数控车床横向进给机构的设计

合集下载

数控车床横向进给机构的设计

数控车床横向进给机构的设计

数控车床横向进给机构的设计
1引言
随着现代企业对自动化水平的提高,数控车床作为机床设备的一种具
有自动化的功能,在机床设备中扮演着重要的角色。

数控车床机构安装和
加工的精度和效率是影响产品质量和生产效率的关键因素。

横向进给机构
是数控车床的主要机构,其正确的设计和制造将直接影响机床工作效率和
加工质量。

2横向进给机构要求
横向进给机构的设计要求受到主轴速度,加工效率,精度要求,主轴
不平衡量等因素的制约,它应具备以下几个功能:
(1)进给精度高,进给精度应保持在0.01mm以内,以达到加工要求。

(2)进给速度大。

进给速度应符合与主轴速度匹配的要求,以提高
加工效率。

(3)耐久性强。

机构部件应采用优质的材料,具有可靠的机械性能,在冲击载荷和温度等恶劣环境下能耐受长时间运转的要求。

(4)机构结构紧凑,要求机构结构紧凑,占用空间小,以节省机床
的空间,可以更好地安装和维护。

(5)带来的噪声应小,以便满足安全要求。

3横向进给机构基本结构
横向进给机构的基本结构由三个部分组成,即主轴、主轴驱动装置和
导轨。

(1)主轴是提供进给力的重要部件。

数控技术课程设计数控车床横向和纵向进给系统设计(全套图纸)

数控技术课程设计数控车床横向和纵向进给系统设计(全套图纸)

2纵向进给系统的设计计算 (2)2.1主切削力及其切削分力计算 (3)2.2导轨摩擦力的计算 (3)2.3计算滚珠丝杠螺母副的轴向负载力 (3)2.4确定进给传动链的传动比i和传动级数 (3)2.5滚珠丝杠的动载荷计算与直径估算 (4)2.6滚珠丝杠螺母副承载能力校核 (5)2.7计算机械传动的刚度 (6)2.8驱动电机的选型与计算 (7)2.9机械传动系统的动态分析 (9)2.10机械传动系统的误差计算与分析 (10)2.11确定滚珠丝杠螺母副的精度等级和规格型号 (10)3进给系统的结构设计 (11)3.1滚珠丝杠螺母副的设计 (11)总结与体会 (12)致谢词 (12)参考文献 (13)1数控技术课程设计的目的通过本课程设计的训练,使学生在完成数控机床及金属切削机床的结构课程学习之后,让学生能够运用所学的知识,独立完成数控机床传动系统的设计,从而使学生进一步加深和巩固对所学知识的理解和掌握,并提高学生的分析、设计能力,同时巩固《金属切削机床》课程的部分知识。

全套图纸,加1538937061.运用所学理论及知识,进行数控机床部分机械结构设计,培养学生综合设计能力;2.掌握数控机床传动系统的设计方法和步骤;3.掌握设计的基本技能,具备查阅和运用标准、手册、图册等有关技术资料的能力;4.基本掌握编写技术文件的能力。

2纵向进给系统的设计计算设计参数如下:工作台工作台质量 kg m T 600= 最大加工受力N F W 1500= 快进速度s m v f /2.0max =工作台导轨摩擦力 N F R 5.2= 工作行程m s W 7.0=减速机构丝杠螺母机构(图2),已知数据如下:图2 丝杠螺母机构轴承轴向刚度 800/L K N m µ=丝杠螺母刚度 800/M K N m µ=螺母支座刚度 1000/TMK N mµ=丝杠传动效率 0.9sp η=丝杠长度 0.5sp L m=丝杠轴承、丝杠螺母摩擦力矩, 2.5R sp M N m =g轴承平均间距 1550L mm =导程10sp h mm = 最大转速常数 60000A = 支承方式 双推—双推 伺服电机电机转子惯量320.0510M J kg m −=×g2.1主切削力及其切削分力计算取机床的机械效率0.8η=,/1w z F F =,/0.35c z F F =,/0.2v z F F =则有 1500z w F kF N N ==工作台横向进给方向载荷c F 和工作台垂直进给方向载荷v F 为0.350.351500525c z F F N N ==×= 0.20.21500300v z F F N N ==×=2.2导轨摩擦力的计算导轨受到垂向切削分力300v F N =,纵向切削分力c F =525N ,移动部件的全部质量(包括机床夹具和工件的质量)m=600kg ,查表得镶条紧固力2000g f N =,取0.15(3002000300525)=×+++468.75N =计算在不切削状态下的导轨摩擦力0F µ和0F 0()0.15(3002000)345g F W f N µµ=+=×+= 00()0.2(3002000)460g F W f N µ=+=×+=2.3计算滚珠丝杠螺母副的轴向负载力计算最大轴向负载力max a Fmax (300468.75)768.75a y F F F N N µ=+=+= 计算最小轴向负载力min a F min 0345a F F N µ==2.4确定进给传动链的传动比i 和传动级数取步进电动机的步距角 1.5α=°,滚珠丝杠的基本导程010L mm =,进给传动链的脉冲当量0.004/p mm P δ=,则有0 1.51010.423603600.004p L i αδ×===× 根据结构需要,确定各传动齿轮的齿数分别为120z =、2208z =,模数m=2,齿宽b=20mm 。

数控车床横向进给机构的设计

数控车床横向进给机构的设计

数控车床横向进给机构的设计数控车床横向进给机构是数控车床中的一个重要组成部分,它的设计质量直接影响数控车床的加工精度和效率。

下面将针对数控车床横向进给机构的设计进行详细的介绍,涵盖机构的类型选择、结构设计、传动方式和控制系统等方面。

1.机构类型选择:数控车床横向进给机构常见的类型有液压机械式、液压液压式以及电动机械式等。

液压机械式机构结构简单,但存在液压缸阻尼大,加工设备容易产生震动的缺点。

液压液压式机构较为常见,其结构复杂但具有较好的进给平稳性。

电动机械式机构结构简单、响应速度快,但容易出现因为接触不良而导致的冲击及振动。

根据实际需求,在设计中应选择适合的机构类型。

2.结构设计:数控车床横向进给机构主要由进给轴、导轨、滚珠螺杆、螺母等组成。

进给轴负责传动力,并保证传动平稳性。

导轨用于引导进给轴的运动方向,保证其运动的准确性。

滚珠螺杆和螺母是横向进给机构的主要传动部件,用于将转动运动转化为线性运动。

在结构设计中,应注意进给轴与导轨、滚珠螺杆与螺母之间的配合精度,确保传动平稳性和精度。

同时,合理选择结构材料,保证机构的刚性和稳定性。

3.传动方式:在传动方式的选择中,应根据实际需求和工作环境的要求综合考虑,选择合适的传动方式。

4.控制系统:在控制系统的设计中,应确保控制精度和稳定性,使数控车床能够稳定、精确地进行横向进给运动。

综上所述,数控车床横向进给机构的设计应综合考虑机构类型选择、结构设计、传动方式和控制系统等方面。

只有合理选择机构类型、优化结构设计、选择合适的传动方式和控制系统,才能设计出性能良好的数控车床横向进给机构,提高加工精度和效率。

数控车床纵向进给系统和横向进给系统的设计

数控车床纵向进给系统和横向进给系统的设计

数控车床纵向进给系统和横向进给系统的设计数控车床是一种在机械制造行业广泛应用的高精度自动加工设备。

数控车床的工作准确度和加工效率,直接取决于其纵向进给系统和横向进给系统的设计。

下面将详细介绍数控车床纵向进给系统和横向进给系统的设计。

纵向进给系统是数控车床在工件轴向上进行进给的系统,主要责任是使切削工具朝着工件方向进行进给。

纵向进给系统的设计应考虑以下几个方面。

首先,进给系统应具备良好的刚性。

刚性强的进给系统能够对切削工具施加足够的力,确保其在切削过程中的稳定性。

为了提高进给系统的刚性,可以采用双重导轨设计,即在机械主轴的两侧分别设置导轨进行支撑,保证进给系统在工件轴向上的稳定性。

其次,进给系统应具备精确的位置控制能力。

数控车床通过控制进给伺服电机的运动来实现工件轴向上的进给。

为了保证进给的精度,可以采用高精度螺杆传动装置,这种传动装置可以通过调整螺杆的进给量来控制切削工具的位置。

同时,还可以配备位置反馈装置,通过反馈装置实时监测切削工具的位置,并对进给伺服电机的运动进行修正,以保证位置控制的准确性。

第三,进给系统应具备高速进给的能力。

高速进给可以提高数控车床的加工效率。

为了实现高速进给,可以采用进给伺服电机和高速传动装置。

进给伺服电机能够快速响应指令,从而实现高速进给的控制。

而高速传动装置可以通过增加传动比来提高进给速度。

横向进给系统是数控车床在工件切削方向上进行进给的系统,主要责任是使切削工具按照设定的路径进行进给。

横向进给系统的设计应考虑以下几个方面。

首先,进给系统应具备较高的定位精度。

切削工具在横向进给过程中需要按照设定的路径进行移动,为了保证移动的准确性,可以采用高精度传动装置和位置反馈装置。

高精度传动装置可以提供精确的进给量,而位置反馈装置可以实时监测工具位置,从而实现位置控制的准确性。

其次,进给系统应具备较高的速度响应能力。

切削工具在横向进给过程中需要快速响应指令,以满足加工要求。

为了实现高速响应,可以采用高速伺服电机和高速传动装置。

数控车床横向进给系统设计

数控车床横向进给系统设计

数控车床横向进给系统设计
一、系统概述
采用数控车床横向进给系统,实现对外圆面、内圆面、铣坯和端面的
加工。

该进给系统是由伺服电机、传动装置、减速机、控制系统以及传动
系统等组成,实现对工件的无级调速和定长加工。

二、系统结构
1、伺服电机
采用伺服电机对车床横向进给实现无级调速,伺服电机采用伺服电机,功率为2.2kW,有效的提高了加工精度和效率。

2、传动装置
采用变位传动装置实现车床横向进给,其中最主要的部件有:滑轮、
减速箱和环形齿轮。

滑轮采用机械滑轮,具有安全可靠、使用简单、容易
安装等优点;减速箱采用放大减速箱,具有转速调节范围大、转速稳定等
特点。

3、控制系统
采用智能控制系统实现车床横向进给的调节,该系统使用普通的计算
机硬件,实现硬件与软件的协同工作,完成调节进给量和定长加工的功能。

4、传动系统
传动系统采用滑环传动,具有传动比高、安装方便等优点,实现车床
横向进给的定长加工功能。

三、系统特性
1、无级调速
采用伺服电机实现无级调速,可根据不同的加工要求,调节车床的横向进给速度。

2、定长加工
采用传动系统实现定长加工。

CK20数控车床横向进给系统及液压卡盘设计

CK20数控车床横向进给系统及液压卡盘设计

前言装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。

制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最核心的技术。

当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。

此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。

总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。

本文主要阐述CK20数控机床在制造过程中进给系统、主传动系统、伺服系统、滚珠丝杠副等数控机床中主要的参数选取做简单的介绍。

数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域:(1)机械制造技术;(2)信息处理、加工、传输技术;(3)自动控制技术;(4)伺服驱动技术;(5)传感器技术;(6)软件技术等。

第一章数控机床特点及其分类1.1数控机床定义数控机床是数字控制机床的简称,是一种装有程序控制系统的自动化机床。

该系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,从而使机床动作并加工零件的自动化机床。

数控技术是用数字信息对机械运动和工作过程进行控制的技术,是现代化工业生产中的一门新型的、发展十分迅速的高新技术。

数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备;其技术范围所覆盖的领域有:机械制造技术;微电子技术信息处理、加工点输技术;自动控制技术;伺服驱动技术;检测监控技术、传感器技术;软件技术等。

679 经济型数控车床横向进给系统设计

679 经济型数控车床横向进给系统设计

0、绪论本设计课题为:经济型数控车床横向进给系统设计 。

因为我们没有精良的 加工工具或者是自动化系数等各方面远远的不及西欧等国家。

所以我国的机械制 造业与他们的有着很大的差距的原因,。

制造业是关系到国际民生的大事,是富 民强国的必要因素,我国要有更好的发展,必须形成我们自己富有特色的现代化 制造体系。

随着时代的发展,科技的日新月异,数控技术的应用范围日益扩大,数控机 床及其系统己成为现代化机器制造业中不可缺少的组成部分。

面对我国目前机床 拥有量少、工业生产规模小的特点,突出的任务是用较少的资金迅速改变机械工 业落后的生产面貌,使之尽可能地提高自动化程度,保证加工质量,减轻劳动强 度,提高经济效益。

“横向进给系统”“主传动系统”和“纵向进给系统”被称为车床的三大核 心系统,其重要地位是不言而喻了。

三大系统的精确性、准确性、必将影响加工 产品的性能。

而实现这一任务的有效的、基本的途径就是普及应用经济型数控机 床,并对原有的机床进行数控改造。

而这就是我们课题的目的。

前提条件:1.床身上最大回转直径Ø400mm2.快移速度x轴4m/min3.定位精度 x 轴0.035mm4.重复定位精度x轴0.0075mm,刀架 0.010mm设计要求: 设计课题要求: 横向进给运动设计时, 电机与丝杠采用柔性结构, 电机选用伺服电机,对电机的大小选择进行验证,及对滚珠丝杠直径和支承形式 选择进行强度较核,设计精度达原始数据。

本课题所设计的进给系统是针对经济型中档数控车床的, 该系统设计成功一 旦应用到生产实践中, 将使工厂的生产的数字化水平加强,生产力水平显著提 高 ,劳动强度减轻,经济效益得到提高。

根据自己三个多月来的设计过程,编写了这本《设计说明书》, 其中,书 中肯定存在着相当的一些问题,期望领导、老师给予批评,指正。

1、国内外发展概况及现状介绍从上世纪五十年代数控技术开始发展到1965 年,数控装置从最初的电子管 元件、晶体管元件、集成电路到目前使用比较普遍的小型计算机和微处理器共经 历了五代的发展。

数控车床纵向进给系统和横向进给系统的设计

数控车床纵向进给系统和横向进给系统的设计

数控车床纵向进给系统和横向进给系统的设计数控车床是一种能够通过计算机程序自动控制刀具进行加工的机床,它的主要进给系统包括纵向进给系统和横向进给系统。

纵向进给系统主要控制车床主轴在加工过程中的进给运动,而横向进给系统则控制刀具的横向运动。

纵向进给系统的设计是为了实现主轴在加工过程中的进给运动。

这个系统通常包括主轴、进给电机、螺杆以及进给装置。

进给电机通过控制螺杆的旋转,驱动主轴进行进给运动。

进给装置用于调整进给速度和步距。

在设计纵向进给系统时,需要考虑进给速度的范围和精度以及步距的调整方式。

纵向进给系统的设计要考虑以下几个方面:1.进给速度范围:根据加工要求,需要确定车床主轴的进给速度范围。

这取决于加工材料的硬度和切削工具的性能。

通常,进给速度范围应该能够满足不同加工要求的需要,同时要保证加工过程的稳定性和精度。

2.进给速度控制:进给速度的控制需要通过控制进给电机的转速来实现。

在数控系统中,通过给进给电机提供特定的脉冲信号,来控制电机的转速。

例如,增加脉冲的频率可以提高进给速度,而减少脉冲的频率则可以降低进给速度。

3.步距调整:步距是进给运动的基本单位,用于控制切削的量和加工的精度。

步距调整可以通过调节进给装置上的螺母位置来实现。

在数控系统中,可以通过输入相应的指令来调整步距大小,以满足不同的加工要求。

4.进给精度:进给精度是指车床主轴在进给过程中刀具位置的控制精度。

进给精度的要求取决于加工物体的质量要求和几何要求。

为了提高进给系统的精度,可以采用高精度的进给电机、螺杆以及进给装置,并进行精确的校准和调试。

横向进给系统的设计是为了实现刀具在加工过程中的横向运动。

这个系统通常包括刀架、进给电机、丝杆以及进给装置。

进给电机通过控制丝杆的旋转,驱动刀架进行横向运动。

进给装置用于调整进给速度和步距。

在设计横向进给系统时,需要考虑刀具的精度要求和运动范围。

横向进给系统的设计要考虑以下几个方面:1.进给速度范围:根据加工要求,需要确定刀架的进给速度范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 引言该次毕业设计中,我很有幸分在“数控车床小组”,我所设计的课题为“数控车床横向进给机构的设计 (经济型中档精度数控机床)”。

进行这一设计主要是为了进一步地提高数控车床横向进给机构的定位精度、重复定位精度以及改造手动进给装置以使其能够可靠地运行。

而且,通过这次毕业设计也可以检验自己的学习情况,锻炼自己,对今后的学习和工作也有一定程度上的帮助。

信息时代的高新技术流向传统产业,引起后者的深刻变革。

作为传统产业之一的机械工业,在这场新技术革命冲击下,产品结构和生产系统结构都发生了质的跃变,微电子技术、微计算机技术的高速发展使信息、智能与机械装置和动力设备相结合,促使机械工业开始了一场大规模的机电一体化技术革命。

随着计算机技术、电子电力技术和传感器技术的发展,各先进国家的机电一体化产品层出不穷。

机床、汽车、仪表、家用电器、轻工机械、纺织机械、包装机械、印刷机械、冶金机械、化工机械以及工业机器人、智能机器人等许多门类产品每年都有新的进展。

机电一体化到各方面的技术已越来越受关注,它在改善人民生活、提高工作效率、节约能源、降低材料消耗、增强企业竞争力等方面起着极大的作用。

在机电一体化技术迅速发展的同时,运动控制技术作为其关键组成部分,也得到前所未有的大发展,国内外各个厂家相继推出运动控制的新技术、新产品。

主要有全闭环交流伺服驱动技术(Full Closed AC Servo)、直线电机驱动技术(Linear Motor Driving)、可编程序计算机控制器(Programmable Computer Controller,PCC)和运动控制卡(Motion Controlling Board)等几项具有代表性的新技术。

数控机床是一种高科技的机电一体化产品,是综合应用计算机技术、精密测量及现在机械制造技术等各种先进技术相结合的产物。

数控机床作为实现柔性制造系统、计算机集成制造系统和未来工厂自动化的基础已成为现在制造技术中不可缺少的生产手段,是机电一体化技术的重要组成部分。

随着科学技术的迅速发展,数控技术的应用范围日益扩大。

数控机床已成为现在机械制造业中的主要技术装备。

数控机床作为机电一体化的典型产品,在机械制造业中发挥着巨大的作用,很好地解决了现代机械制造中结构复杂、精密、批量小、多变零件的加工问题,且能稳定产品的加工质量,大幅度地提高生产效率。

经济型中档精度数控车床主要用于对中小型轴类、盘类以及螺纹零件的加工,这些零件加工工艺要求机床应完成的工作内容有:控制主轴正反转和实现其不同切削速度的主轴变速;刀架能实现纵向和横向的进给运动,并具备在换刀点自动改变四个刀位完成选择刀具;冷却泵、润滑泵的启停;加工螺纹时,应保证主轴转一转,刀架移动一个被加工螺纹的螺距或导程。

数控车床的进给系统包括横向进给系统(X轴)和纵向进给系统(Y轴),它们是由数控车床横向进给机构的设计伺服电机经同步齿形带传动,驱动滚珠丝杠螺母副机构,来实现刀架的运动。

根据GB/T16462-1996《数控卧式车床精度检验》,机床的位置精度包括重复定位精度、反向偏差和定位精度。

当机床的中心距DC=3000mm时,其重复定位精度X轴0.007mm,Z 轴0.020mm;反向偏差X轴为0.006mm,Z轴为0.012mm;定位精度X轴为0.016mm,Z轴为0.050mm。

可以看出,进给轴设计与主轴设计相比,具有相同的重要性。

因而,进给轴的设计应从动、静两方面充分考虑,位置精度才能达到该标准的要求。

对于X轴,由于其位置误差值复映在零件加工尺寸上为直径值,故放大了2倍,X轴移动质量不大,要求的快移速度较低,因而要求X轴应有更高的位置精度。

因X轴滚珠杠直径比Z轴小,长度短,并且采用降速传动,使得折算在X轴电机上的转动惯量减小。

因此,X轴的设计应着重以达到所要求的位置精度为主要矛盾进行设计,而选用的电机扭矩比Z轴小些。

为了达到这目标,X轴应从提高重复定位精度、反向偏差及定位精度三个方面,从设计上解决。

在数控车床进给系统的设计中,根据横向、纵向的不同精度要求,不同移动质量及转动惯量等特点,分别解决设计中的主要矛盾。

以期望设计结果能满足各项性能指标的要求,达到预期的结果,即满足设计任务书的要求。

限于编者水平,书中错误和不妥之处在所难免,殷切期望读者批评指正。

1、总体设计方案1.1 总体设计方案论证与普通机床相比,数控机床进给系统的设计要求除了具有较高的定位精度外,还具有良好的动态响应特性。

为了确保数控机床的传动精度和工作平稳性,在设计机械了机构时,通常还应提出无间隙、低摩擦、高刚度以及有适宜的阻尼比要求等。

为了达到这些要求,在机械传动设计中,主要采取如下措施:1、尽量采用低摩擦的传动副;2、选用最佳的降速比;3、尽量缩短传动链以及用预紧的方法提高传动系统的刚度;4、尽量消除传动间隙,减少反向行程误差。

设计方案一:该方案的进给装置及动作原理如下:机床的横向进给机构由:床鞍,滚珠丝杠副,螺母座,滑板,连接套,步进电机等部分组成。

由步进电机通过连接套带动滚珠丝杠副至螺母座,实现滑板的横向机动进给。

在滚珠丝杠的前端加一螺孔,用内六角螺钉及套与之连接,这样用内六角扳手可实现滑板的横向手动进给运动。

设计方案二:该方案的进给装置及动作原理如下:车床的横向进给机构由床鞍4,滚珠丝杠副5,螺母座6,横滑板7,同步带轮12、19,交流伺服电机64等部分组成,见设计装配图001。

由交流伺服电机64经同步齿形带传动,驱动滚珠丝杠副5至螺母座6,实现横滑板7的横向机动进给,来实现刀架的运动。

在该方案中,在滚珠丝杠的前端加了一个固定销46,床鞍上改进了支座3,增加了滚花手柄2,在滚花手柄2的前端用一个开数控车床横向进给机构的设计口槽及内孔与滚珠丝杠相连, 支座3下用一个开槽平端紧定螺钉45与滚花手柄2上的两圆槽相连作定位作用。

当需手动进给时, 滚花手柄2的开口槽就插到滚珠丝杠的固定销46中,将螺钉45紧到手柄2的相应圆槽中,这样转动滚花手柄2就可带动滚珠丝杠实现手动进给。

当不用手动进给时,松开螺钉45,将滚花手柄2出,使开口槽与滚珠丝杠的固定销分开,再将螺钉45紧到手柄2的相应圆槽中,此时手柄2与滚珠丝杠脱开了。

在方案一中,由于在机动进给时,套8仍在转动,不安全。

用内六角扳手时,在作螺纹的反向运动时,会使内六角螺钉松动,而不能使手动进给可靠进行。

在方案二中,在机动进给时, 滚花手柄不再转动,使车床的安全可靠性得以加强。

同时,这样做也使得在车床检验后的工作过程中,不至于被他人转动手柄而破坏现场工作状态。

在方案一中,采用步进电机,起精度受到一定程度上的限制。

因为本设计要求中档精度,所以在方案二中改用交流伺服电机,以提高相应的精度。

并且在方案二中以同步带传动代替方案一中的连接套,其益处在参考文献[4]106-107页中可以见到,这里就不再重复了。

1.2 总体设计方案的确定经总体设计方案的比较和论证后,确定的经济型中档精度数控车床横向进给机构设计的总体方案示意图如装配图001所示。

该横向进给机构既可以进行机动进给,也可以进行手动进给。

该横向进给机构采用交流伺服电机驱动, 经同步齿形带传动,驱动滚珠丝杠转动,从而实现数控车床的横向进给运动。

刀架采用LD-1型列电动刀架。

2 横向进给机构的设计与计算横向进给机构设计与计算的主要内容有: 滚珠丝杠副的设计计算及选型、同步带的设计计算与选型、同步带轮的选择、交流伺服电机的计算及选型、导轨副的选择、自动转位刀架的选择。

绘制横向进给机构的装配图以及各零件图等。

此处省去NNNNN需要更多更完整的图纸和说明书请联系秋30537030612.1 已知条件(1)、床身上最大回转直径:400mm;(2)、加工最大工件长度:1000mm;(3)、快移速度:X轴4m/min,Z轴8m/min;(4)、定位精度:X轴0.035mm, Z轴0.04mm;(5)、重复定位精度:X轴0.0075mm, Z轴0.01mm;(6)、数控车床工作台质量W:根据图形尺寸粗略计算W=60Kg;(7)、横向进给切削力Fx的确定:根据参考文献[5]查出:P df/ Pa =3~5%[5]1—1 式中: P df—进给系统所需电机功率;Pa—主传动电机功率。

已知Pa为5.5Kw,取比例系数为5%,则由公式1—1可得:P df= Pa×5%=5.5×5%=0.275Kw根据参考文献查出:F=61200ηf·P df/V f[5]1—2 式中: ηf—进给系统效率,其范围为0.15~0.20,取ηf=0.20;V f—进给速度,m/min;查出:V f=(1/2~1/3)V ixmax[5]1—3 取V f=1/3 V ixmax由公式1—2:Fx=61200×0.20×0.275/(4·1/3)=2524.5(w)为了安全起见,取安全系数为1.85,则:Fx=2524.5×1.85≈4680N2.2滚珠丝杠副的设计滚珠丝杠副已经标准化,因此滚珠丝杠副的设计归结为滚珠丝杠副型号的选择。

一般情况下,设计滚珠丝杠时,已知条件为:最大工作负载F d(或平均工作负载F m)作用下的使用寿命,丝杠的工作长度(或螺母的有效行程),丝杠的转速(或平均转速),滚道的硬度及丝杠的运转情况。

2.2.1 设计步骤通常的设计步骤为:A、计算作用在滚珠丝杠上的最大动载荷;B、从滚珠丝杠列表指出相应最大动负载的近似值,并初选几个型号;C、根据具体工作要求,对于结构尺寸、循环方式、调隙方法及传动效率等方面的要求,从初选的几个型号中再挑出比较合适的直径、导程、滚珠列数等,确定某一型号;D、根据所选的型号,列出或计算出其主要参数的数值,计算传动效率,并验算刚度及稳定系数是否满足要求。

如不满足要求,则另选其他型号,再作上述计算和验算,直至满足要求为止。

2.2.2 设计计算简况数控车床横向进给机构的设计选用CPG系列滚珠丝杠副。

A、CPG系列滚珠丝杠副主要参数的确定:按预期寿命L n及轴向载荷F a进行选择:L n=(C a/F a)×106(转)[11]2—1 式中: C a—额定动载荷;一般情况下F a可以用平均轴向载荷F m予以代替:F m=(2F max+F min)/3 [11]2—2 式中: F max—最大轴向载荷;F min—最小轴向载荷。

F max=mg+F[11]2—3=60×9.8+4680=5268NF min=mg=60×9.8=588N所以:F m=(2F max+F min)/3=3078N对于机车和精密机械通常取L n=20×106(转) [11]则::C a=(20)1/3F m=2.71F[m[11]=8341.38N2—4 计算出C a,可通过查表得到对应的滚珠丝杠副的尺寸,选取2505-4型号滚珠丝杠副,基本直径为25mm,大径位24.5mm,丝杠导程L0为5mm, 滚珠直径为3.175mm, 滚珠列数为四列。

相关文档
最新文档