初一实数复习讲义汇编

合集下载

(完整word版)七年级实数讲义

(完整word版)七年级实数讲义

1月17日复华七年级数学实数12.1 实数的概念一、引入 数的范围至此扩大到了有理数,复习有理数的定义和分类:定义:整数和分数统称为有理数。

分类: 有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数如果把整数看作分母为1的分数,那么有理数就是用两个整数之比表示的分数:)0,(≠q q p qp都是整数,且 质疑:数的扩充是不是到此为止了呢?有理数是不是够用了?还有没有不是有理数的数呢? 问题2:正方形ABCD 的边长怎样表示?分析:设正方形ABCD 的边长为x ,那么x 2=2,即x 是这样一个数,它的平方等于2。

这个数表示面积为2的正方形的边长,是现实世界中真实存在的线段长度。

由于这个数和2有关,我们现在用2(读作“根号2”)来表示。

追问:面积为3的正方形,它的边长又如何表示?若面积为5呢? 问题3:2是有理数吗? 因为:有理数=分数)0,(≠q q p qp都是整数,且= 而2肯定不能表示为分数(详见P36),那就不能是有限小数,也不能是无限循环小数,所以2只能是“无限不循环小数”。

问题4:无限不循环小数还有吗?Π是有理数码? 二、归纳1.无理数(1)无限不循环小数叫做无理数。

(2)无理数包括正无理数和负无理数。

(3)只有符号不同的两个无理数,它们互为相反数。

2.实数(1)有理数和无理数统称为实数。

(2)实数可以这样分类:正有理数有理数 零 ——有限小数或无限循环小数实数 负有理数正无理数无理数 ——无限不循环小数负无理数三、练习1.将下列各数填入适当的括号内: 0、-3、2、6、3.14159、722、32.0&&&、5、π、0.3737737773…. 有理数:﹛ ﹜;无理数:﹛ ﹜; 正实数:﹛ ﹜;负实数:﹛ ﹜; 非负数:﹛ ﹜;整 数:﹛ ﹜. 提问:常见的无理数的形式有哪几种?(三种形式)2.请构造几个大小在3和4之间的无理数。

七年级下册数学讲义之实数单元复习-学生-春季班

七年级下册数学讲义之实数单元复习-学生-春季班

学科教师辅导讲义学员学校:年级:初一课时数:2学员姓名:辅导科目:数学学科教师:课题实数全章复习授课时间:备课时间:教学目标1、理解实数的分类,了解无理数的概念2、会求无理数的绝对值、相反数,会对实数进行大小比较.3、理解平方根、算术平方根和立方根等概念会求一个数的平方根和立方根4、掌握实数间的运算法则,会计算简单的实数运算。

重点及难点1、理解平方根、算术平方根和立方根等概念会求一个数的平方根和立方根2、掌握实数间的运算法则,会计算简单的实数运算。

教学内容知识精讲一、主要知识点:注意:(1)实数还可按正数,零,负数分类.(2)整数可分为奇数,偶数,零是偶数,偶数一般用2n (n 为整数)表示;奇数一般用2n -1或2n +1(n 为整数)表示.(3)正数和零常称为非负数.1.1.2平方根、算术平方根:如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根),即如果a x =2,那么x 就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根.正数a 的平方根,记作:a ±.正数a 的正的平方根叫做a 的算术平方根.记作:a .正数和零的算术平方根都只有一个.零的算术平方根是零.⎩⎨⎧<-≥==.,)0()0(2a a a a a a注意:a 的“双重非负性” :⎩⎨⎧≥≥.,00a a1.1.3立方根:如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或叫做a 的三次方根),即如果a x =3,那么x 就叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:33a a -=-,这说明三次根号内的负号可以移到根号外面.例题精讲(一)、有理数无理数的判别:1. 在-1.732,2,π, 3.41 ,2+3,3.212212221…,3.14这些数中,无理数的个数为( ). A.5 B.2 C.3 D.4(二)、算术平方根、平方根、立方根的概念:1. 若1-m 与3m+1是同一个数的平方根,则这个数可能是2.一个正数x 的平方根为2a-3和5-a ,则x=.巩固练习1、36的平方根是 ;16的算术平方根是 ;2、8的立方根是 ;327-= ;3、37-的相反数是 ;绝对值等于3的数是4、23的倒数的平方是 ,2的立方根的倒数的立方是 。

人教版七年级数学下册《实数》全章复习与巩固(知识讲解及考点训练)

人教版七年级数学下册《实数》全章复习与巩固(知识讲解及考点训练)

《实数》全章复习与巩固(知识讲解)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.【知识网络】【要点梳理】要点一:平方根和立方根要点二:实数有理数和无理数统称为实数.1.实数的分类按定义分:实数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式:(1)任何一个实数a 的绝对值是非负数,即|a |≥0;(2)任何一个实数a 的平方是非负数,即≥0;(3().非负数具有以下性质:(1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算: ⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数2a 0≥0a ≥数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0. 有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数 大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.【典型例题】类型一、有关方根的问题1、下列各式正确的是( )A 7=-B 3=±C =D 4=【答案】D举一反三:【变式】如果m 有算术平方根,那么m 一定是( )A .正数B .0C .非负数D .非正数【答案】C2、观察下列各式,并用所得出的规律解决问题:(1=1.414=14.14==0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2=2.2367.071= ,= ;(3=1=10=100…小数点变化的规律是: .(4=2.154=4.642= ,= .【答案】(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642类型二、与实数有关的问题 3、.把下列各数填入相应的集合中: 3.14,-2π,-917,3100-, 0 ,1.212212221… ,3,0.151151115 无理数集合{ … };有理数集合{ … };非正数集合{ … }. 【详解】由立方根的性质得:31000-<,无理数集合{-2π, 1.212212221…,…};有理数集合{3.14,0,0.151151115,… };非正数集合{-2π,0,… };举一反三:【变式】在实数0、π、、、﹣中,无理数的个数有( )A .1个B .2个C .3个D .4个【答案】B ;类型三、与实数有关计算4、计算:(1)⎛- ⎝; (2|1--【答案】(1;(2)12-解:(1)⎛ ⎝=;(2|1--=914+-=12-举一反三:【变式】计算:(1)83237⎛⎫⨯-+ ⎪⎝⎭. (2(3)221(12)332⎛⎫-⨯-- ⎪⎝⎭.【答案】(1)67;(2)4;(3)-11.解:(1)83237⎛⎫⨯-+ ⎪⎝⎭ =827-+ =67;(2+=-2+6=4;(3)221(12)332⎛⎫-⨯-- ⎪⎝⎭ =1(12)96-⨯-=-2-9=-11.5、已知:(a+6)2+=0,则2b 2﹣4b ﹣a 的值为 .【答案】12.解:∵(a+6)2+=0,∵a+6=0,b 2﹣2b ﹣3=0,解得,a=﹣6,b 2﹣2b=3,可得2b 2﹣4b=6,则2b 2﹣4b ﹣a=6﹣(﹣6)=12,故答案为:12.举一反三:【变式1】实数a 、b 在数轴上所对应的点的位置如图所示:化简+∣a -b ∣= .【答案】2a-1a 解:∵a <0<b ,∴a -b <0 ∴+∣a -b ∣=-a -(a -b )=b -2a .【变式2】实数在数轴上的位置如图所示,则的大小关系是: ;【答案】; 类型四、实数综合应用6、小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.) 【答案】3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm , ∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3),即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .举一反三:【变式】一个底为正方形的水池的容积是4863m ,池深1.5m ,求这个水池的底边长.【答案】解:设水池的底边长为x ,由题意得答:这个水池的底边长为18m .2a a 2,1,,a a a a -21a a a a <<<-2 1.5486x ⨯=2324x =18x =。

【新】七年级 数学 人教版 实数 讲义【精编版】

【新】七年级 数学 人教版 实数 讲义【精编版】

有理数和无理数一、知识梳理:知识点一、有理数和无理数的分类:1、按照有理数和无理数分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 2、按照正数和负数分类:3、无理数:无限不循环小数叫无理数,初中遇到的无理数有四种。

eg :①含有π的,②根号开不尽的,③无限不循环小数④ 部分三角函数例1、下列各数是正数还是负数?是有理数还是无理数?-7.5,0,4,32,38,2,4π,51.0&,-3.2,2013,3.1415926, ⋅⋅⋅⋅⋅⋅3.141592,⋅⋅⋅⋅⋅⋅0.131313,2.345,1.121121112…,有理数_____________…,无理数_____________…正实数,_____________…负数_____________… 【变式练习】:在实数4π,271,4227,64,12,49,0,....1234325.0,23,43----π中,共有____个无理数 知识点二、实数中的几个概念:①数轴(三要素)任何实数都可以在数轴上表示; 作用:表示数的位置;比较数的大小例1、比较41,31,21---的大小关系:__________________例2、已知2,,1,10x x xx x ,那么在<<中,最大的数是___________例3、实数c b a ,,在数轴上对应点的位置如图1所示,化简:(1) b a a c --+ •-2 -1 0 12 a 图13••bc(2)b c c b c ---+23【变式练习】:1、已知的大小顺序是,则2,,1,01x x xx x <<-___________2、实数c b a ,,在数轴上对应点的位置如图所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab > ②相反数与倒数(字母a 、b 不单单表示一个数,也可以是单项式,也可以是多项式)a 和b 互为相反数⇔a+b=0 ; a 和b 互为倒数⇔1=ab例1、已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值是1,求2m cd mba +-+的值;③绝对值(几何意义:这个数的点到原点的距离,强调三种非负性。

(完整版)实数讲义

(完整版)实数讲义
当 时, ,例如 ;
当 时, ,例如
5、立方根的概念及性质(例8)
(1)立方根的定义:一般地,如果一个数 的立方等于 ,即 ,那么这个数 就叫做 的立方根,也叫做 的三次方根.如 ,2叫做8的三次方根.
(2)立方根的性质:一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0.
(3)立方根的表示:数 的立方根用符号“ ”来表示,读作“三次根号 ”。其中, 称为被开方数,3称为根指数。
12、近似数(例15)
接近实际的数或在计算中按要求所取的与某个准确数接近的数,我们把它叫做近似数.
注意:近似数产生的原因主要有两种:(1)有些需要度量的数,由于受到测量工具精度的限制,得到完全准确的数值几乎是不可能的,这就需要用和准确数尽可能接近的数来表示;(2)有时没有必要完全准确,用近似数表示就可以了.
6、开立方(例9)
求一个数的立方根的运算,叫做开立方.
(1)开立方是一种运算,是与加、减、乘、除、乘方一样的运算,是求立方根的过程,立方和开立方互为逆运算.
(2)由立方根的性质可知开立方的结果是唯一的.
7、无理数(例10)
(1)无理数:无限不循环小数叫做无理数.
(2)无理数的常见类型主要有以下3种:
(3)对于带有“文字单位”的近似数,在确定其精确到哪一位时,分为两种情况:文字单位前面是整数,如18亿,则它精确到文字单位这一位(亿位);文字单位前面是小数,如2.61万,则先将它还原为普通数26100,此时1所在的数位(百位)就是它精确到的数位.
三、例题讲解
1、下列各数中,没有平方根的是()
A.1 B.0 C. D.
所有带根号且被开方数是开方开不尽的数;
圆周率 及一些含有 的数;
无理数与有理数的和、差,无理数乘或除以一个不为0的有理数所得的结果.

初中数学七年级下册第六章:实数知识讲解

初中数学七年级下册第六章:实数知识讲解

举一反三:
【变式】已知 x、y 是实数,且 3x 4 +(y2-6y+9)=0,若 axy-3x=y,则实数 a 的值是( )
1
A.
4
1
B.-
4
7
C.
4
7
D.-
4
【答案】A. ∵ 3x 4 +(y-3)2=0,
3, 4
a3
1 1 3
.
4,
a4
1 . 1 4
1, 3
3
4
a5
1. 1 ( 1)
3, 4
a6
1 1 3
.
4, ……..三个一循环,因此 a2009
a2
1 1 ( 1)
3 .
4
3
4
3
类型三、实数大小的比较
3.若 a 2007 , b 2008 ,试不用将分数化小数的方法比较 a、b 的大小.
2008
要点诠释:
若 a a, 则 a 0、 a -a, 则 a 0、 a-b 表示的几何意义就是在数轴上表示数 a 与数 b 的点之间
的距离.
考点三、实数与数轴 规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可. 每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.
C.3 个
D.4 个
【答案】C;
【解析】在上面所给的实数中,只有 3 , ,-0.1010010001…这三个数是无理数,其它五个数都是
2
有理数,故选 C. 【点评】对实数分类,不能只为表面形式迷惑,而应从最后结果去判断.首先明确无理数的概念,即
“无限不循环小数叫做无理数”.一般来说,用根号表示的数不一定就是无理数,如 4 =2 是

word完整版初一实数复习讲义

word完整版初一实数复习讲义

4.科学计算器的应用
例9.用计算器计算2116.0的按键顺序是______,结果等于_____. 六.复习时需要强调和注意的问题
1.平方根与算术平方根的联系和区别:
(1)联系:只有非负数有平方根和算术平方根.0的平方根,算术平方根都为0.
(2)区别:正数的平方根有两个,互为相反数,正数的算术平方根只有一个,用a表示一个正数,其平方根为a?,其算术平方根为a(a为正数)
(3)当0a?时,0a?;0a?时,a无意义
2.平方根与立方根的性质:
3.无理数是无限不循环小数,一般来说开方开不尽的数,如2,3等都是无理数,但是并不是所有的无理数都可以写成根号的形式,如π就是一个特例.
4.在实数范围内,对于非负数是可以开平方的,但负数开平方是没有意义的.
5.实数的分类
例1判断题:
(1)16的平方根是4?( )
(2)25?是425的平方根( )
(3)25?是425的平方根( ) (4)425的平方根是25?( )。

最新七下实数辅导讲义(一)终极版资料

最新七下实数辅导讲义(一)终极版资料

)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数负分数正分数小数分数负整数自然数整数有理数、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数第六章 实数 辅导讲义【知识要点】1、平方根(1)定义:一般地,如果一个数的平方等于a,那么这个数叫做a 的平方根,也叫做a 的二次方根。

即:如果x 2=a ,则x 叫做a的平方根,记作“a 称为被开方数)。

(2)平方根的性质:① 一个正数有两个平方根,这两个平方根互为相反数; ② 0只有一个平方根,它就是0本身; ③ 负数没有平方根.(3)开平方:求一个数的平方根的运算,叫做开平方.(4)算术平方根:正数a 的正的平方根叫做a(5a ≥0。

(6)公式:2=a (a ≥0);2、立方根(1)定义:一般地,如果一个数的立方等于a ,这个数就叫做a 的立方根(也叫做三次方根)。

即:如果x 3=a,把x 叫做a 的立方根。

数a 的立方根用符号表示,读作“三次根号a ”。

(2)立方根的性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

(3)开立方:求一个数的立方根的运算,叫做开立方。

求一个数的立方根可以通过立方运算来求. 3、 平方根与立方根与区别:只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为 0. 一个数只有一个立方根,并且符号与这个数一致; 4、.识记常用平方表:(自行完成)5、实数的分类(1)按实数的定义分类:(2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数(3)实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.(4)、绝对值①一个正数的绝对值是它本身, ②一个负数的绝对值是它的相反数, ③零的绝对值是零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.忽略平方根成立的条件
只有非负数才能开平方,成立的条件是a≥0,这一条件解题时往往被我们忽略。
3.实数分类时只看表面形式
对实数进行分类不能只看表面形式,应先化简,再根据结果去判断。
4.二次根式的运算错误
在进行二次根式的运算时要注意运算法则与公式的正确应用,千万不要忽略公式的应用条件。
五.平方根和立方根考点例析
教学内容与过程:
1教学内容回顾
2新知识点讲解及例题
要点1平方根.立方根的定义与性质
1.要判断一个对象有无平方根,首先要对这个对象进行转化,直到能看出它的符号,然后依据平方根的性质进行判断。2.因为正数.0.负数均有立方根,所以所给各数都有立方根。
要点2实数的分类与性质
要正确判断一个数属于哪一类,理解各数的意义是关键。
4.公式:⑴( )2=a(a≥0);⑵ = (a取任何数)。
5.区分( )2=a(a≥0),与 =
6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。
7.易混淆的三个数:(1) (2) (3)
3随堂练习
[例1]判断题:
(1)绝对值等于它本身的实数只有零.( )
(2)倒数等于它本身的实数只有1.( )
(3)相反数等于它本身的实数只有0.( )
(4)算术平方根等于它本身的实数只有1.( )
(5)有算术平方根的数是有理数.( )
(6)0是最小的实数.( )
(7)无限小数都是无理数.( )
(8)带根号的数都是无理数.( )
要点6数形结合题
数形结合是解决数学问题常用的思想方法,解题时必须通过所给图形抓住相关数的信息。
要点7与二次根式有关的探究题
这类题目需要我们细心观察及思考,探究其中的规律,寻找解决问题的途径。
在中考试题中,平方根和立方根的考点有以下几个方面:
三ቤተ መጻሕፍቲ ባይዱ考查要点
1.利用平方根.算术平方根.立方根的定义与性质解题
学生姓名:
年级:初一
辅导科目:数学
课时数:2
授课课题:实数
授课时间:2015年07月13日星期一
教学目标与重点:
理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小
借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|是意义
理解有理数的运算律,能运用运算律简化运算
在中考试题中,平方根和立方根的考点有以下几个方面:
1.平方根的概念
如果一个数的平方等于A,那么这个数叫做A的平方根.
例1.9的平方根是【】
(A) 3(B)-3(C) 81(D)
例2.(-5)2的平方根是【】
(A)5(B)-5(C)±5(D)±
例3. 的平方根是【】
(A)±9(B)±3(C)9(D)3
(1)如果某数的一个平方根是-6,那么这个数为________.
2.考查实数的有关概念及实数大小的比较
(2)比较大小:7 .(填“>”.“=”或“<”)
3.考查二次根式的概念
(3)根号x-1在实数范围内有意义,则x的取值范围是( )
(A)x>1 (B)x≥l (C)x<1 (D)x≤1
4.考查同类二次根式
(9)不带根号的数都是有理数.( )
(10)两个无理数的和为无理数.( )
特别注意
1.平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
2.每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
3. 本身为非负数,有非负性,即 ≥0; 有意义的条件是a≥0。
(1)联系:只有非负数有平方根和算术平方根.0的平方根,算术平方根都为0.
(2)区别:正数的平方根有两个,互为相反数,正数的算术平方根只有一个,用a表示一个正数,其平方根为 ,其算术平方根为 ( 为正数)
(3)当 时, ; 时, 无意义
2.平方根与立方根的性质:
3.无理数是无限不循环小数,一般来说开方开不尽的数,如 等都是无理数,但是并不是所有的无理数都可以写成根号的形式,如π就是一个特例.
(A)9(B) (C)27(D)
例7. 等于【】
(A) (B) (C)3 (D)-3
例8. 的值为【】
(A)3.049 (B)3.050 (C)3.051 (D)3.052
4.科学计算器的应用
例9.用计算器计算 的按键顺序是______,结果等于_____.
六.复习时需要强调和注意的问题
1.平方根与算术平方根的联系和区别:
分析:掌握同类二次根式的概念是解决此类问题的关键。首先要把能化简的二次根式化成最简二次根式,再分别看被开方数是否相同即可。
5.考查二次根式的化简与运算
(4)化简 的结果是()
A.10 B.2 C.4 D.20
四.考试易错点
1.对平方根.算术平方根.立方根的概念与性质理解不透
理解不透平方根.算术平方根.立方根的概念与性质,往往出现以下错误:求一个正数的平方根时,漏掉其中一个,而求立方根时,又多写一个;求算术平方根时前面加上正负号,成了平方根等等。
要点3二次根式的性质及有关概念
二次根式要紧扣两个要素,即:根指数为2;被开方数大于或等于0。
要点4实数的混合运算
在实数范围内进行加.减.乘.除.乘方和开方运算,运算顺序依然是从高级到低级。值得注意的是,在进行开方运算时,正实数和零可以开任何次方,负实数能开奇次方,但不能开偶次方。
要点5非负数
非负数,即不是负数,也即正数和零,常见的非负数主要有三种:实数的绝对值.实数的算术平方根.实数的偶次方。它有一个非常重要的性质:若干个非负数的和为0,这几个非负数均为零。
4.在实数范围内,对于非负数是可以开平方的,但负数开平方是没有意义的.
5.实数的分类
例1判断题:
(1) 的平方根是 ( )
(2) 是 的平方根( )
(3) 是 的平方根( )
(4) 的平方根是 ( )
(5) 的平方根是 ( )
6.有算术平方根的数是正数.
这六道判断题,主要是考查了学生对平方根和算术平方根这两个概念的掌握.
2.算术平方根
正数A的正的平方根叫做A的算术平方根.
例4.| -4|的算术平方根是【】
(A)2(B)±2(C)4(D) ±4
例5.设 为正整数,若 是完全平方数,则它前面的一个完全平方数是【】
(A) (B) (C) (D)
3.立方根
如果一个数的立方等于A,那么这个数叫做A的立方根.
例6.立方根等于3的数是【】
相关文档
最新文档