数学必修四-三角函数复习提纲

合集下载

高中数学必修四三角函数知识点总结

高中数学必修四三角函数知识点总结

高中数学必修四三角函数知识点总结三角函数是高中数学考试必考的一个内容, 也是很多同学遇到的一个难点, 下面是给大家带来的高中数学必修四三角函数知识点总结, 希望对你有帮助。

高中数学三角函数找知识点总结(一)高中数学三角函数知识点总结:锐角三角函数公式sin =的对边/ 斜边cos =的邻边/ 斜边tan =的对边/ 的邻边cot =的邻边/ 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A) )高中数学三角函数知识点总结:三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)高中数学三角函数知识点总结:三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:辅助角公式Asin+Bcos=(A^2+B^2)^(1/2)sin(+t), 其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsin+Bcos=(A^2+B^2)^(1/2)cos(-t), tant=A/B降幂公式sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=covers(2)/2tan^2()=(1-cos(2))/(1+cos(2))高中数学三角函数知识点总结:推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa高中数学三角函数知识点总结(二)sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(3/2)2-sin2a]=4sina(sin260-sin2a)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2] =4sinasin(60+a)sin(60-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(3/2)2]=4cosa(cos2a-cos230)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]} =-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)高中数学三角函数知识点总结:半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)点击下一页分享更多高中数学必修四三角函数知识点总结。

(word完整版)高中数学必修4三角函数知识点总结归纳,文档

(word完整版)高中数学必修4三角函数知识点总结归纳,文档

高中数学必修 4 知识点总结第一章三角函数正角 : 按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角2、象限角:角的极点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,那么称为第几象限角.第一象限角的会集为k 360o k 360o90o , k第二象限角的会集为k 360o90o k360o180o, k第三象限角的会集为k 360o 180o k360o270o , k第四象限角的会集为k 360o270o k360o360o, k终边在 x 轴上的角的会集为k 180o , k终边在 y 轴上的角的会集为k180o90o , k终边在坐标轴上的角的会集为k 90o, k3、终边相等的角:与角终边相同的角的会集为k 360o, k4、是第几象限角,确定n*所在象限的方法:先把各象限均分 n 等n份,再从 x 轴的正半轴的上方起,依次将各地域标上一、二、三、四,那么原来是第几象限对应的标号即为终边所落在的地域.n例 4.设角属于第二象限,且cos2cos2,那么角属于〔〕2A .第一象限B.第二象限C.第三象限D.第四象限解.C 2k22k,( k Z ), k4k,( k Z ),22当 k2n,( n Z)时,在第一象限;当 k2n1,(n Z ) 时,在第三象限;22而 cos cos cos20,在第三象限;2225、1 弧度:长度等于半径长的弧所对的圆心角叫做1弧度.- 1 -6、半径为 r 的圆的圆心角所对弧的长为 l ,那么角的弧度数的绝对值是l .ro7、弧度制与角度制的换算公式:2360o , 1o, 1180o.1808、假设扇形的圆心角为为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S , 那么弧长l r ,周长 C 2r l ,面积 S 1 lr 1 r 2 .2 2 9、设是一个任意大小的角,的终边上任意一点的坐标是 x, y ,它与原点的距离是 r r x 2y 20 ,那么 siny, cosx, tany x 0 . r r x10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线: sin , cos , tan . y例 7.设 MP 和 OM 分别是角17的正弦线和余弦线,那么给出的以下P T18不等式: ① MP OM 0;②OM 0 MP ; ③OMMP 0 ;OM Ax④ MP0 OM ,其中正确的选项是_____________________________ 。

【高中必修4数学三角函数知识点归纳】数学必修四知识点归纳

【高中必修4数学三角函数知识点归纳】数学必修四知识点归纳

【高中必修4数学三角函数知识点归纳】数学必修四知识点归纳高中数学必修4三角函数蕴含着深刻的数学思想,下面是小编给大家带来的高中必修4数学三角函数知识点归纳,希望对你有帮助。

高中必修4数学三角函数知识点高中数学学习方法抓好基础是关键数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。

只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。

弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。

反之,会使解题速度慢,逻辑混乱、叙述不清。

严防题海战术做习题是为了巩固知识、提高应变能力、思维能力、计算能力。

学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。

因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。

也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。

归纳数学大思维数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。

在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。

但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。

必修4三角函数所有知识点总结DOC

必修4三角函数所有知识点总结DOC

三角函数部分知识点总结1.1任意角和弧度制⎪⎩⎪⎨⎧零角负角:顺时针防线旋转正角:逆时针方向旋转任意角..12.象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。

如果角的终边在坐标轴上,就认为这个角不属于任何象限。

3. ①与α(0°≤α<360°)终边相同的角的集合:{}Z k k ∈+⨯=,360|αββ ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:Z k k ∈-=,βα 360⑧若角α与角β的终边关于y 轴对称,则α与角β的关系:Z k k ∈-+=,βα180360⑨若角α与角β的终边在一条直线上,则α与角β的关系:Z k k ∈+=,βα 180⑩角α与角β的终边互相垂直,则α与角β的关系:Z k k ∈++=, 90180βα 4. 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。

360度=2π弧度。

若圆心角所对的弧长为l ,则其弧度数的绝对值|rl=α,其中r 是圆的半径。

5. 弧度与角度互换公式: 1rad =(π180)°≈57.30° 1°=180π 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.6.第一象限的角:⎭⎬⎫⎩⎨⎧∈+<<Z k k k ,222|ππαπα锐角:⎭⎬⎫⎩⎨⎧<<20|παα ; 小于o 90的角:⎭⎬⎫⎩⎨⎧<2|παα(包括负角和零角)7. 弧长公式:||l R α= 扇形面积公式:211||22S lR R α==§1.2任意角的三角函数1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是r =>,那么s i n,cyx rrαα==,()tan ,0yx xα=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。

高中数学必修4第一章_三角函数知识复习

高中数学必修4第一章_三角函数知识复习

1第一章 三角函数知识点1、角的定义:⎧⎪⎪⎨⎪⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角。

第一象限角的集合为22,2k k k παπαπ⎧⎫<<+∈Z ⎨⎬⎩⎭第二象限角的集合为22,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭第三象限角的集合为322,2k k k παππαπ⎧⎫+<<+∈Z ⎨⎬⎩⎭第四象限角的集合为3222,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭终边在x 轴上的角的集合为{},k k ααπ=∈Z 终边在y 轴上的角的集合为,2k k πααπ⎧⎫=+∈Z ⎨⎬⎩⎭终边在坐标轴上的角的集合为,2k k παα⎧⎫=∈Z ⎨⎬⎩⎭3、与角α终边相同的角的集合为{}2,k k ββπα=+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域。

5、长度等于半径长的弧所对的圆心角叫做1弧度。

6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=。

7、弧度制与角度制的换算公式:180********.3180πππ⎛⎫===≈ ⎪⎝⎭,,8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==。

9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin yrα=,cos x r α=,()tan 0y x x α=≠。

10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正。

数学人教版必修四三角函数提纲

数学人教版必修四三角函数提纲

数学人教版必修四三角函数提纲数学是我们我们从小学到大的一门学科,假如能认谨慎真学下来,数学并不难,只是数学要下苦功去学,以下是我给大家整理的数学人教版必修四三角函数提纲,盼望对大家有所协助,欢送阅读!数学人教版必修四三角函数提纲公式一:设α为随意角,终边一样的角的同一三角函数的值相等:sin(2kπ+α)=sinα k∈zcos(2kπ+α)=cosα k∈ztan(kπ+α)=tanα k∈zcot(2kπ+α)=cotα k∈z公式二:设α为随意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=—sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:随意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα诱导公式记忆口诀:“奇变偶不变,符号看象限”。

(完整)高中必修四三角函数知识点总结,推荐文档

(完整)高中必修四三角函数知识点总结,推荐文档

o
x
5、三角函数在各象限的符号:(一全二正弦,三切四余弦)
高三数学总复习—三角函数
y
++
o -
-x
、、 、、、
y
-+
o -
+
x
、、 、、、
y
-+
o +
-
x
、、 、、、
6、三角函数线 正弦线:MP; 余弦线:OM;
正切线: AT.
7. 三角函数的定义域:
三角函数 f (x) sinx f (x) cosx f (x) tanx
cot( x) cot x cot(2 x) cot x
公式组二 sin(2k x) sin x cos(2k x) cos x tan(2k x) tan x cot(2k x) cot x
公式组六 sin( x) sin x cos( x) cos x tan( x) tan x cot( x) cot x
定义域
x | x R x | x R
x
|
x
R且x
k
1
,
k
Z
2
x | x R且x k , k Z
x
|
x
R且x
k
1
,
k
Z
2
x | x R且x k , k Z
8、同角三角函数的基本关系式: sin tan cos
cos sin
cot
tan cot 1 csc sin 1
sin( ) sin cos cos sin sin( ) sin cos cos sin
tan 2 2 tan 1 tan 2
sin

高一数学必修4:三角函数(知识点梳理)

高一数学必修4:三角函数(知识点梳理)

第一章 高一数学必修4:三角函数(知识点梳理)三角函数不作任何旋转形成的角:零角按顺时针方向旋转形成的角:、任意角负角1按逆时针方向旋转形成的角:正角⎩⎪⎨⎪⎧2、象限的角:在直角坐标系内,顶点与原点重合,始边与x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限,叫做轴线角。

第一象限角的集合为⋅<<⋅+∈Z ααk k k 36036090,}{第二象限角的集合为⋅+<⋅+∈Z αk k k 36090360180,}{第三象限角的集合为⋅+<<⋅+∈Z ααk k k 360180360270,}{ 第四象限角的集合为⋅+<<⋅+∈Z ααk k k 360270360360,}{ 终边在x 轴上的角的集合为=⋅∈Z ααk k 180,}{终边在y 轴上的角的集合为=⋅+∈Z ααk k 18090,}{ 终边在坐标轴上的角的集合为=⋅∈Z ααk k 90,}{3、与角α终边相同的角,连同角α在内,都可以表示为集合{αββ|360,∈⋅+=Z k k } 4、弧度制:(1)定义:等于半径的弧所对的圆心角叫做1弧度的角,用弧度做单位叫弧度制。

半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是=αrl. (2)度数与弧度数的换算:=o 3602π,180=π rad ,1 rad π=≈= (180)57.185730'注:角度与弧度的相互转化:设一个角的角度为n o,弧度为α;①角度化为弧度:=⋅=o o o n n n ππ180180,②弧度化为角度:ααπαπ=⋅=⎛⎝ ⎫⎭⎪180180oo(3)若扇形的圆心角为α(α是角的弧度数),半径为r ,则:弧长公式: ①=l n π(用度表示的)180,② =α||r l (用弧度表示的); 扇形面积:①=πs r n 扇用度表示的2360()② 扇α==212||12r S lr (用弧度表示的)5、三角函数:(1)定义①:设α是一个任意大小的角,α是x y ,(),它与原点的距离是==>r OP r 0)(,则=αr y sin ,=αr x cos ,=≠αxx ytan 0() 定义②:设α是一个任意角,它的终边与单位圆交于点P 那么v 叫做α的正弦,记作sin α,即sin α=y ;u 叫做α弦,记作cos α,即cos α=x ; 当α的终边不在y 轴上时,y x 叫做α的正切,记作tan α, 即tan α=y x. (2)三角函数值在各象限的符号:口诀:全正,S 正,T 正,C口诀:第一象限全为正;二正三切四余弦. (3)特殊角的三角函数值sin αx y + + _ _ O x y + + _ _ cos α Otan α x y++_ _ O(4)三角函数线:如下图(5)同角三角函数基本关系式(1)平方关系:αα=+221cos sin (2)商数关系:=tan sin cos ααα6、三角函数的诱导公式:+=πααk 1sin 2sin ()(),+=πααk cos 2cos (),+=∈Z πααk k tan 2tan ()().口诀:终边相同的角的同一三角函数值相等.-=-αα2sin sin ()(),-=ααcos cos (),-=-ααtan tan (). -=παα3sin sin ()(),-=-πααcos cos (),-=-πααtan tan ().+=-παα4sin sin ()(),+=-πααcos cos (),+=πααtan tan (). -=-παα5sin 2sin ()(),-=πααcos 2cos (),-=-πααtan 2tan ().口诀:函数名称不变,正负看象限.⎝⎭⎪-=⎛⎫ααπ26sin cos (),⎝⎭ ⎪-=⎛⎫ααπ2cos sin ,⎝⎭ ⎪-=⎛⎫ααπ2tan cot . ⎝⎭⎪+=⎛⎫ααπ27sin cos (),⎝⎭ ⎪+=-⎛⎫ααπ2sin cos ,⎝⎭⎪+=-⎛⎫ααπ2cot tan . 口诀:正弦与余弦互换,正负看象限.诱导公式记忆口诀:“奇变偶不变,符号看象限”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一必修四:三角函数一 任意角的概念与弧度制(一)角的概念的推广 1、角概念的推广:在平面内,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角就是多少度角。

按不同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角。

习惯上将平面直角坐标系x 轴正半轴作为角的起始边,叫做角的始边。

射线旋转停止时对应的边叫角的终边。

2、特殊命名的角的定义:(1)正角,负角,零角 :见上文。

(2)象限角:角的终边落在象限内的角,根据角终边所在的象限把象限角分为:第一象限角、第二象限角等(3)轴线角:角的终边落在坐标轴上的角终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|οββ 终边在y 轴上的角的集合: {}Z k k ∈+⨯=,90180|οοββ 终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90|οββ (4)终边相同的角:与α终边相同的角2x k απ=+(5)与α终边反向的角:(21)x k απ=++终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180|οοββ 终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180|οοββ(6)若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 (7)成特殊关系的两角若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k 若角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 注:(1)角的集合表示形式不唯一.(2)终边相同的角不一定相等,相等的角终边一定相同. 3、本节主要题型:1.表示终边位于指定区间的角.例1:写出在720-︒到720︒之间与1050-︒的终边相同的角. 例2:若α是第二象限的角,则2,2αα是第几象限的角?写出它们的一般表达形式.例3:①写出终边在y 轴上的集合.②写出终边和函数y x =-的图像重合,试写出角α 的集合.③α在第二象限角,试确定2,,23ααα所在的象限. ④θ角终边与168︒角终边相同,求在[0,360)︒︒内与3θ终边相同的角.(二)弧度制 1、弧度制的定义:l Rα=2、角度与弧度的换算公式:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.一个式子中不能角度,弧度混用. 3、题型(1)角度与弧度的互化例:74315,330,,63ππ︒︒ (2)L R α=,211,22l r s lr r αα===的应用问题 例1:已知扇形周长10cm ,面积24cm ,求中心角.例2:已知扇形弧度数为72︒,半径等于20cm ,求扇形的面积. 例3:已知扇形周长40cm ,半径和圆心角取多大时,面积最大. 例4:121237570,750,,53ααβπβπ=-︒=︒==-a.求出12,αα弧度,象限.b.12,ββ用角度表示出,并在720~0-︒︒之间找出,他们有相同终边的所有角. 二 任意角三角函数(一)三角函数的定义 1、任意角的三角函数定义正弦r y =αsin ,余弦r x=αcos ,正切xy =αtan 2三角函数定义域=)(x f sin x {}R x x ∈| =)(x f cos x {}R x x ∈|=)(x f tan x⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且(二)单位圆与三角函数线1、单位圆的三角函数线定义如图(1)PM 表示α角的正弦值,叫做正弦线。

OM 表示α角的余弦值,叫做余弦线。

如图(2)A T 表示α角的正切值,叫做正切线。

注:线段长度表示三角函数值大小,线段方向表示三角函数值正负(三)同角三角函数的基本关系式同角三角函数关系式(1) 商数关系:αααtan cos sin =(2) 平方关系:1cos sin 22=+αα(四)诱导公式xx k x x k xx k tan )tan(cos )cos(sin )sin(=+=+=+πππ222 x x x x x x tan )tan(cos )cos(sin )sin(-=-=--=- x x x x x x tan )tan(cos )cos(sin )sin(-=-=--=-πππ222xx x x xx tan )tan(cos )cos(sin )sin(=+-=+-=+πππxx x x x x tan )tan(cos )cos(sin )sin(-=--=-=-πππ三 三角函数的图像与性质 (一)基本图像: 1.正弦函数2.余弦函数ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-3.正切函数(二)、函数图像的性质正弦、余弦、正切、余切函数的图象的性质:定义域RR{}|12x x R x k ππ∈≠+且值域 ]1,1[+- ]1,1[+-R周期 π2π2π奇偶奇函数偶函数奇函数单调],[ππππk k 2222++-上为增函数],[ππππk k 22322++ 上为减函数(Z k ∈)()],[ππk k 212-上为增函数()],[ππ122+k k上为减函数(Z k ∈)⎪⎭⎫⎝⎛++-ππππk k 22,上为增函数 (Z k ∈)对称对称轴为2x k ππ=+,对称中心为(,0) k π, k Z∈对称轴为x k π=,对称中心为(,0)2k ππ+k Z∈无对称轴, 对称中心为(,0)2k πk Z ∈(三)、常见结论: 1.xy sin =与xy cos =的周期是π.xy tan =xy cos =xy sin =2.)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .3.2tanx y =的周期为2π.4.)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ). 5.当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·tan 1,β=-()2k k Z παβπ-=+∈6.函数x y tan =在R 上为增函数.(×)[只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的.]7.奇函数特有性质:若x ∈0的定义域,则)(x f 一定有00=)(f .(x ∉0的定义域,则无此性质)8.x y sin =不是周期函数;x y sin =为周期函数(π=T);xy cos =是周期函数(如图);x y cos =为周期函数(π=T );212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如:y=cos |x|图象y=|cos2x +1/2|图象四 和角公式 两角和与差的公式βαβαβαsin sin cos cos )cos(-=+ βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαsin sin cos cos )cos(+=- βαβαβαtan tan 1tan tan )tan(+-=-βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin cos cos sin )sin(-=-五 倍角公式和半角公式(一)倍角与半角公式:αααcos sin 22sin =2cos 12sinαα-±=ααααα2222sin 211cos 2sin cos 2cos -=-=-=2cos 12cosαα+±=ααα2tan 1tan 22tan -=sin 1cos tan21cos sin ααααα-===+(二)万能公式:2tan12tan2sin 2ααα+=2tan 12tan 1cos 22ααα+-=2tan 12tan2tan 2ααα-=六 三角函数的积化和差与和差化积公式()()()()()()()()1sin cos sin sin 21cos sin sin sin 21cos cos cos cos 21sin sin cos cos 2αβαβαβαβαβαβαβαβαβαβαβαβ=++-⎡⎤⎣⎦=+--⎡⎤⎣⎦=++-⎡⎤⎣⎦=-+--⎡⎤⎣⎦sin sin 2sincos22αβαβαβ+-+=sin sin 2cossin22αβαβαβ+--=cos cos 2sinsin22αβαβαβ+--=-七 特殊角函数值42675cos 15sin -==οο, 42615cos 75sin +==οο, 3275cot 15tan -==οο, 3215cot 75tan +==οο。

相关文档
最新文档