线性预测及其Matlab实现

合集下载

LMS线性预测matlab算法及simulink

LMS线性预测matlab算法及simulink

LMS线性预测matlab算法及simulink概述LMS线性预测算法和simulink的重要性和应用领域LMS(Least Mean Squares)算法是一种自适应滤波算法,用于线性预测问题。

其原理是通过迭代更新滤波器的权值来最小化预测误差的均方差。

LMS算法的步骤如下:初始化滤波器的权值为零或随机值。

提供待预测的输入信号和目标输出信号。

根据当前输入信号和滤波器的权值计算预测输出信号。

计算预测误差,即目标输出信号与预测输出信号之差。

根据预测误差和当前输入信号更新滤波器的权值。

权值的更新公式为:权值 = 权值 + 步长因子 * 预测误差 * 输入信号。

以下是一个基于matlab实现LMS算法的示例:定义输入信号和目标输出信号input_signal =[1.2.3.4.5];target_output = [2.4.6.8.10];定义输入信号和目标输出信号input_signal = [1.2.3.4.5];target_output = [2.4.6.8.10];定义输入信号和目标输出信号input_signal = [1.2.3.4.5];target_output = [2.4.6.8.10];初始化滤波器的权值filter_weights =zeros(1.length(input_signal));初始化滤波器的权值filter_weights = zeros(1.length(input_signal));初始化滤波器的权值filter_weights = zeros(1.length(input_signal));初始化滤波器的权值filter_weights = zeros(1.length(input_signal));初始化滤波器的权值filter_weights = zeros(1.length(input_signal));初始化滤波器的权值filter_weights = zeros(1.length(input_signal));设置步长因子step_size = 0.01;设置步长因子step_size = 0.01;设置步长因子step_size = 0.01;设置步长因子step_size = 0.01;迭代更新滤波器的权值for i = 1:length(input_signal)。

第三篇模型预测控制及其MATLAB实现

第三篇模型预测控制及其MATLAB实现

U [u(k ), u(k 1),, u(k m 1)]T
Y0 [ y0 (k 1), y0 (k 2),, y0 (k n)]T
10
a1 a A 2 a n
a1 a n 1
0 a n m 1
j 1 j 1
J [ y (k j ) w(k j )] ( j )u(k j 1)
2
n
m
2
12
W [w(k 1), w(k 2),, w(k n)]T 若令 则式(7-9)可表示为
(7-10) 式中 w(k+j)称为期望输出序列值 ,在预测控制这类算 法中 , 要求闭环响应沿着一条指定的、平滑的曲线到 达新的稳定值,以提高系统的鲁棒性. 一般取 j j
6
7.1.1 预测模型
从被控对象的阶跃响应出发,对象动态特性用一系 列动态系数 a1 , a2 ,, a p 即单位阶跃响应在采样时刻的值 来描述,p称为模型时域长度,ap是足够接近稳态值的 系数。
图7-1 单位阶跃响应曲线
7
根据线性系统的比例和叠加性质(系数不变原理),若 在某个时刻k-i(k>=i)输入u(k-i),则 u(k i) 对输出y(k)的 1 i p a u (k i) 贡献为: y (k ) i p a u (k i) (7-1) 若在所有 k i(i 1,2,, k ) 时刻同时有输入,则跟据叠加原 p 1 理有 y(k ) ai u(k i) a p u(k p) i 1 (7-2) 利用上式容易得到y(k+j的 n步预估(n<p) 为: (7-3) ˆ (k j ) a u(k j i) a u(k j p) ( j 1,2,, n) y

MATLAB中的时间序列预测与建模技巧

MATLAB中的时间序列预测与建模技巧

MATLAB中的时间序列预测与建模技巧时间序列预测是指根据过去的观测值来预测未来的数值。

它在很多领域中都有着广泛的应用,例如经济预测、天气预报、股票价格预测等等。

在MATLAB中,有许多强大的工具和函数可以帮助我们进行时间序列建模和预测。

本文将介绍一些MATLAB中常用的时间序列预测与建模技巧。

1. 数据预处理在进行时间序列预测之前,我们通常需要对数据进行一些预处理。

这包括去除异常值、填补缺失值、调整数据间隔等等。

在MATLAB中,我们可以使用一些函数来帮助我们完成这些任务。

例如,可以使用`fillmissing`函数来填补缺失值,使用`smoothdata`函数来平滑数据。

2. 时间序列建模时间序列建模是指基于历史观测数据,构建一个合适的模型来描述数据的变化规律。

MATLAB提供了多种建模方法,包括自回归移动平均模型(ARMA)、自回归积分滑动平均模型(ARIMA)、指数平滑模型等等。

我们可以使用`arima`函数来拟合ARIMA模型,使用`ets`函数来拟合指数平滑模型。

3. 模型诊断与评估建立模型后,我们需要对模型进行诊断和评估。

MATLAB中有许多方法可以帮助我们完成这些任务。

例如,可以使用`autocorr`函数来绘制模型残差的自相关图,用于观察残差之间是否存在相关性。

还可以使用`whitenessTest`函数来进行白噪声检验,以验证残差序列是否是独立同分布的。

4. 时间序列预测完成模型的诊断与评估后,我们可以使用模型来进行时间序列的预测。

MATLAB提供了许多函数来帮助我们完成这些任务。

例如,可以使用`forecast`函数来生成时间序列的预测值,使用`simulate`函数来生成时间序列的模拟值。

此外,MATLAB中还有一些其他的工具和函数可以帮助我们进行时间序列预测和建模。

例如,`wavelettoolbox`工具箱提供了波动分析工具,可以用于时间序列的分解和重构。

`econometrics`工具箱则提供了经济学中常用的方法和模型。

使用MATLAB进行数据预测和预测

使用MATLAB进行数据预测和预测

使用MATLAB进行数据预测和预测引言:数据预测和预测在许多领域中都具有重要的应用价值。

它们可以帮助我们预测未来的发展趋势,做出合理的决策,并在经营和决策中提供有力的支持。

在这一过程中,MATLAB作为一种功能强大的编程语言和数据分析工具,为我们提供了一个强大的工具箱,可以进行数据预测和预测。

数据预处理:在开始数据预测和预测之前,我们首先需要对数据进行预处理。

预处理包括数据清洗、数据归一化、特征选择等步骤。

通过这些步骤,我们可以提高数据的质量,减少噪声的影响,并使数据更适合于预测模型的建立。

数据清洗是指删除或修复数据中的错误值、缺失值和异常值。

在MATLAB中,我们可以使用一些函数和工具箱来处理这些问题。

例如,我们可以使用`isnan`函数来检测缺失值,并使用`fillmissing`函数来填充缺失值。

对于异常值,我们可以使用一些统计方法,如3σ原则或箱线图来识别和处理。

数据归一化是将不同尺度的数据映射到统一的尺度上。

这是因为不同尺度的数据可能对预测模型的训练和预测产生不利影响。

在MATLAB中,有许多方法可以实现数据归一化,如MinMax归一化、Z-score归一化等。

我们可以使用`mapminmax`函数来实现MinMax归一化,并使用`zscore`函数来实现Z-score归一化。

特征选择是从原始数据中选择最相关的特征,以降低数据维度并提高预测模型的准确性。

在MATLAB中,我们可以使用一些算法和函数来实现特征选择。

例如,我们可以使用`fsrnca`函数(基于相关系数的特征选择)或`sequentialfs`函数(基于逐步搜索的特征选择)来选择最佳特征子集。

在完成数据预处理后,我们可以使用各种算法和方法进行数据预测。

在MATLAB中,有许多经典的预测算法和函数可供选择。

以下是几个常用的预测方法。

1. 线性回归:线性回归是一种基本的预测方法,它使用线性模型来建立输入变量和输出变量之间的关系。

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题例子;x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数!function [beta_hat,Y_hat,stats]=regress(X,Y,alpha)% 多元线性回归(Y=Xβ+ε)MATLAB代码%?% 参数说明% X:自变量矩阵,列为自变量,行为观测值% Y:应变量矩阵,同X% alpha:置信度,[0 1]之间的任意数据% beta_hat:回归系数% Y_beata:回归目标值,使用Y-Y_hat来观测回归效果% stats:结构体,具有如下字段% =[fV,fH],F检验相关参数,检验线性回归方程是否显着% fV:F分布值,越大越好,线性回归方程越显着% fH:0或1,0不显着;1显着(好)% =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系% tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着% tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用% =[T,U,Q,R],回归中使用的重要参数% T:总离差平方和,且满足T=Q+U% U:回归离差平方和% Q:残差平方和% R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明% 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10;% x2=rand(10,1)*10;% Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据% X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了% [beta_hat,Y_hat,stats]=mulregress(X,Y,%% 注意事项% 有可能会出现这样的情况,总的线性回归方程式显着的=1),% 但是所有的回归系数却对Y的线性作用却不显着=0),产生这种现象的原意是% 回归变量之间具有较强的线性相关,但这种线性相关不能采用刚才使用的模型描述,% 所以需要重新选择模型%C=inv(X'*X);Y_mean=mean(Y);% 最小二乘回归分析beta_hat=C*X'*Y; % 回归系数βY_hat=X*beta_hat; % 回归预测% 离差和参数计算Q=(Y-Y_hat)'*(Y-Y_hat); % 残差平方和U=(Y_hat-Y_mean)'*(Y_hat-Y_mean); % 回归离差平方和T=(Y-Y_mean)'*(Y-Y_mean); % 总离差平方和,且满足T=Q+UR=sqrt(U/T); % 复相关系数,表征回归离差占总离差的百分比,越大越好[n,p]=size(X); % p变量个数,n样本个数% 回归显着性检验fV=(U/(p-1))/(Q/(n-p)); % 服从F分布,F的值越大越好fH=fV>finv(alpha,p-1,n-p); % H=1,线性回归方程显着(好);H=0,回归不显着% 回归系数的显着性检验chi2=sqrt(diag(C)*Q/(n-p)); % 服从χ2(n-p)分布tV=beta_hat./chi2; % 服从T分布,绝对值越大线性关系显着tInv=tinv+alpha/2,n-p);tH=abs(tV)>tInv; % H(i)=1,表示Xi对Y显着的线性作用;H(i)=0,Xi对Y的线性作用不明显% 回归系数区间估计tW=[-chi2,chi2]*tInv; % 接受H0,也就是说如果在beta_hat(i)对应区间中,那么Xi与Y线性作用不明显stats=struct('fTest',[fH,fV],'tTest',[tH,tV,tW],'TUQR',[T,U,Q,R]);。

matlab曲线拟合函数并预测

matlab曲线拟合函数并预测

Matlab曲线拟合函数并预测一、背景介绍(300-500字)在科学研究和工程领域,我们经常需要对实验数据进行分析和预测。

而Matlab作为一种强大的数学软件工具,提供了丰富的函数和工具,可以对实验数据进行曲线拟合和预测。

本文将介绍Matlab中的曲线拟合函数,并结合实际案例来展示如何使用这些函数进行数据分析和预测。

二、Matlab曲线拟合技术(800-1000字)1. 数据导入和处理在进行曲线拟合之前,我们首先需要将实验数据导入Matlab,并进行处理。

这包括数据的清洗、预处理以及数据结构的转换等。

Matlab提供了丰富的数据导入和处理函数,可以帮助我们快速地将实验数据准备好,以便进行后续的分析和拟合。

2. 曲线拟合函数在Matlab中,曲线拟合函数是实现曲线拟合的核心工具。

通过这些函数,我们可以根据实验数据的特征以及我们对拟合曲线的要求,选择合适的曲线模型,并进行拟合。

Matlab提供了多种曲线拟合函数,包括多项式拟合、指数拟合、对数拟合等,以满足不同需求的实验数据分析。

3. 曲线拟合参数估计除了选择合适的曲线模型外,曲线拟合还需要进行参数估计。

Matlab提供了丰富的参数估计函数,可以帮助我们对拟合曲线的参数进行准确的估计,从而得到最优的拟合结果。

4. 曲线拟合质量评价作为对曲线拟合结果的评价,我们需要进行拟合质量的评估。

Matlab提供了多种曲线拟合质量评价指标,包括均方差、决定系数等,可以帮助我们评估拟合结果的准确性和可靠性。

三、曲线拟合与预测实例分析(1200-1500字)以某种实验数据为例,我们通过Matlab进行曲线拟合和预测分析。

我们将实验数据导入Matlab,并进行预处理;选择合适的曲线模型进行拟合,并进行参数估计;我们评价拟合结果的质量,并得出结论;基于拟合曲线,我们进行预测分析,并与实际数据进行对比。

通过这个实例分析,我们可以更加深入地理解Matlab曲线拟合技术的应用和价值。

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检验及预测问题例子;x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';X=[ones(16,1) x]; 增加一个常数项 Y=[88 85 88 91 92 93 93 95 96 98 97 9698 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型 y=+ 成立. 这个是一元的,如果是多元就增加X的行数!function [beta_hat,Y_hat,stats]=regress(X,Y,alpha)% 多元线性回归(Y=Xβ+ε)MATLAB代码%% 参数说明% X:自变量矩阵,列为自变量,行为观测值% Y:应变量矩阵,同X% alpha:置信度,[0 1]之间的任意数据% beta_hat:回归系数% Y_beata:回归目标值,使用Y-Y_hat来观测回归效果% stats:结构体,具有如下字段% =[fV,fH],F检验相关参数,检验线性回归方程是否显著% fV:F分布值,越大越好,线性回归方程越显著% fH:0或1,0不显著;1显著(好)% =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显著线性关系% tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显著的线性作用% tH:0或1,0不显著;1显著% tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显著的线性作用% =[T,U,Q,R],回归中使用的重要参数% T:总离差平方和,且满足T=Q+U% U:回归离差平方和% Q:残差平方和% R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明% 比如要拟合 y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10;% x2=rand(10,1)*10;% Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据% X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了% [beta_hat,Y_hat,stats]=mulregress(X,Y,%% 注意事项% 有可能会出现这样的情况,总的线性回归方程式显著的=1),% 但是所有的回归系数却对Y的线性作用却不显著=0),产生这种现象的原意是% 回归变量之间具有较强的线性相关,但这种线性相关不能采用刚才使用的模型描述,% 所以需要重新选择模型%C=inv(X'*X);Y_mean=mean(Y);% 最小二乘回归分析beta_hat=C*X'*Y; % 回归系数βY_hat=X*beta_hat; % 回归预测% 离差和参数计算Q=(Y-Y_hat)'*(Y-Y_hat); % 残差平方和U=(Y_hat-Y_mean)'*(Y_hat-Y_mean); % 回归离差平方和T=(Y-Y_mean)'*(Y-Y_mean); % 总离差平方和,且满足T=Q+UR=sqrt(U/T); % 复相关系数,表征回归离差占总离差的百分比,越大越好[n,p]=size(X); % p变量个数,n样本个数% 回归显著性检验fV=(U/(p-1))/(Q/(n-p)); % 服从F分布,F的值越大越好fH=fV>finv(alpha,p-1,n-p); % H=1,线性回归方程显著(好);H=0,回归不显著% 回归系数的显著性检验chi2=sqrt(diag(C)*Q/(n-p)); % 服从χ2(n-p)分布tV=beta_hat./chi2; % 服从T分布,绝对值越大线性关系显著tInv=tinv+alpha/2,n-p);tH=abs(tV)>tInv; % H(i)=1,表示Xi对Y显著的线性作用;H(i)=0,Xi 对Y的线性作用不明显% 回归系数区间估计tW=[-chi2,chi2]*tInv; % 接受H0,也就是说如果在beta_hat(i)对应区间中,那么Xi与Y线性作用不明显stats=struct('fTest',[fH,fV],'tTest',[tH,tV,tW],'TUQR',[T,U,Q,R]) ;。

用MATLAB进行区间估计与线性回归分析

用MATLAB进行区间估计与线性回归分析
解:
在MATLAB命令窗口输入 >> R=60;n=100;>> alpha=0.05; >> [phat,pci]=binofit(R,n,alpha)
回车键,显示:
phat =0.6000,pci =0.4972 0.6967
一级品率p是二项分布分布 的参数,我们可用二项分布的命令求解。同时,由于样本容量 ,我们还可将总体分布近似看成正态分布。在本例中,我们选用二项分布的命令来求解。
mu、sig分别为分布参数 、 的点估计值。
1
a、b、aci、bci分别是均匀分布中参数a,b的点估计及区间估计值。
2
其它常用分布参数估计的命令还有:
3
[lam,lamci]=poissfit(x,alpha) 泊松分布的估计函数
4
lam、lamci分别是泊松分布中参数 的点估计及区间估计值。
所以的p的置信度为0.95的置信区间为(0.50,0.70)。
案例8.21调查某电话呼叫台的服务情况发现:在随机抽取的200个呼叫中,有40%需要附加服务(如转换分机等),以p表示需附加服务的比例,求出p的置信度为0.95的置信区间。
§8.4.2 利用MATLAB进行线性回归分析
对不含常数项的一元回归模型 , 都是 向量,在MATLAB中进行回归分析的程序为:
[mu,sig,muci,sigci]=normfit(x,alpha)
Muci、sigci分别为分布参数 、 的区间估计。
x为向量或者矩阵,为矩阵时是针对矩阵的每一个列向量进行运算的。
alpha为给出的显著水平 (即置信度 ,缺省时默认 ,置信度为95%)
①b=regress(y,x)
返回基于观测y和回归矩阵x的最小二乘拟合系数的结果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性预测及其Matlab实现
线性预测分析是现代语音信号处理中最核心的技术之一,为现代语音信号处理的飞速发展立下了赫赫功劳,在语音分析、合成、编码、识别等方面都有着广泛的应用,至今仍是最有效的语音分析技术之一。

如VoIP 和H.323 网上多媒体通信系统中所使用的G.729 CS-ACELP 语音编码算法就是一种以共轭代数码本激励线性预测为基础的高质量的语音编码标准。

1 线性预测的基本原理
在语音信号处理中最常用的模型是全极点模型。

线性预测所包含的基本概念是,通过使实际语音抽样和线性预测抽样之间差值的平方和达到最小值,即进行最小均方误差的逼近,能够决定惟一的一组预测器系数。

如果一个随机过程用一个p 阶全极点系统受白噪声激励产生的输出来模拟,设这个系统的传递函数为:
其中:p 是预测器阶数;G 是声道滤波器增益。

由此,语音抽样s(n)和激励信号e(n)之间的关系可用下列差分方程来表示:
即语音样点间有相关性,可以用过去的样点值预测未来样点值。

对于浊音,激励e(n)是以基音周期重复的单位冲激;对于清音e(n)是平稳白噪声。

在模型参数估计过程中,把如下系统称为线性预测器:。

相关文档
最新文档