细 胞外的过程。(固有性胞吐、调节性胞吐)
虽然这些微小的蛋白质看不见摸不着, 但是它们与我们的日常生活息息相关, 如果没有G蛋白偶联受体,人类根本无 法生存下去。如果没有视紫质,我们将 看不见光线;如果没有嗅觉受体,我们 将闻不见气味;如果没有β-肾上腺素受 体,我们将无法调节血糖;如果没有毒 蕈碱受体,乙酰胆碱将无法将心跳速度 限定在合理范围内;如果没有5-羟色胺 受体,我们甚至无法感受幸福……
15
(三)化学通讯
• 间接通讯方式:信 号分子→靶细胞
• 分3类:
1. 内分泌(endocrine) --血液循环 2. 旁分泌(paracrine) --扩散作用 3. 自分泌(autocrine) --同类或同一细胞 (常见于癌变细胞)
《细胞信号转导》课件

1
激活物
激活物是引发细胞信号传递的触发因素。
2
受体
受体是细胞上识别和结合信号的蛋白质。
3
信使分子
信使分子是传递信号的分子信使,如细胞内嵌合蛋白和化学物质。
细胞信号传递的途径
细胞信号传递可以通过不同的途径实现,例如G蛋白偶联受体、酪氨酸激酶受体和泛素样修饰途径。
G蛋白偶联受体
G蛋白偶联受体是一类可以与G 蛋白相互作用并激活细胞信号 传递的受体。
基因调控
通过激活或抑制特定基因的转录来调节
蛋白激酶级联反应
2
细胞的功能和行为。
一系列蛋白激酶的级联反应,参与细胞
内复杂的信号转导网络。
3
细胞增殖、分化、凋亡
细胞信号转导可以调控细胞的增殖、分 化和凋亡等生物学过程。
细胞信号传递的调控
细胞信号传递可以通过酶促修饰、反式调控和基因转录控制等方式进行调控。
基本过程
细胞信号转导包括信号传递、信号放大、信号 整合和信号传导。
细胞信号转导的类型
细胞信号转导可以分为内源性信号和外源性信号两种类型。
1 内源性信号
来自细胞内部的信号,如细胞自身合成的分 子信号。
2 外源性信号
来自细胞外部的信号,如激素、生长因子和 神经递质等。
细胞信号传递的参与者
细胞信号传递涉及多个参与者,包括激活物、受体和信使分子。
《细胞信号转导》PPT课 件
# 细胞信号转导
细胞信号转导是细胞内外相互作用的关键过程,它们通过一系列复杂的分子 信号传递调控细胞的功能和行为。
什么是细胞信号转导
细胞信号转导是指细胞通过传递分子信号来调节其生理反应和行为的过程。
定义
细胞信号转导是指细胞通过传递分子信号来调 节其生理反应和行为的过程。
第9章 细胞信号转导(1)

受体酪氨酸激酶及RTK-Ras蛋白信号通路
受体酪氨酸激酶(Receptor tyrosine kinase,RTK)又称 酪氨酸蛋白激酶受体。迄今已鉴定有50多种,包含7个 亚族。 RTK的N端位于胞外,是配体结合结构域,C端位于胞 内,具有酪氨酸激酶结构域,并具有自磷酸化位点。 大多数RTK是单体跨膜蛋白,配体结合导致受体二聚 化,形成同源或异源二聚体。 胞外配体是可溶性或膜结合的多肽或蛋白类激素,包 括多种生长因子、胰岛素和胰岛素样生长因子。 RTK的主要功能是控制细胞生长、分化而不是调控细 胞中间代谢。
NO参与的信号途径
NO是一种具有自由基性质的脂溶性气体分子,能够 透过细胞膜迅速扩散 NO在细胞内极其不稳定,半衰期2-30s,被氧化后以 NO3-和NO2-形式存在细胞外液中 NO只能在组织中局部扩散,对邻近的靶细胞发挥作 用 血管内皮细胞,神经细胞时NO的生成细胞,以精氨 酸为底物
细胞因子受体与JAK-STAT信号通路
3 其它细胞表面受体介导的信号通路
Wnt受体和Hedgehog受体介导的信号通路:通 过配体与受体结合引发胞质内多蛋白复合物去 装配,从而释放转录因子,在转位到核内调控 基因表达。 NF-B和Notch信号通路涉及到抑制物或受体本 身蛋白切割作用,从而释放活化的转录因子, 再转位到核内调控基因表达。
cAMP-PKA信号通路
cAMP为第二信使,激活蛋白激酶A(Protein kinase A, PKA)。 无活性PKA含有两个调节亚基(R)和2个催化亚基组 (C)成的四聚体,每个R亚基有2个cAMP结合位点。
cAMP-PKA信号通路对肝细胞和肌细胞糖原代谢的调节 GS:糖原合成酶 PKA:蛋白激酶A IP:磷蛋白磷酸酶抑制蛋白 PP:磷蛋白磷酸酶 G-1-P: 葡萄糖-1-磷酸 GPK:糖原磷酸化酶激酶 GP:糖原磷酸化酶
《细胞信号转导》课件

03 肿瘤细胞信号转导与血管生成
肿瘤细胞通过信号转导通路调节血管生成,为肿 瘤提供营养和氧气,促进肿瘤生长和扩散。
信号转导异常与代谢性疾病
01
胰岛素信号转导与 糖尿病
胰岛素信号转导通路的异常可导 致胰岛素抵抗和糖尿病的发生, 影响糖代谢和脂肪代谢。
02
瘦素信号转导与肥 胖
瘦素信号转导通路的异常可导致 肥胖的发生,影响能量代谢和脂 肪分布。
03
炎症信号转导与非 酒精性脂肪肝
炎症信号转导通路的异常可导致 非酒精性脂肪肝的发生,影响脂 肪代谢和炎症反应。
信号转导异常与神经退行性疾病
Tau蛋白磷酸化与神经退行性疾病
Tau蛋白的异常磷酸化是神经退行性疾病如阿尔茨海默病和帕金森病的重要特征,影响神 经元突起生长和神经元网络连接。
α-synuclein异常磷酸化与帕金森病
信号转导蛋白
01
信号转导蛋白是一类在细胞内传递信息的蛋白质,包括G蛋白、 酶和离子通道等。
02
G蛋白是一类位于细胞膜上的三聚体GTP结合蛋白,能够偶联受
体和效应器,起到传递信号的作用。
酶是另一类重要的信号转导蛋白,能够催化细胞内的生化反应
03
,如磷酸化、去磷酸化等,从而调节细胞的生理功能。
效应蛋白
基因敲入技术
通过将特定基因的突变版本引入细胞 或生物体中,以研究基因突变对细胞 信号转导的影响。
蛋白质组学技术
01
蛋白质印迹
通过抗体检测细胞中特定蛋白质的表达和修饰情 况,了解蛋白质在信号转导中的作用。
02
蛋白质相互作用研究
利用蛋白质组学技术,如酵母双杂交、蛋白质芯 片等,研究蛋白质之间的相互作用和复合物的形
细胞信号转导是生物体感受、传递、放大和响应 外界刺激信息的重要过程,是生物体内一切生命 活动不可缺少的环节。
肿瘤细胞通过信号转导通路调节血管生成,为肿 瘤提供营养和氧气,促进肿瘤生长和扩散。
信号转导异常与代谢性疾病
01
胰岛素信号转导与 糖尿病
胰岛素信号转导通路的异常可导 致胰岛素抵抗和糖尿病的发生, 影响糖代谢和脂肪代谢。
02
瘦素信号转导与肥 胖
瘦素信号转导通路的异常可导致 肥胖的发生,影响能量代谢和脂 肪分布。
03
炎症信号转导与非 酒精性脂肪肝
炎症信号转导通路的异常可导致 非酒精性脂肪肝的发生,影响脂 肪代谢和炎症反应。
信号转导异常与神经退行性疾病
Tau蛋白磷酸化与神经退行性疾病
Tau蛋白的异常磷酸化是神经退行性疾病如阿尔茨海默病和帕金森病的重要特征,影响神 经元突起生长和神经元网络连接。
α-synuclein异常磷酸化与帕金森病
信号转导蛋白
01
信号转导蛋白是一类在细胞内传递信息的蛋白质,包括G蛋白、 酶和离子通道等。
02
G蛋白是一类位于细胞膜上的三聚体GTP结合蛋白,能够偶联受
体和效应器,起到传递信号的作用。
酶是另一类重要的信号转导蛋白,能够催化细胞内的生化反应
03
,如磷酸化、去磷酸化等,从而调节细胞的生理功能。
效应蛋白
基因敲入技术
通过将特定基因的突变版本引入细胞 或生物体中,以研究基因突变对细胞 信号转导的影响。
蛋白质组学技术
01
蛋白质印迹
通过抗体检测细胞中特定蛋白质的表达和修饰情 况,了解蛋白质在信号转导中的作用。
02
蛋白质相互作用研究
利用蛋白质组学技术,如酵母双杂交、蛋白质芯 片等,研究蛋白质之间的相互作用和复合物的形
细胞信号转导是生物体感受、传递、放大和响应 外界刺激信息的重要过程,是生物体内一切生命 活动不可缺少的环节。
细胞信号转导精品课件

05
细胞信号转导的未来展 望
细胞信号转导与药物研发
细胞信号转导与药物研发
随着对细胞信号转导机制的深入了解,药物研发正逐渐转 向针对特定信号通路的治疗方法。这有助于开发更精确、 副作用更小的药物,提高治疗效果。
针对特定疾病的信号通路
针对特定疾病的信号通路进行药物设计,可以更有效地治 疗某些难以治愈的疾病,如癌症、神经退行性疾病等。
细胞信号转导精品课件
目录
• 细胞信号转导概述 • 细胞信号转导的分子机制 • 细胞信号转导与疾病 • 细胞信号转导的研究方法 • 细胞信号转导的未来展望
01
细胞信号转导概述
细胞信号转导的定义
细胞信号转导
是指细胞接收到胞外信号后,通 过一系列的信号转导过程,将胞 外信号转导至胞内,调控基因的 表达,从而影响细胞的生命活动
个性化治疗的可能性
通过对个体基因组和信号转导通路的深入研究,有望实现 个性化治疗,根据患者的具体情况制定最合适的治疗方案 。
细胞信号转导与基因治疗
基因治疗与信号转导
基因治疗是一种通过修改或替换缺陷基因来治疗遗传性疾病的方法。细胞信号转导在基因表达和调控中起着重要作用 ,因此对信号转导机制的理解有助于优化基因治疗方案。
癌症治疗中的细胞信号转导
针对癌症治疗中的细胞信号转导,可以采取多种手段,如抑制信号 转导、诱导细胞凋亡等。
神经退行性疾病与细胞信号转导
神经退行性疾病概述
01
神经退行性疾病是一类以神经元退行性病变为主要特征的疾病
,如阿尔茨海默病、帕金森病等。
细胞信号转导与神经退行性疾病
02
细胞信号转导在神经退行性疾病的发生、发展中起着重要作用
针对糖尿病的治疗,可以采取多种手段,如抑制 信号转导、调节血糖等。
第九章细胞信号转导

膜受体Frzzled(Fz) 膜辅助性受体LRP5/6 糖元合酶激酶3(GSK3) 支架蛋白(Axin) 抑癌蛋白(APC) T细胞因子(TCF)
Wnt→Fz → LRP/DSH → Axin/APC/GSK3/β-catenin →β-catenin →β-catenin/TCF → 激活靶基因转录
级联反应等, 即信号的识别、转移与转换。
主要内容:
细胞信号转导概述 细胞内受体介导的信号传递 G蛋白偶联受体介导的信号转导 酶联受体介导的信号转导 其他细胞表面受体介导的信号通路 细胞信号转导的整合与控制
第一节
细胞信号转导概述
一、细胞通讯 二、信号分子与受体
三、信号转导系统及其特性
分泌化学信号
Hedgehog(Hh):Hh信号分子是一种由信号细胞分泌的局域性蛋白质 配体,作用范围小。 Hh受体:Ptc、Smo和iHog蛋白,介导细胞对Hh信号应答反应。Ptc和Smo 具有接受和转导Hh信号的功能,iHog可能作为辅助性受体参与Ptc 与Hh信号的结合。
相关的信号分子超家族,无活性的分泌性前体需经蛋白酶水解作用形成以
二硫键连接的同源或异源二聚体,即成熟的活化形式。
TGF-β受体: 与TGF-β结合的细胞表面受体复合物,可将胞外信号将胞内转导, 包括RⅠ、RⅡ和RⅢ受体,本质上是受体Ser/Thr激酶。
TGF-β-Smad信号通路
TGF-β(配体)与TGF-β受体结合 形成复合物后便被激活,受体的激 酶活性能在胞质内直接磷酸化并激 活特殊类型的转录因子Smad,进入 核内调节基因表达。 ① 配体与RⅢ结合 ② RⅢ将配体递交给RⅡ或配体直接 结合RⅡ。RⅡ自磷酸化被激活 ③ 与配体结合的RⅡ募集并磷酸化 RⅠ的Ser/Thr残基,RⅠ受体被 激活 ④ 激活的R1受体磷酸化Smad ⑤ Smad激活靶基因转录
第九章-细胞信号转导PPT课件

一.离子通道偶联蛋白(配体门离子通道)
包括:结合位点+离子通道 二.G蛋白偶联受体(最大家族)
普遍存在真核细胞表面
.
10
三.酶联受体: 一类具有酶活性; 另一类受体胞内段与酶联系。
至少两个功能域:结合配体、产生效应
受体被激活-信号转导-引发两种主要反应:
改变预存蛋白活性
影响特殊蛋白的表达量
•
.
11
.
3
细胞通讯3种方式:
一、分泌化学信号
分泌化学信号作用方式4种: • 内分泌 • 旁分泌 • 自分泌 • 化学突出传递神经信号
.
4
二、细胞间接触性依赖通讯:
①细胞-细胞黏着 ②细胞-基质黏着
.
5
三、间隙连接或胞间连丝:
• 动物细胞间的间隙连接或植物细胞间的胞 间连丝同属于通讯连接。
• 通讯连接:详见第十七章
.
18
③.表面受体被激活后,在临近质膜上形成肌 醇磷脂分子,从而募集具有PH结构域的信号 蛋白,形成复合物,参与下游事件。
.
19
(三)信号转导系统的4个主要特性:
• 特异性 • 放大效应 • 网络化与反馈 • 整合作用
.
20
第二节 细胞内受体介导的信号传递
细胞内受体超家族本质是依赖激素激活的基因调控 蛋白,在细胞内,受体与抑制剂(如Hsp90)结 合为复合物,当信号分子与受体结合后,抑制剂 脱落,使得受体暴露其DNA结合位点而被激活。
.
15
• 研究蛋白互作的模式结构域——SH2结构域
确定蛋白家族成员: 酶、癌蛋白、锚定蛋白接头蛋白、调节蛋 白、转录因子
.
16
(二)信号蛋白复合物的装配3种策略:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G蛋白的种类
已发现人类G蛋白的α亚基编码基因27种,β亚基基因 5种、γ亚基基因13种.
根据对效应酶AC(腺苷酸环化酶)的作用差异分为
Gs型G蛋白:
Gi型G蛋白:
另外有Gt,Gg, Go, Gq
相应的受体分为:Rs, Ri
二
G蛋白耦连受体所介导的细胞信号通路
主要包括: 1. 激活离子通道的G蛋白耦联受体介导的信号通路 2. 以cAMP为第二信使的信号通路 3. 激活磷脂酶、以IP3和DAG为双信使的磷脂酰肌醇 信号通路
第二信使(second messenger)
已经发现的第二 信使有: cAMP, Ca2+, cGMP, IP3, DG等
获1971年诺贝尔医学与生理学奖
分子开关(molecular switches)
调节细胞信号的激活/失活机制的蛋白
细胞内的分子开关蛋白分为两类: 1.活性由蛋白磷酸化/去磷酸化调节 2.活性由结合GTP/GDP调节
G蛋白耦联受体
-7次跨膜蛋白,胞外结构域识别信号分子,胞 内结构域与G蛋白耦联,调节相关酶活性,在
胞内产生第二信使。
-类型:①多种神经递质、肽类激素和趋化因
子受体 ②味觉、视觉和嗅觉感受器。
-相关信号途径:cAMP途径、磷脂酰肌醇途径。
细胞内受体
甾体类激素 甲状腺素 气体分子 的受体
第一信使:水溶性信号分子(如神经递 质)不能穿过靶细胞膜,只能经膜上的信 号转换机制实现信号传递,称第一信使。
2。细胞内信号蛋白的相互作用, 由蛋白质模式结合域特异性介导
信号蛋白之间通过蛋白质模式结构域的特异性介导
3. 信号转导系统的主要特性
特异性
放大作用
网络化与反馈调节机制
整合作用
第二节 细胞内受体介导的信号传递 一 细胞内核受体及其对基因表达的调节 细胞内受体超家族: 依赖激素激活的基因 调控蛋白. 细胞核内受体: 配体(通过核孔进入细胞核)
3. G蛋白耦联受体介导离子通道的调控
神经递质-受体(GPCR)-效应蛋白(Na+ 或K+ 通道)-膜电位改变. 嗅觉受体和光受体通过第二信使间接调节离 子通道 Gb g亚基直接活化K+通道
离子通道偶联的受体
特点: 受体/离子通道复合体,四次/六次跨膜蛋白 跨膜信号转导无需中间步骤 主要存在于神经细胞或其他可兴奋细胞间的突 触信号传递 有选择性:配体的特异性选择和运输离子的选 择性
IP3→胞内Ca2+浓度升高→Ca2+结合蛋白(CaM)→细胞应答
(1,4,5-肌醇三磷酸) DAG→激活PKC→蛋白磷酸化或促Na+/H+交换使胞内pH →细 (二酰甘油) 胞应答(如: 细胞分泌, 肌肉收缩, 细胞增殖等) PKC的活化可增强特殊基因的转录. 已知的至少有两条途径: 1. 激活一条蛋白激酶的级联反应, 促进基因转录 2. 导致抑制蛋白的磷酸化而失活, 促进基因转录
存在部位: (1)细胞表面 (2)细胞内
细胞表面受体(Cell Surface Receptor)
介导亲水性信号分子的信息传递,可分为: ① 离子通道耦连受体 ② G蛋白耦连受体 ③ 酶连受体 第一类存在于可兴奋细胞,后两类存在于大多数 细胞。
离子通道偶联受体
特点: - 受体/离子通道复合体,四次/六次跨膜蛋白 - 受体本身为离子通道,即配体门通道 - 跨膜信号转导无需中间步骤 - 主要存在于神经细胞或其他可兴奋细胞间的突触信 号传递 - 有选择性:配体的特异性选择和运输离子的选择性 分为: – 阳离子通道,如乙酰胆碱受体 – 阴离子通道,如γ-氨基丁酸受体
4.受体鸟氨酸环化酶
5.酪氨酸蛋白激酶联系的受体
1. 受体酪氨酸激酶(RTK)及RTK-Ras蛋白信号通路 受体酪氨酸激酶(receptor tyrosine kinases,RTKs)
蛋白激酶
-是一类磷酸转移酶,将 ATP 的 γ 磷酸基 转移到底物特定氨基酸残基上,使蛋白质磷 酸化。分为 5 类,其中了解较多的是蛋白酪 氨酸激酶、蛋白丝氨酸/苏氨酸激酶。 -作用:通过磷酸化调节蛋白质的活性。
三、 信号转导系统的特性
1.信号转导系统的基本组成与信号蛋白 细胞特异性受体识别信号分子 信号跨膜转导 信号级联放大 细胞应答反应 受体脱敏或下调, 细胞反应终止或降低
化学突触(chemical synapse)
细胞间分泌化学信号进行通讯的方式:
内分泌:内分泌激素随血液循环输至全身,作用 于靶细胞。特点:①低浓度( 10-8-10-12M ),② 全身性,③长时效。 旁分泌:信号分子通过扩散作用于邻近的细胞。 包括:①各类细胞因子;②气体信号分子。
化学突触:神经递质经突触作用于靶细胞。
(一) 激活离子通道的G蛋白耦联受体介导的信号通路
1. 心肌细胞上M乙酰胆碱受体激活G蛋白开启K+通道
2. Gt蛋白偶联的光敏感受体的活化诱发cGMP门控阳离 子通道的关闭
(二) 激活或抑制腺苷酸环化酶的G蛋白偶联受体
AC( 腺甘酸环化酶) 分子量1.5x105 跨膜12次 结合在细胞质膜上 催化ATP生成cAMP 是一种糖蛋白 cAMP 是一种第二信使 传递G蛋白偶联受体的细胞内效应 主要的效应是激活靶酶和开启基因表达 特异活化cAMP依赖的蛋白激酶A(PKA)
控制细胞的生长和分裂
组织发生与形态建成
细胞的信号转导 - 细胞必须接受合适的环境信号才能生存 - 细胞必须对信号作出信号 细胞间的直接接触或分子作用 (膜表面分子接触通讯) 动物细胞的间隙连接和植物细胞的胞间连丝
细胞间隙连接
连接子:中央为直径 1.5nm 的亲水性孔道, 允许小分子如 Ca2+ 、 cAMP通过。 作用:协同相邻细胞 对外界信号的反应, 如可兴奋细胞的电耦 联现象 ( 电紧张突触 ) 。
-
-
霍乱毒素:能催化细胞内的NAD+的ADP核 糖基共价结合到Gs的α亚基上,使α亚基丧失GT P酶活性,Gsα亚基结合的GTP不被水解,G 蛋白持续活化,导致患者小肠上皮细胞中cAMP 水平增加100倍以上, Na+和水持续外流,产生严 重腹泻而脱水。 百日咳毒素:催化Gia亚基ADP-核糖基 化,防止与Gia亚基结合的GDP释放,使Gia亚 基被锁定在非活化状态, Gia亚基的失活使气管 上皮细胞内cAMP水平增高,促使液体,电解质 和黏液分泌减少.
小G蛋白
-分子量只有20~30KD , 单亚基 -具有GTP酶活性 -第一个被发现的小G蛋白是Ras -结合GTP时为活化形式,作用于下游分子使之活化. 当GTP水解成为GDP时则回复到非活化状态
第四节 酶连受体介导的信号转导
目前已知的均为跨膜蛋白, 又称催化性受体 至少包括5类 1.受体酪氨酸激酶 2.受体丝氨酸/苏氨酸激酶 3.受体酪氨酸磷酸酯酶
自分泌:信号发放细胞和靶细胞为同类或同一细 胞,常见于癌变细胞。
二、细胞的信号分子与受体
1. 信号分子(signal molecule) 亲脂性信号分子: 如甲状腺素和甾体激素 亲水性信号分子: 如神经递质,生长因子 气体性信号分子(NO, CO)
2. 受体(Receptor) - 能识别和选择性结合某种配体(信号分子)的大分子 - 与配体结合后, 通过信号转导作用将胞外信号转 换为胞内物理或化学信号并产生特定生物学效应 - 受体多为糖蛋白 - 功能: (1)细胞内蛋白质活性或功能改变 (2) 影响细胞内蛋白质的表达 - 功能结构域: (1)结合配体功能域 (2)效应功能域
Ca2+的作用方式: 1. 直接作用于靶酶, 诱导靶酶的构象改变 2. 通过与结合蛋白形成复合物 , 活化蛋白 激酶, 磷酸化靶酶
Ca2+与CaM结合
CaM
钙调素
• 钙调素是最重要的一种Ca++结合蛋白 • Ca++的许多功能由钙调素介导 • 其结合Ca++形成CaM-Kinases, 通过磷酸化 调节基因表达调节蛋白, 如CREB
cAMP途径反应链
激素 G-蛋白偶联受体 G-蛋白 腺苷酸环化酶 cAMP cAMP依赖的蛋白激酶A(PKA)
基因调控蛋白 (cAMP 应答元件结合蛋白 , CREB) 磷酸 化→基因转录 → 细胞应答(慢速应答,如激素合成)
靶蛋白磷酸化(如: 磷酸化酶激酶, 糖原合成酶等) → 细胞应答(快速应答)
PKC
生理功能
- 细胞分泌 - 肌肉收缩 - 细胞增殖 -细胞分化 等
活化MAPK 活化NF-kB
IP3 信号的终止: 去磷酸化为IP2或磷酸化为IP4. DAG信号的终止: 1. 被DAG-激酶磷酸化为磷脂酸, 进入磷脂酰肌 醇循环 2. 被水解为单脂酰甘油, 再进一步水解成游离的 多不饱和脂肪酸和花生四烯酸甘油, 再被氧化 为前列腺素, 白三烯等
cAMP为第二信使的信号通路主要通过cAMP依赖的 蛋白激酶A介导
cAMP信号与糖原降解
cAMP信号与基因表达
蛋白激酶A(PKA)的激活
(4 cAMP) R R C C
cAMP与调节亚基结合,使调节亚基和催化亚基 解离,释放出催化亚基,激活蛋白激酶A的活性。
38
cAMP 在细胞中的主要作用 - 促进糖原分解, 抑制糖原合成 - 调节基因表达
类固醇激素 视黄酸 维生素D 甲状腺素
胞内受体一般有三个结构域: 1C端的激素结合位点 2中部富含Cys,具有锌指结构的DNA或Hsp90 结合位点 3N 端的转录激活结构域
第三节 G蛋白耦联受体介导的信号转导
G-蛋白偶联受体(GPCR)
配体-受体复合物与靶蛋白的作用需要通过
与G蛋白的藕联, 在细胞内产生第二信使, 将胞外
膜表面分子 接触通讯
即细胞识别,如:精子和卵子之间的 识别,T与B淋巴细胞间的识别。
化学通讯