金属粉末的制备方法及基本原理.

合集下载

粉末冶金原理-中文

粉末冶金原理-中文

粉末冶金原理粉末冶金是一种特殊的金属加工方法,它利用金属和非金属粉末的物理特性和化学特性,通过粉末成型、烧结和后处理等工艺制备出各类金属材料和相关制品。

在这种加工方法中,粉末被视为材料的原子和晶粒的集合体。

本文将介绍粉末冶金的基本原理以及其在工业上的应用。

粉末冶金的基本原理1.原料选择:粉末冶金的首要任务是选择适当的原料。

原料可以是金属、合金或陶瓷等材料的粉末。

原料的选择应该考虑材料的化学成分、晶体结构、粒子形状和尺寸分布等因素。

2.粉末的制备:粉末的制备是粉末冶金的关键步骤之一。

常见的粉末制备方法包括研磨、机械合金化、溶液沉淀和气相反应等。

不同的制备方法可以获得不同尺寸和形状的粉末。

3.粉末的成型:成型是将粉末转变为所需形状的工艺。

常用的成型方法包括压制、挤出、注射成型和3D打印等。

通过成型,粉末可以被固化成具有一定强度和形状的零件。

4.烧结:烧结是粉末冶金过程中的关键步骤之一。

经过成型的粉末件放入高温环境中,粉末颗粒与颗粒之间发生扩散和结合,形成致密的材料。

烧结温度和时间会影响材料的致密性和力学性能。

5.后处理:烧结后的材料可能需要进行后处理。

常用的后处理方法包括热处理、表面处理和加工等。

通过后处理,可以改善材料的性能和功能。

粉末冶金的应用领域粉末冶金广泛应用于各个领域,包括汽车、航空航天、电子、能源、医疗和军工等。

1.汽车行业:粉末冶金技术在汽车行业中得到广泛应用。

例如,通过粉末冶金可以制备高强度和轻质的发动机零件和齿轮等关键部件,提高汽车的燃油效率和排放性能。

2.航空航天:航空航天行业对材料的要求非常高。

粉末冶金可以制备出具有优异的高温强度和耐腐蚀性能的钛合金和镍基合金等材料,用于制造航空发动机和航天器件。

3.电子:在电子行业中,粉末冶金可以制备具有高导电性和磁导率的材料,例如铜粉末用于制造电子线路板和电磁元件。

4.能源:粉末冶金在能源领域的应用主要集中在制备高温抗氧化和热电材料。

例如,通过粉末冶金可以制备铁素体不锈钢和铬基合金等材料,用于制造高温炉和热交换器等设备。

冶金工程中的金属材料制备与处理

冶金工程中的金属材料制备与处理

冶金工程中的金属材料制备与处理冶金工程是研究和应用金属材料的学科,涉及金属材料的制备、加工以及性能改善等方面。

金属材料是冶金工程中的核心,其制备与处理技术的发展对于现代工业的进步有着重要意义。

本文将从金属材料制备的基本原理,常见的制备方法,以及处理技术等方面进行论述。

一、金属材料制备的基本原理金属材料制备过程中的基本原理主要包括金属的途径形成和结晶行为。

金属的形成途径有两种,一种是地质过程,如矿石的形成;另一种是冶金过程,如金属的提取和冶炼。

金属在固态状态下具有晶体结构,通过加热和冷却等方式可以控制其晶体形貌和晶粒尺寸。

二、金属材料制备的常见方法1. 粉末冶金法:粉末冶金法是将金属或合金粉末压制成型,再进行烧结或热处理的一种制备方法。

其优点是可以得到具有高纯度和均匀组织的材料。

粉末冶金法广泛应用于金属粉末冶金制品、金属陶瓷制品和各种复合材料的制备。

2. 液相冶金法:液相冶金法是指将金属或合金在液态下进行熔化和制备的方法。

常见的液相冶金法有熔模铸造法、凝固锭法等。

这些方法可以制备大型和复杂形状的金属制品。

三、金属材料的处理技术金属材料制备完成后,还需要进行一系列的处理技术以改善其性能和使用价值。

常见的处理技术有热处理、表面处理和变形处理等。

1. 热处理:热处理是通过控制金属材料的加热和冷却过程,改变其组织结构和性能的一种方法。

常见的热处理方法包括退火、淬火、回火等。

热处理可以提高金属的硬度、强度和耐腐蚀性能。

2. 表面处理:表面处理是指对金属材料表面进行物理、化学或机械上的处理,以改变其表面特性的方法。

常见的表面处理方法有电镀、喷涂、陶瓷涂层等。

表面处理可以提高金属的耐磨性、耐腐蚀性和装饰性。

3. 变形处理:变形处理是通过塑性变形改变金属材料的组织结构和性能。

常见的变形处理方法有压力加工、轧制、拉伸等。

变形处理可以提高金属的强度、韧性和塑性。

综上所述,冶金工程中的金属材料制备与处理是冶金学的重要内容。

粉末冶金知识大全

粉末冶金知识大全

粉末冶金知识大全简介粉末冶金是一种重要的制备材料的方法,它通过将金属或非金属加工成粉末,再通过压制和烧结等工艺将粉末粒子紧密结合形成所需的材料。

本文将介绍粉末冶金的基本原理、工艺流程和应用领域。

1. 粉末制备粉末冶金的第一步是制备粉末。

常见的粉末制备方法包括:•原子熔化法:通过将金属或合金加热到高温,使其熔化后迅速冷却,冷却过程中形成的微细颗粒即为粉末。

•机械研磨法:将金属块或合金块放入球磨机中与球磨介质一起磨碎,经过一定时间后得到所需的粉末。

•物理气相法:通过高温蒸发和凝聚,使金属或合金从气相转变为粉末。

常见的物理气相制备方法有气体凝聚法、物理溅射法等。

2. 粉末冶金工艺粉末冶金包括压制、烧结和后处理等多个工艺步骤。

2.1 压制压制是将制备好的粉末以一定的压力塑造成所需形状的过程。

常见的压制方法有:•静态压制:即将粉末放置在模具中,施加垂直于模具方向的压力,使粉末颗粒之间发生塑性变形,形成一定形状的绿体。

•动态压制:即通过提供一个快速冲击力,使粉末颗粒互相碰撞并发生变形,形成一定形状的绿体。

2.2 烧结烧结是将压制好的绿体在一定温度下进行加热,使粉末颗粒之间发生扩散和结合,形成致密的材料。

常见的烧结方法有:•常压烧结:将绿体放在电炉或气炉中进行加热,使粉末颗粒熔结或固相扩散结合。

•热等静压烧结:在加热的同时施加一定的压力,用于加强绿体的结合。

2.3 后处理烧结完成后,还需要进行一些后处理步骤以提高材料的性能。

常见的后处理方法有:•热处理:通过控制温度和时间,在一定的条件下改变材料的组织结构,提高其硬度、强度等性能。

•表面处理:在材料表面形成覆盖层、涂层或改变表面形貌,以提高耐磨、耐腐蚀等性能。

3. 应用领域粉末冶金在许多领域都有着广泛的应用。

3.1 金属制品粉末冶金可以制备各种金属制品,如汽车零部件、工具等。

由于独特的结构和物理性能,粉末冶金制品具有优异的耐磨、抗拉伸和耐腐蚀等特点。

3.2 陶瓷制品通过粉末冶金技术可以制备出高纯度、高强度的陶瓷制品,如陶瓷刀具、陶瓷齿轮等。

粉末冶金手册

粉末冶金手册

粉末冶金手册粉末冶金是一种将金属或非金属粉末通过压制、烧结等工艺加工成成型品的制造工艺。

粉末冶金具有高效、低成本、可成型性好、材料利用率高等优势,因此在航空航天、汽车工业、电子行业等领域得到广泛应用。

本手册将介绍粉末冶金的基本原理、工艺流程、材料选择、设备介绍等内容。

一、粉末冶金的基本原理粉末冶金的基本原理是将金属或非金属物质经过粉碎或原料特殊制备得到的粉末,经过压制成型或注射成型,再经过高温烧结得到所需产品。

这种工艺利用了粉末颗粒之间的相互扭曲和扩散,从而实现了物质的成型。

同时,由于粉末冶金是一种非液态冶金工艺,不需要溶解和凝固过程,避免了材料在液态下的气体、夹杂物等问题,因此可以获得更高的材料纯度和均匀性。

二、粉末冶金的工艺流程粉末冶金的一般工艺流程分为原料制备、混合、成型、烧结和后处理等步骤。

1.原料制备:原料制备阶段主要包括选料和粉末制备。

选料是指根据成品的要求选择合适的原料,如金属、合金、陶瓷或复合材料等。

粉末制备可以通过粉碎、化学方法、电化学方法等得到所需粉末。

2.混合:将所选的原料粉末按照一定比例进行混合。

混合的目的是使各种材料的粒子均匀分散,以获得更高的均匀性。

3.成型:将混合好的粉末通过压制成型,可以使用冷压、热压或注射成型等方法。

成型一般可以分为干压成型和液相成型两种方式。

4.烧结:成型件通过高温烧结,使粉末颗粒之间发生结合,形成致密的材料。

烧结温度和时间根据材料种类、成型件形状等因素确定。

5.后处理:烧结后的材料可以进行表面处理、热处理、加工等工艺。

目的是使产品达到所需的性能和尺寸要求。

三、粉末冶金的材料选择粉末冶金可以应用于各种金属和非金属材料的制备,包括纯金属、合金、陶瓷、塑料等。

在选择材料时需要考虑材料的物理性质、化学性质、应用环境等因素。

例如,对于需要高强度和耐磨性的零件可以选择使用金属粉末冶金制备的合金材料;对于需要绝缘性能和耐高温的零件可以选择使用陶瓷粉末冶金制备的材料。

黄培云粉末冶金原理

黄培云粉末冶金原理

黄培云粉末冶金原理主要是指通过将金属粉末或者合金粉末在一定的温度、压力和气氛条件下进行烧结或者热塑性加工,从而制备出具有一定形状和性能的金属零部件的工艺过程。

黄培云粉末冶金原理的核心包括以下几个方面:
1. 粉末制备:首先需要将金属或者合金的块状材料通过机械方法加工成粉末,这通常包括粉碎、球磨等过程,以获得所需颗粒大小和形状的金属粉末。

2. 模具成型:将金属粉末放入模具中,在一定的温度和压力下对粉末进行成型,使其具备一定的初步形状。

3. 烧结或热塑性加工:经过成型的粉末零件通常会进行烧结或者热塑性加工,以提高其密度和机械性能。

烧结过程中,粉末颗粒之间通过扩散结合形成致密的结构,同时可以进行热处理来调整材料的性能。

4. 后续加工:经过烧结或者热塑性加工后的零件可能需要进行后续的加工,例如机加工、表面处理等,以满足最终产品的要求。

粉末冶金技术由于不需要传统的熔炼工艺,可节约能源和原材料,还能够制备具有特殊形状和性能的零部件,因此在航空航天、汽车、医疗器械等领域有着广泛的应用。

粉末冶金成型原理

粉末冶金成型原理

中小学生足球学习兴趣的提高策略分析随着体育教育的普及和足球运动的热度不断增加,越来越多的中小学生对足球运动产生了浓厚的兴趣。

如何提高中小学生对足球学习的兴趣,让他们在足球运动中得到快乐和成长,是每个足球教练和老师都需要思考和关注的问题。

本文将分析并总结一些有效的策略,帮助中小学生提高足球学习兴趣。

一、注重趣味性和互动性中小学生的足球学习应该是一种快乐的体验。

教练和老师们可以通过增加趣味性和互动性,激发学生对足球的兴趣。

可以利用小游戏和趣味赛事的形式,让学生在轻松愉快的氛围中学习和训练足球技能,增强学生的参与感和归属感。

还可以引入一些趣味性的训练器材和设备,如彩色训练球、趣味障碍训练道具等,让学生在训练中感受到乐趣。

二、激发学生的竞争欲望竞争是足球运动中不可缺少的元素,教练和老师们可以通过设置一些竞赛和比赛,激发学生的竞争欲望,让他们在比赛中感受到胜利的喜悦和失败的挫折,从而提高学生的学习兴趣和积极性。

还可以利用小组合作的形式进行比赛训练,培养学生的团队合作意识和集体荣誉感,增强学生的足球学习兴趣。

三、关注学生的个性化需求中小学生的个性差异较大,教练和老师们应该关注学生的个性化需求,根据学生的特长和兴趣,灵活调整训练内容和方式。

对于对足球技能有特长的学生,可以给予重点培养和引导,提供更高级的技战术训练;对于对足球漫技能较为薄弱但对足球运动很感兴趣的学生,可以通过一些外围活动和故事分享,激发他们学习足球的热情。

只有关注学生的个性化需求,才能真正激发学生的学习兴趣。

四、营造积极的学习氛围教练和老师们应该努力营造一个积极向上的足球学习氛围,让学生在积极的氛围中学习和成长。

可以通过举办足球文化节、足球运动会等活动,让学生感受到足球运动的魅力和魅力,增强他们对足球的热爱。

还可以邀请一些足球明星或资深教练来学校做客,与学生分享足球学习经验和技巧,激发学生的学习兴趣。

五、鼓励学生坚持训练和比赛足球学习是一个长期的过程,教练和老师们应该鼓励学生坚持训练和比赛,培养学生的毅力和耐心。

制备金属粉末的方法

制备金属粉末的方法

制备金属粉末的方法方法概述金属粉末是一种重要的材料,它具有很多优秀的物理和化学性质,被广泛应用于各种领域。

然而,制备金属粉末的方法并不简单,需要针对不同的金属材料和应用场景,选择合适的制备方法。

目前,常见的制备金属粉末的方法主要包括物理法、化学法和机械法。

各种方法的特点不同,具体应用需要根据实际情况进行选择。

物理法蒸气冷凝法蒸气冷凝法是一种将汽态金属冷凝成固态金属的制备金属粉末的方法。

首先以加热的方式将金属加热到其蒸发温度,然后将蒸气冷却到固态,从而制备出金属粉末。

这种方法适用于硬度高、熔点高、塑性差的金属材料,如钨、铬等。

筛选法筛选法是一种将铸造坯料经过机械破碎后,采用筛分的方法将粉末分离的方法。

这种方法简单、设备成本低,但一次性回收率低,且粒径分布较大。

化学法沉淀法沉淀法是一种将水溶性盐基于反应析出的方法,将金属离子通过反应沉淀成金属粉末。

这种方法适用于生产精度较高、单一元素粉末的制备,如氢氧化钠法制备氧化铁、氯化钴法制备钴粉等。

沉淀法的优点在于制备的粉末粒径均匀,且可以精确控制粒径大小。

气相还原法气相还原法是一种产生气相金属原子,通过气相还原反应制备金属粉末的方法。

以氢气或其他还原剂为还原剂,使金属离子还原成原始金属,从而制备金属粉末。

气相还原法适用于制备高纯度的金属材料,如纯铁粉、二氧化钛粉、二氧化硅粉等。

机械法高能球磨法高能球磨法是一种通过高能球团磨碾金属材料,产生热、化学反应,从而制备金属粉末的方法。

首先将金属粉体加入到高能球磨机中,球体和粉末在磨擦作用下不断碰撞和摩擦,产生高温和高压,使金属粉末发生塑性变形和破碎。

高能球磨法适用于制备高性能的、纯度高的金属材料,如高性能钛合金、纳米钨粉等。

结语以上是制备金属粉末的主要方法,选取合适的方法需要根据材料性质、产品要求等多方面因素考虑。

希望本文能够对大家了解制备金属粉末的方法有所帮助。

金属粉制备的工艺

金属粉制备的工艺

金属粉制备的工艺金属粉制备是一种常见的金属制备工艺,它通过粉末冶金技术将金属材料转化为粉末状态,以便进行后续的加工和使用。

金属粉制备工艺包括粉末制备、粉末处理、粉末成形和粉末烧结等步骤。

金属粉制备的第一步是粉末制备,常见的方法有物理法和化学法。

物理法包括研磨法、机械合金化法、高能球磨法等,通过对金属块、片、粒等原料进行破碎、磨碎和混合等处理,得到所需的金属粉末。

化学法则是通过溶液化学反应或气相沉积的方法,将金属盐溶解于溶剂中,再通过还原、析出或沉积等方式,得到金属粉末。

物理法制备的金属粉末一般粒径较大,而化学法制备的金属粉末粒径较小。

粉末制备后,还需要对金属粉末进行处理,以提高其品质和性能。

处理方法包括粉末分类、表面处理和粉末成分调整等。

粉末分类是将制备好的金属粉末按照粒径和形状进行分级,以得到符合要求的粉末。

表面处理则是对金属粉末表面进行化学或物理的处理,以改变其表面性质和活性,提高粉末的适应性。

粉末成分调整则是对金属粉末的组成进行调整,以满足特定的要求。

粉末处理完成后,金属粉末可进行成形,成形方法包括压制成型和注射成型等。

压制成型是将金属粉末放入模具中,经过压制使其成形。

注射成型则是将金属粉末与有机物混合,通过压力将其注射到模具中,再通过加热或化学反应等方式,从而使其成形。

成形后的金属粉末形状多样,可根据需求进行调整。

最后一步是粉末烧结,烧结是将金属粉末经过高温和压力的作用,使其发生相互结合并形成致密的块状。

烧结温度和时间的选择要根据金属粉末的成分和要求来确定。

烧结后的金属粉末具有较高的强度和密度,且具备良好的机械性能和导电性能,可用于制备各种金属制品和零部件。

综上所述,金属粉制备的工艺可分为粉末制备、粉末处理、粉末成形和粉末烧结等步骤。

这些步骤的选择和操作对于金属粉制备的质量和性能均有重要影响,需要根据具体的金属材料和要求来确定。

金属粉制备工艺的发展和应用,不仅可以满足各种金属制品的需求,还有助于推动金属材料的研究和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属粉末的制备方法及基本原理
1引言
金属粉末尺寸小,比表面积大,用其制得的金属零部件具有许多不同于常规材料
的性质,如优良的力学性能、特殊的磁性能、高的电导率和扩散率、高的反应活性和催化活性等。

这些特殊性质使得金属粉末材料在航空航天、舰船、汽车、冶金、化工等领域得到越来越广泛的应用。

2金属粉末的制备方法
2.1机械法
机械法就是借助于机械力将大块金属破碎成所需粒径粉末的一种加工方法。

按照
机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。

目前普遍使用的方法还是球磨法和气流磨粉碎法,其优点是工艺简单、产
量大,可以制备一些常规方法难以得到的高熔点金属和合金的纳米粉末。

2.1.1球磨法
球磨法主要分为滚动球法和振动球磨法。

该方法利用了金属颗粒在不同的应变速
率下因产生变形而破碎细化的机理。

其优点是对物料的选择性不强,可连续操作, 生产效率高,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。

缺点是在粉末制备过程中分级比较困难[3]。

2.1.2气流磨粉碎法
气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。

具体的工艺过程为:压缩气体经过特殊设计的喷嘴后,被加速为超音速气流,喷射到研磨机的中心研磨区从而带动研磨区内的物料互相碰撞,使
粉末粉碎变细;气流膨胀后随物料上升进入分级区,由涡轮式分级器分选出达到
粒度的物料,其余粗粉返回研磨区继续研磨,直至达到要求的粒度被分出为止。

整个生产过程可以连续自动运行,并通过分级轮转速的调节来控制粉末粒径大小(平均粒度在
3~8 ym气流磨粉碎法适于大批量工业化生产,工艺成熟。

缺点是在金属粉末的生产过程中,必须使用连续不断的惰性气体或氮气作为压缩气源,耗气量较大;只适合脆性金属及合金的破碎制粉。

2.2物理法
物理法一般是通过高温、高压将块状金属材料熔化,并破碎成细小的液滴,并在
收集器内冷凝而得到金属粉末,该过程不发生化学变化。

目前研究和使用最多的物理法主要有等离子旋转电极法和气体雾化法。

2.2.1等离子旋转电极法
等离子旋转电极法的原理是将金属或合金制成特定规格的棒料,然后装入旋转模腔,再将等离子枪移至棒料前,在等离子束的作用下,棒料端部开始熔化,形成的液体受到离心力和液体表面张力的双重作用,被破碎成液滴飞离电极棒,最终冷凝成球形金属粉末[4]。

该方法根据电极转速和等离子弧电流的大小调节控制粉末粒径。

优点是所得粉末球形度好,氧含量低;缺点是粉末不易制取,每批次的材料利用率不高。

2.2.2气体雾化法
气体雾化法是生产金属及合金粉末的主要方法之一。

气体雾化的基本原理是用高速气流将液态金属流破碎成小液滴并凝固成粉末的过程。

雾化粉末具有球形度高、粉末粒度可控、氧含量低、生产成本
低以及适应多种金属粉末的生产等优点,已成为高性能及特种合金
粉末制备技术的主要发展方向。

喷嘴是气体雾化的关键技术,其结构和性能决定了雾化粉末的性能和生产效率。

因此,喷嘴结构设计与性能的不断提高决定着气体雾化技术的进步。

从雾化喷嘴结构设计的改进历程可以将雾化技术分为传统雾化技术和新型雾化技术。

2.221传统雾化技术
传统雾化技术主要包括超声雾化技术、紧耦合雾化技术和高压气体雾化技术。


声雾化技术最初由瑞典人发明,后由美国M IT的Grant改造完善。

这项技术利用 2~2.5 M a的超音速气流和80~100 kHz的脉冲频率,气体介质压力为1.4~8.2 M Pa气流的最高速度640 m/s粉末冷凝速度可达104~105 K/s。

用该方法制备的铝粉平均粒度可达到22卩m且粉末呈表面光滑的球状。

该项技术的优点是效率较高,缺点是
只能在金属液流直径小于5 mm的情况下才具有较好的效果,因此,适用于铝等低熔点金属粉末的生产,而对高熔点金属还处
于实验阶段。

据报道,美国坩埚材料公司(CrucibleMaterials已引进该项技术进行工业化生产。

紧耦合雾化技术是一种对限制式喷嘴结构进行改造的雾化技术。

由于其气流出口至液流的距离达到最短[7],因而提高了气体动能的传输效率。

这种技术目前已被大多数雾化设备采用。

雾化粉末的特点是微细粉末收得率高,粒径小(如
铁合金粉末的平均粒度达10~20卩m粒度分布窄,冷却速度高。

高的冷却速度有利于快速冷凝合金或非晶合金粉末的生产。

缺点是当雾化气压增加到一定值时,导液管出口处将产生正压,使雾化过程不能进行;在高压雾化下,导液管出口处将产生真空(负压过低,使金属液流率增加,
不利于细粉末的产生。

高压气体雾化技术是由美国爱荷华州立大学Ames实验
室的Anderson等人提出。

该技术对紧耦合喷嘴结构进行进一步改进,将紧耦合喷嘴的环缝出口改为20~24个单一喷孔,通过提高气压和改变导液管出口处的形状设计,克服紧耦合喷嘴中存在
的气流激波,使气流呈超声速层流状态,并在导液管出口处形成有效
的负压[13]。

这一改进有效提高了雾化效率。

高压气体雾化技术在生产微细粉
方面很有成效,且能明显节约气体用量。

2.2.2.2新型雾化技术
随着微细粉末在高新技术新材料中的应用,需要大量粒径小于
20卩r或 10卩r的金属及合金粉末,传统的雾化方法在生产这
类粉末时仍然存在不足:①细粉末的产出率低(小于20% :②气体消耗量大,生产成本高。

为此,自20世纪90年代,人们对新型雾化技术进行大量的研究,并取得了可喜成果。

这些新型雾化技术大大提高了微细粉末的收得率,并且正在进入工业化规模应用。

新型雾化技术主要分为层流雾化技术、超声紧耦合雾化技术和热气体雾化技术3类。

层流雾化技术是由德国Nanoval公司等提出[14]。

该技术对常规喷嘴进行了重大改进。

改进后的雾化喷嘴雾化效率高,粉末粒度分布窄,冷却速度达 106~107 K/s。

在2.0 M Pa的雾化压力下,以Ar或N2
为介质雾化铜、铝、316L不锈钢等,粉末平均粒度达到10 ym该工艺的另一个优点是气体消耗量低,经济效益显著,并且适用于大多数金属粉末的生产。

缺点是技术控制难度大,雾化过程不稳定,产量小(金属质量流率小于1 kg/min,不利于工业化生产。

Nan oval公司正致力于这些问题的解决。

超声紧耦合雾化技术是由英国 PSI公司提出。

该技术对紧耦合环缝式喷嘴进行结构优化,使气流的出口速度超过
声速,并且增加金属的质量流率。

在雾化高表面能的金属如不锈钢时,粉末平均
粒度可达20卩m左右,粉末的标准偏差最低可以降至1.5 该技术的另一大优点
是大大提高了粉末的冷却速度,可以生产快冷或非晶结的粉末[7]。

从当前的发展来看,该项技术设备代表了紧耦合雾化技术的新的发展方向,且具有工业实用意义,可以广泛应用于
微细不锈钢、铁合金、镍合金、铜合金、磁性材料、储氢材料等合金粉末的生
产。

近年来,英国的PSI公司和美国的HJF公司分别对热气体雾化的作用及机理进行了大量的研究。

HJF公司在1.72 M Pa压力下,将气体加热至200~400 C雾化银合金和金合金,得出粉末的平均粒
径和标准偏差均随温度升高而降低[15]。

与传统的雾化技术相比,热气体雾化技术可以提高雾化效率,降低气体消耗量,易于在传统的雾化设备上实现该工艺,是一项具有应用前景的技术。

但是,热气体雾化技术受到气体加热系统和喷嘴的限制,仅有少数几家研究机构进行研究。

2.3物理-化学法
物理-化学法是指在粉末制备过程中,同时借助化学反应和物理
破碎2种方式而获得粉末的方法。

该方法中最具代表性的是以氢气为反应介质的氢化-脱氢法(HDH。

氢化脱氢法利用原料金属易吸氢增脆的特性,在一定的温度下使金属与氢气发生氢化反应生成金属氢
化物,然后借助机械方法将所得金属氢化物破碎成期望粒度的粉末,再将破碎后的金属氢化物粉末中的氢在真空条件下脱除,从而得到金属粉末。

氢化脱氢法已被成功用来制取Ti粉、Zr粉、Hf粉、Ta粉、
NdFeB磁粉等金属和合金粉末,是一项成熟的工艺技术[19,20]。

其优点是操作简单,工艺参数易于控制,生产效率高,成本较低,适合工业化生产;缺点是只适用于易与氢气反应、吸氢后变脆易破碎的金属材料。

相关文档
最新文档