循环卷积与线性卷积的matlab实现
卷积运算的matlab命令及其参数设置规则

卷积运算是数字信号处理和图像处理中常用的一种运算方式,它在图像滤波、特征提取等领域中发挥着重要作用。
在Matlab中,卷积运算可以通过一些内置的函数实现,同时可以通过设置不同的参数来实现不同的卷积操作。
本文将结合实际案例,介绍卷积运算在Matlab 中的常用命令及其参数设置规则。
一、卷积运算的基本概念在数字信号处理和图像处理中,卷积运算是一种重要的数学运算。
它通常用于图像滤波、特征提取等方面。
卷积运算的基本原理是将一个函数与另一个函数的翻转及平移进行积分。
在离散情况下,卷积运算可以用离散的形式来表示如下:\[y[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k]\]其中,\(x[k]\)和\(h[n]\)分别代表输入信号和卷积核,\(y[n]\)代表卷积运算的输出结果。
二、Matlab中的卷积运算函数在Matlab中,可以使用conv函数来进行一维和二维的卷积运算。
conv函数的基本语法如下:```y = conv(x, h)```其中,x和h分别代表输入信号和卷积核,y代表卷积运算的输出结果。
这里需要注意的是,x和h的长度必须是有限的,而且二者不能交换位置。
在进行二维卷积运算时,可以使用conv2函数。
conv2函数的基本语法如下:```y = conv2(x, h)```其中,x和h分别代表输入图像和卷积核,y代表二维卷积运算的输出结果。
三、卷积运算参数的设置规则在进行卷积运算时,需要注意一些参数的设置规则,以确保卷积运算的正确性和有效性。
以下是一些常见的参数设置规则:1. 卷积核的选择:卷积核的选择对卷积运算的结果影响很大。
通常情况下,可以根据具体的应用需求来选择合适的卷积核,例如高斯滤波、边缘检测等。
2. 边界处理:在进行卷积运算时,往往需要考虑图像或信号的边界处理。
常见的处理方式包括零填充、边界拓展、周期延拓等。
3. 步长和填充:在进行卷积运算时,可以通过设置步长和填充参数来控制输出结果的大小。
matlab 循环递归系统卷积码

MATLAB循环递归系统卷积码概述MATLAB是一种强大的数学计算软件,广泛应用于工程、科学和金融等领域。
在通信领域中,卷积码是一种重要的纠错码,能够有效地提高通信系统的可靠性和性能。
本文将从MATLAB循环递归系统卷积码的原理、实现方法和应用进行详细介绍。
一、卷积码的原理1.1 卷积码的基本概念卷积码是一种线性的纠错码,它利用置换、加法和乘法等运算对信息进行编码。
在通信系统中,卷积码通常采用编码器对输入数据进行编码,接收端则利用译码器对接收到的码字进行译码。
卷积码具有良好的纠错性能和较高的复杂度,广泛应用于数字通信系统中。
1.2 卷积码的特点卷积码是一种具有记忆性的码制,其编码过程是通过产生状态转移图来实现的。
在编码器中,输入的信息比特会依次经过一系列的状态转移,最终输出编码比特。
由于卷积码具有较长的约束长度和较复杂的状态转移图,因此其译码复杂度较高,但能够提供良好的纠错性能。
二、MATLAB实现卷积码的方法2.1 卷积码编码器的实现在MATLAB中,可以利用编程语言对卷积码进行编码器的实现。
首先需要定义卷积码的生成多项式和约束长度,然后利用状态转移图的方法来实现编码器。
在MATLAB中,可以利用有限状态机的方法来实现卷积码的编码器,通过状态转移图的定义和输入比特的移位来生成编码比特。
2.2 卷积码译码器的实现在MATLAB中,可以利用Viterbi算法来实现卷积码的译码器。
Viterbi算法是一种动态规划算法,通过计算每个状态的路径度量来实现译码过程,最终选择路径度量最小的状态作为最优路径。
在MATLAB中,可以利用编程语言编写Viterbi算法的程序来实现卷积码的译码器,从而实现卷积码信号的译码过程。
三、MATLAB循环递归系统卷积码的应用3.1 通信系统中的应用在数字通信系统中,卷积码广泛应用于无线通信、卫星通信和光纤通信等领域。
利用MATLAB实现的卷积码可以提高通信系统的可靠性和性能,降低误码率和提高数据传输速率。
用MATLAB实现线性卷积运算

北京邮电大学实验报告实验名称:用MATLAB实现线性卷积运算学院:信息与通信工程学院班级:姓名:学号:日期:2018年5月一、实验原理1、算法产生背景DFT 是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换频域的采样。
在形式上,变换两端<时域和频域上)的序列是有限长的。
DFT 具备明确且合理的物理含义,适合应用于数字系统,同时可以方便地由计算机进行运算。
对于线性非移变离散系统,可由线性卷积表示时域输入输出关系,即(> (>*(> ynxnhn通常采用循环卷积降低运算量,但实际中往往无法满足对信号处理的实时性要求。
因此,产生了重叠相加法和重叠保留法两种典型的算法,用以快速计算线性卷积,成为了DFT 的一个重要应用。
2、算法基本思想1)重叠相加法重叠相加法是将待过滤的信号分割成长为N 的若干段,如图1 所示,每一段都可以和有限时宽单位取样响应作卷积,再将过滤后的各段重叠相加。
具体算法实现原理如图2 所示,建立缓存序列,每次输入N 点序列,通过计算x(n> 和h(n> 的循环卷积实现线性卷积运算,将缓存的M-1 点序列和卷积结果相加,并输出前N 点作为计算结果,同时缓存后M-1 点,如此循环,直至所有分段计算完毕,则输出序列y(n>为最终计算结果。
2)重叠保留法重叠保留法相当于将x�l(n>和h(�n>作循环卷积,然后找出循环卷积中相当于线性卷积的部分。
在这种情况下,将序列y(n>分为长为N的若干段(如图3所示>,每个输入段和前一段有M-1个重叠点。
此时只需要将发生重叠的前M-1个点舍去,保留重叠的部分并输出,则可获得序列y(n>,算法如图4所示。
二、流程图设计1、重叠相加法2、重叠保留法三、MATLAB源代码1、重叠相加源码2.重叠保留源码2、四、实验结果与分析对两种算法采用同一序列进行测试分析。
卷积应用 matlab

卷积应用matlab
在MATLAB中,卷积可以通过conv函数实现。
以下是一个简单的例子,展示了如何使用MATLAB进行卷积操作。
假设我们有两个向量a和b,我们想要计算它们的卷积。
matlab
% 定义向量a和b
a = [1, 2, 3];
b = [4, 5, 6];
% 计算卷积
c = conv(a, b);
% 输出结果
disp(c);
在这个例子中,conv(a, b)函数计算了向量a和b的卷积,并将结果存储在向量c中。
然后,我们使用disp(c)来显示结果。
注意:MATLAB的卷积操作默认是按元素进行的,即计算两个向量的对应元素的乘
积之和。
这与数学中的传统卷积定义略有不同,传统卷积定义涉及到滑动窗口和内
积。
如果你想在MATLAB中进行滑动窗口的内积卷积,你需要使用不同的函数和方
法。
例如,convn函数或者使用傅立叶变换进行卷积等。
(完整word版)实验五 线性卷积与循环卷积的计算(word文档良心出品)

实验五 线性卷积与循环卷积的计算一、实验目的1、进一步加深对线性卷积的理解和分析能力;2、通过编程,上机调试程序,进一步增强使用计算机解决问题的能力;3、掌握线性卷积与循环卷积软件实现的方法,并验证二者之间的关系。
二、实验原理1、线性卷积线性时不变系统(Linear Time-Invariant System, or L. T. I 系统)输入、输出间的关系为:当系统输入序列为)(n x ,系统的单位脉冲响应为)(n h ,输出序列为)(n y ,则系统输出为:∑∞-∞==-=m n h n x m n h m x n y )(*)()()()(或∑+∞-∞==-=m n x n h m n x m h n y )(*)()()()(上式称为离散卷积或线性卷积。
图6.1示出线性时不变系统的输入、输出关系。
)(n δ→ L. T. I —→)(n h —→ —→图6.1 线性时不变系统的输入、输出关系2、循环卷积设两个有限长序列)(1n x 和)(2n x ,均为N 点长)(1n x )(1k X)(2n x )(2k X 如果)()()(213k X k X k X ⋅=则 )()(~)(~)(10213n R m n x m x n x N N m ⎥⎦⎤⎢⎣⎡-=∑-=[]∑---=1021)()(N m N m n x m x)(1n x =N 10)(2-≤≤N n n x上式称为循环卷积或圆周卷积)(n xL. T. I h(n)∑+∞-∞=-=m m n h m x n y )()()(D F T D F T注:)(~1n x 为)(1n x 序列的周期化序列;)()(~1n R n x N 为)(~1n x 的主值序列。
上机编程计算时,)(3n x 可表示如下:∑∑-+==-++-=11210213)()()()()(N n m nm m n N xm x m n x m x n x3、两个有限长序列的线性卷积序列)(1n x 为L 点长,序列)(2n x 为P 点长,)(3n x 为这两个序列的线性卷积,则)(3n x 为∑+∞-∞=-=m m n xm x n x )()()(213且线性卷积)(3n x 的最大长1-+P L ,也就是说当1-≤n 和1-+≥P L n 时0)(3=n x 。
matlab卷积的原理及应用

MATLAB卷积的原理及应用概述MATLAB(Matrix Laboratory)是一种常用的数学软件,可以用于进行数值计算、数据分析、算法开发等多种科学计算任务。
其中,卷积是MATLAB中常用的数字信号处理技术,被广泛应用于图像处理、音频处理等领域。
本文将介绍MATLAB中卷积的原理以及其在不同领域的应用。
原理卷积操作是一种数学运算,用于将两个函数之间的关系转化为一个新的函数。
在MATLAB中,卷积操作可以通过conv函数实现。
其原理如下:1.对于输入函数f(x)和g(x),首先需要将其离散化。
对连续函数可以使用采样或插值的方式进行离散化,得到f(n)和g(n)。
2.将g(n)进行翻转操作得到g(-n)。
3.将f(n)和g(-n)进行逐元素相乘,并求和得到卷积结果h(n)。
4.h(n)即为f(n)和g(n)的卷积结果。
MATLAB中的conv函数可以直接实现以上的卷积操作。
下面通过一个简单的示例来演示如何使用MATLAB进行卷积运算。
应用图像处理卷积在图像处理中有广泛的应用。
其中,图像模糊、边缘检测、图像锐化都是基于卷积的算法。
以下是一些常见的图像处理应用:•图像模糊:可以通过卷积一个平滑的核函数,将图像中的噪声进行模糊处理。
•边缘检测:可以通过卷积一个边缘检测的核函数,找出图像中的边缘信息。
•图像锐化:可以通过卷积一个锐化的核函数,增强图像中的细节。
音频处理卷积在音频处理中也有着重要的应用。
以下是一些常见的音频处理应用:•混响效果:通过卷积一个混响的冲激响应函数,给音频信号增加混响效果。
•清晰度增强:通过卷积一个清晰度增强的核函数,增强音频信号的清晰度。
•降噪处理:通过卷积一个降噪的核函数,降低音频信号中的噪声。
数字信号处理卷积在数字信号处理中也是一种常用的技术。
以下是一些常见的数字信号处理应用:•信号滤波:可以通过卷积一个滤波器的核函数,将信号中的高频成分进行滤除。
•信号解调:可以通过卷积一个解调的核函数,将调制信号解调为原始信号。
基于Matlab实现线性卷积等

线性卷积与循环卷积一、作品目的通过matlab的强大功能展示线性卷积和循环卷积过程中方方面面的计算和变化,让大家对这两种卷积有一个更加完美的认识。
二、概念简介卷积是一种典型的乘累加运算。
1.线性卷积线性卷积是对线性移不变(LSI)系统的输入输出关系的描述,体现系统的特性。
线性卷积的表达式为一般情况,现实的系统为因果系统,有k<0时,恒有h(k)=0,则若x(n)是一个N点序列,h(n)是一个m点序列,则卷积的结果y(n)将是L=N+M-1点的序列。
2.循环卷积设x1(n) 和x2(n) 是两个长度为L、M的有限长序列,它们的N 点循环卷积x3(n) 定义为:注意:其中N>=Max{L,M}如果其中一个序列(或者两个序列)的长度没有所求N点循环卷积的长度长,那在该序列后面补零,直到长度达到N。
三、设计思路及程序1. 线性卷积:(1)以输入序列x(n)=[5,4,3,2,1],脉冲响应h(n)=[1,1,1,1]为列进行演示。
(2)计算输入序列和脉冲响应的长度。
(3)画出补零后的输入序列和脉冲响应(4)设计一个循环,在循环中实现反转、位移和计算。
并画出反转后的图像变化和卷积图像,将每一次移位结果保存为fig图。
(5)最后将上一步所生成的所有fig图合起来生成一张gif图程序展示:clear;clc;close all;(1)(2)xn=[5,4,3,2,1];M=length(xn);%输入任意序列并计算长度Mhn=[1,1,1,1];N=length(hn);%输入任意脉冲响应并计算长度Nm=[-(M-1):M+N-2];%设置代换变量的范围以便x(m)翻转和移位(3)xm=[zeros(1,M-1),xn,zeros(1,N-1)];%补零以便与m对应绘图subplot(2,2,1);stem(m,xm,'r.');%%绘输入序列x(m) ylabel('x(m)'); grid on;title('(a)输入序列x(m)');hm=[zeros(1,M-1),hn,zeros(1,M-1)];%补零以便与m对应绘图subplot(2,2,2);stem(m,hm,'r.');%绘脉冲响应ylabel('h(m)'),grid,title('(b)脉冲响应h(m)');%%加标签网格和标题yn=zeros(1,2*M+N-2);%卷积输出初始化(4)for n=0:M+N-2;%逐个计算卷积输出if n==0;xmfy=[fliplr(xn),zeros(1,M+N-2)];%实现翻转else for k=M:-1:1;xmfy(k+n)=xmfy(k+n-1);endxmfy(n)=0;xmfy;%实现翻转后移位并显示endsubplot(2,2,3);stem(m,xmfy,'b.');%%绘制翻转移位序列ylabel('x(n-m)'), grid,title('(c)x(n-m)');%%加标签网格和标题yn(M+n)=sum(xmfy.*hm);%计算第n位输出并与m位置对应subplot(2,2,4);stem(m,yn,'r.');%%绘制卷积输出序列axis([min(m),max(m),min([0,conv(xn,hn)]),max([0,c onv(xn,hn)])]);%%控制绘图坐标ylabel('y(n)');grid on;title('(d)卷积输出y(n)');%%加标签网格和标题pause(.5);drawnow,picname=[num2str(n) '.fig'];%保存的文件名:如i=1时,picname=1.fighold on % 写后面的字时,不把前面的字冲掉saveas(gcf,picname)endyn;stepall=M+N-2;(5)for i=1:stepallpicname=[num2str(i) '.fig'];open(picname)set(gcf,'outerposition',get(0,'screensize'));% matlab窗口最大化frame=getframe(gcf);im=frame2im(frame);%制作gif文件,图像必须是index索引图像[I,map]=rgb2ind(im,20);if i==1imwrite(I,map,'xianxingjuanji.gif','gif', 'Loopcount',inf,'DelayTime',0.5);elseif i==stepallimwrite(I,map,'xianxingjuanji.gif','gif','WriteMo de','append','DelayTime',0.5);elseimwrite(I,map,'xianxingjuanji.gif','gif','WriteMode','append','DelayTime',0.5); end;close allend实验结果展示:2. 循环卷积(1)以输入序列x(n)=[5,4,3,2,1],脉冲响应h(n)=[1,1,1,1]为列进行演示。
实验五 线性卷积与循环卷积的计算

实验五 线性卷积与循环卷积的计算一、实验目的1、进一步加深对线性卷积的理解和分析能力;2、通过编程,上机调试程序,进一步增强使用计算机解决问题的能力;3、掌握线性卷积与循环卷积软件实现的方法,并验证二者之间的关系。
二、实验原理1、线性卷积线性时不变系统(Linear Time-Invariant System, or L. T. I 系统)输入、输出间的关系为:当系统输入序列为)(n x ,系统的单位脉冲响应为)(n h ,输出序列为)(n y ,则系统输出为:∑∞-∞==-=m n h n x m n h m x n y )(*)()()()(或∑+∞-∞==-=m n x n h m n x m h n y )(*)()()()(上式称为离散卷积或线性卷积。
图6.1示出线性时不变系统的输入、输出关系。
)(n δ→ L. T. I —→)(n h —→ —→图6.1 线性时不变系统的输入、输出关系2、循环卷积设两个有限长序列)(1n x 和)(2n x ,均为N 点长)(1n x )(1k X )(2n x )(2k X 如果)()()(213k X k X k X ⋅=则 )()(~)(~)(10213n R m n x m x n x N N m ⎥⎦⎤⎢⎣⎡-=∑-=[]∑---=1021)()(N m N m n x m x)(1n x =N 10)(2-≤≤N n n x上式称为循环卷积或圆周卷积)(n x L. T. I h(n)∑+∞-∞=-=m m n h m x n y )()()(D F T D F T注:)(~1n x 为)(1n x 序列的周期化序列;)()(~1n R n x N 为)(~1n x 的主值序列。
上机编程计算时,)(3n x 可表示如下:∑∑-+==-++-=11210213)()()()()(N n m nm m n N xm x m n x m x n x3、两个有限长序列的线性卷积序列)(1n x 为L 点长,序列)(2n x 为P 点长,)(3n x 为这两个序列的线性卷积,则)(3n x 为∑+∞-∞=-=m m n xm x n x )()()(213且线性卷积)(3n x 的最大长1-+P L ,也就是说当1-≤n 和1-+≥P L n 时0)(3=n x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
循环卷积与线性卷积的实现
1、实验目的:(1)进一步理解并掌握循环卷积与线性卷积的概
念。
(2)理解掌握二者的关系。
三、实验原理
两个序列的N点循环卷积定义为
从定义中可以看到,循环卷积和线性卷积的不同之处在于:两个N 点序列的N点循环卷积的结果仍为N点序列,而他们的线性卷积的结果的长度则为2N-1;循环卷积对序列的移位采取循环移位,而线性卷积对序列采取线性位移。
正式这些不同,导致了线性卷积和循环卷积有不同的结果和性质。
循环卷积和线性卷积虽然是不用的概念,但是它们之间有一个有意义的公式联系在一起
其中
也就是说,两个序列的N点循环卷积是他们的线性卷积以N为周期的周期延阔。
设序列的长度为,序列的长度为,此时,线性卷积结果的序列的点数为;因此如果循环卷积的点数N小于,那么上述周期性延阔的结果就会产生混叠,从而两种卷积会有不同的结果。
而如果N满足的条件,就会有
这就会意味着在时域不会产生混叠。
因此,我们得出结论:若通过在序列的末尾填充适当的零值,使得和成为店序列,并作出这两个序列的循环卷积与线性卷积的结果在范围内相同。
根据DFT循环卷积性质中的卷积定理
便可通过两种方法求两个序列的循环卷积:一是直接根据定义计算;二是根据性质先分别求两个序列的N点DFT,并相乘,然后取IDFT以得到循环卷积。
第二种方法看起来要经过若干个步骤,但由于求序列的DFT和IDFT都有快速算法,因此它的效率比第一种方法要高得多。
同样,根据线性卷积和循环卷积的关系,可以通过计算循环卷积以求得线性卷积,提高计算序列线性卷积的效率。
4、实验内容
输入程序序列如下:
n=[0:1:4];m=[0:1:3];
x1=1+n;x2=4-m; %生成函数x1和x2
L1=length(x1)-1;L2=length(x2)-1; %取函数的长度
y1=conv(x1,x2); %直接用函数conv计算线性卷积n1=[0:1:L1+L2];
subplot(3,1,1);stem(n1,y1) %绘制线性卷积图形
xlabel('n');ylabel('y(n)'); %标注x、y轴
N2=5; %求5点圆卷积
if length(x1)>N2
error('N必须大于序列x1的长度')
end
if length(x2)>N2
error('N必须大于序列x2的长度')
end %以上语句判断两个序列的长度是否小于N X21=fft(x1,N2); %作序列1的FFT
X22=fft(x2,N2); %作序列2的FFT
y2=ifft(X21.*X22); %求两序列的循环卷积(时域)n2=[0:1:N2-1];
subplot(3,1,2);stem(n2,y2) %绘制两序列循环卷积图形axis([0,7,0,40]) %修改x、y轴长度
N3=8
if length(x1)>N3
error('N必须大于序列x1的长度')
end
if length(x2)>N3
error('N必须大于序列x2的长度')
end
x31=[x1,zeros(1,N3-length(x1))]
x32=[x2,zeros(1,N3-length(x2))]
X31=fft(x31)
X32=fft(x32)
y3=ifft(X31.*X32)
n3=[0:1:N3-1]
subplot(3,1,3);stem(n3,y3)
将程序输入MATLAB运行结果如下:
MATLAB运行显示的图形为:
五、实验心得:本次实验对我意义很大,让我熟练的运用了matlab软件。
使我对课本上的知识又加深了很多理解和运用。