最新全国各地中考数学常考试题及答案

合集下载

中招考试题及答案数学

中招考试题及答案数学

中招考试题及答案数学一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边,且满足a²+b²=c²,那么这个三角形是直角三角形。

A. 正确B. 错误答案:A2. 已知函数y=2x+3,当x=1时,y的值为5。

A. 正确B. 错误答案:A3. 等腰三角形的两个底角相等。

A. 正确B. 错误答案:A4. 一个数的相反数是它本身,这个数是0。

A. 正确B. 错误答案:A5. 圆的周长和它的半径成正比例。

A. 正确B. 错误答案:A6. 一个数的绝对值总是非负数。

A. 正确B. 错误答案:A7. 两条平行线被第三条直线所截,同位角相等。

A. 正确B. 错误答案:A8. 一个数的立方根只有一个。

A. 正确B. 错误答案:A9. 一个数的平方总是非负数。

A. 正确B. 错误答案:A10. 任何数的零次幂都等于1。

A. 正确B. 错误答案:B二、填空题(每题3分,共30分)1. 若一个数的平方是25,则这个数是____或____。

答案:5或-52. 一个等差数列的首项是2,公差是3,那么它的第五项是____。

答案:173. 一个圆的半径是5厘米,那么它的面积是____平方厘米。

答案:78.54. 若一个三角形的内角和为180°,那么一个等边三角形的每个内角是____°。

答案:605. 一个数的绝对值是5,那么这个数是____或____。

答案:5或-56. 一个数的立方根是2,那么这个数是____。

答案:87. 一个数的相反数是-7,那么这个数是____。

答案:78. 一个数的平方是36,那么这个数是____或____。

答案:6或-69. 一个等腰三角形的底角是45°,那么它的顶角是____°。

答案:9010. 一个数的平方根是3,那么这个数是____。

答案:9三、解答题(每题20分,共40分)1. 已知直角三角形的两条直角边分别是3和4,求斜边的长度。

中考常见数学试题及答案

中考常见数学试题及答案

中考常见数学试题及答案1. 选择题(1) 已知等差数列的首项为3,公差为2,求第5项的值。

【解析】利用等差数列的通项公式an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。

代入题中数据可得:a5 = 3 + (5-1)×2 = 3 + 8 = 11。

所以第5项的值为11。

(2) 若正整数a、b满足ab = 48,且a、b互质,求a和b的值。

【解析】将48进行因数分解,可得:48 = 2^4 × 3。

根据互质的概念,a和b的最大公因数为1。

由于ab = 48,且a、b互质,所以a、b必然是48的因数。

通过观察,可以得出a = 2^3 = 8,b = 2 × 3 = 6。

所以a和b的值分别为8和6。

2. 填空题(1) 用匀速行驶的小汽车从甲地到乙地需要1小时,如果增加了速度的一半,则只需用时40分钟,求从甲地到乙地的距离。

【解析】设小汽车的原始速度为v,从甲地到乙地的距离为d。

根据题意可得:d/v = 1小时,d/(1.5v) = 40分钟。

将40分钟转换为小时,得2/3小时。

根据以上方程组,可得到v = d,即原始速度等于距离。

由第一个方程可得d = v小时,代入第二个方程可得v = (2/3)d。

将v = (2/3)d代入第一个方程可得d/(2/3)d = 1小时,得到1/(2/3) = 1.5小时。

所以从甲地到乙地的距离为1.5小时。

(2) 在平面直角坐标系中,已知点A(3, 2),点B在x轴上,且满足△ABC是等边三角形,求点C的坐标。

【解析】根据题意可知△ABC是等边三角形,即AB = AC。

由点A(3, 2)和点B(x, 0)可得:√[(x-3)^2 + 2^2] = √[(x-3)^2 + 0^2]解方程可得(x-3)^2 = 4,即x - 3 = ±2。

解得x = 1或x = 5。

当x = 1时,点C的坐标为C(1, 0);当x = 5时,点C的坐标为C(5, 0)。

历年全国中考数学试题及答案

历年全国中考数学试题及答案

历年全国中考数学试题及答案一、选择题1. 以下哪个选项是正确的整数比例?A. 3:5B. 0.6:0.4C. 1.2:2.4D. 5:02. 已知一个等差数列的前三项分别是 2x-1,3x+1,4x+3,求 x 的值。

A. 1B. 2C. 3D. 43. 一个圆的半径是 5 厘米,求这个圆的面积(圆周率取 3.14)。

A. 78.5 平方厘米B. 157 平方厘米C. 78.5 平方米D. 157 平方米4. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = xD. f(x) = sin(x)5. 一个三角形的三个内角分别是 45 度、60 度和 75 度,这个三角形是什么三角形?A. 等腰三角形B. 直角三角形C. 钝角三角形D. 锐角三角形二、填空题6. 若 a:b = 2:3,b:c = 5:7,则 a:b:c = _______。

7. 一个等比数列的前三项分别是 2,6,18,这三项的和是 _______。

8. 一个正方形的边长是 6 厘米,求这个正方形的周长和面积。

周长 = _______ 厘米面积 = _______ 平方厘米9. 一个圆的直径是 10 厘米,求这个圆的半径、周长和面积。

半径 = _______ 厘米周长 = _______ 厘米面积 = _______ 平方厘米10. 已知一个三角形的两边长分别是 5 厘米和 7 厘米,夹角是 60 度,求这个三角形的面积。

面积 = _______ 平方厘米三、解答题11. 一个等差数列的前五项和是 35,首项是 3,求这个数列的公差和第五项。

12. 一个圆的半径是 8 厘米,求这个圆的周长和面积,并将结果表示为分数形式。

13. 一个三角形的三个顶点分别是 A(2,3),B(5,7),C(8,3),求这个三角形的周长和面积。

14. 一个等比数列的前三项分别是 a, ar, ar^2,其中 r 不为 1,如果这个数列的前五项的和是 31,求 a 和 r 的值。

中考数学试题卷答案及解析

中考数学试题卷答案及解析

中考数学试题卷答案及解析一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 1/3答案:B解析:无理数是不能表示为两个整数的比值的实数。

0.5、0.33333...和1/3都可以表示为分数,因此是有理数。

√2不能表示为分数,因此是无理数。

2. 一个等腰三角形的底角为60°,那么这个三角形的顶角是多少度?A. 60°B. 90°C. 120°D. 180°答案:A解析:等腰三角形的底角相等,所以两个底角都是60°。

三角形内角和为180°,所以顶角为180° - 60° - 60° = 60°。

3. 计算下列表达式的值:(2x - 3)(2x + 3)。

A. 4x² - 9B. 4x² + 6x - 9C. 4x² + 9D. 6x² - 9答案:A解析:根据平方差公式,(a - b)(a + b) = a² - b²。

这里a = 2x,b = 3,所以(2x - 3)(2x + 3) = (2x)² - 3² = 4x² - 9。

4. 下列哪个函数是二次函数?A. y = 3xB. y = 2x² + 3x - 5C. y = 1/xD. y = x³ - 2x答案:B解析:二次函数的一般形式为y = ax² + bx + c,其中a ≠ 0。

选项B符合这个形式,因此是二次函数。

5. 一个数的平方根是它本身,这个数是多少?A. 0B. 1C. -1D. 以上都不是答案:A解析:一个数的平方根是它本身,只有0满足这个条件,因为0² = 0。

6. 一个圆的直径是10厘米,那么这个圆的周长是多少?A. 31.4厘米B. 62.8厘米C. 10π厘米D. 20π厘米答案:D解析:圆的周长公式为C = πd,其中d是直径。

最新中考数学试题及答案

最新中考数学试题及答案

最新中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.5B. √2C. 2/3D. 3.14答案:B2. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5和-5D. 以上都不是答案:C3. 一个等腰三角形的底边长为6,两腰长为5,那么这个三角形的周长是:A. 16B. 17C. 18D. 19答案:A4. 如果一个函数的图像是一条直线,那么这个函数是:A. 一次函数B. 二次函数C. 三次函数D. 无法确定答案:A5. 一个数的立方根是2,那么这个数是:A. 8B. 6C. 4D. 2答案:A6. 一个数的平方是25,那么这个数是:A. 5B. -5C. ±5D. 25答案:C7. 一个圆的半径是3,那么这个圆的面积是:A. 9πB. 18πC. 27πD. 36π答案:C8. 一个直角三角形的两直角边长分别为3和4,那么斜边长是:A. 5B. 6C. 7D. 8答案:A9. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A10. 下列哪个选项是二次根式?A. √3B. √(-1)C. √(2/3)D. √(2x)答案:D二、填空题(每题4分,共20分)1. 一个数的平方是16,那么这个数是______。

答案:±42. 一个数的绝对值是7,那么这个数是______。

答案:±73. 一个等腰三角形的底边长为8,两腰长为10,那么这个三角形的周长是______。

答案:284. 一个圆的半径是4,那么这个圆的面积是______。

答案:16π5. 一个直角三角形的两直角边长分别为6和8,那么斜边长是______。

答案:10三、解答题(每题10分,共50分)1. 已知一个直角三角形的两直角边长分别为3和4,求斜边长。

答案:根据勾股定理,斜边长为√(3²+4²)=√(9+16)=√25=5。

中考数学试卷附参考答案

中考数学试卷附参考答案

一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 若\( a > b \),则下列不等式中成立的是:A. \( a - b > 0 \)B. \( a + b > 0 \)C. \( \frac{a}{b} > 0 \)D. \( \frac{b}{a} > 0 \)2. 下列数中,是平方数的是:A. \( 0.25 \)B. \( 1.1 \)C. \( 3 \)D. \( 8 \)3. 在直角坐标系中,点A(2,3)关于x轴的对称点是:A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)4. 若\( a, b, c \)是等差数列,且\( a + b + c = 12 \),则\( a^2 + b^2 + c^2 \)的值是:A. 36B. 48C. 60D. 725. 在三角形ABC中,若\( \angle A = 45^\circ \),\( \angle B = 60^\circ \),则\( \angle C \)的度数是:A. 45B. 60C. 75D. 906. 下列函数中,是反比例函数的是:A. \( y = x^2 \)B. \( y = 2x + 3 \)C. \( y = \frac{2}{x} \)D. \( y = 3x - 2 \)7. 下列图形中,不是轴对称图形的是:A. 正方形B. 等边三角形C. 平行四边形D. 圆8. 若\( x^2 - 5x + 6 = 0 \),则\( x^2 + 5x + 6 \)的值是:A. 0B. 1C. 6D. 129. 在等腰三角形ABC中,若底边BC=8,腰AB=AC=10,则高AD的长度是:A. 4B. 5C. 6D. 810. 下列方程中,有唯一解的是:A. \( x + 3 = 0 \)B. \( 2x + 4 = 0 \)C. \( 3x + 6 = 0 \)D. \( 4x + 8 = 0 \)二、填空题(本大题共5小题,每小题4分,共20分。

历年全国中考数学试题及答案

历年全国中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 2D. -2答案:C2. 如果a > b,那么下列哪个不等式是正确的?A. a + 3 > b + 3B. a - 3 > b - 3C. a × 3 > b × 3D. a ÷ 3 > b ÷ 3答案:A3. 一个圆的直径是14厘米,那么它的半径是多少?A. 7厘米B. 14厘米C. 28厘米D. 21厘米答案:A4. 计算下列表达式的结果:(2x - 3) + (x + 4)A. 3x + 1B. 3x - 1C. 2x + 1D. 2x - 1答案:A5. 下列哪个选项是方程3x - 5 = 11的解?A. x = 4B. x = -2C. x = 2D. x = 1答案:A6. 一个三角形的内角和是多少度?A. 90度B. 180度C. 360度D. 720度答案:B7. 下列哪个选项是不等式2x + 3 > 7的解?A. x > 1B. x > 2C. x < 1D. x < 2答案:B8. 计算下列表达式的结果:\(\frac{3}{4} \times \frac{2}{3}\)A. \(\frac{1}{2}\)B. \(\frac{3}{2}\)C. \(\frac{1}{4}\)D. \(\frac{3}{4}\)答案:C9. 下列哪个选项是方程x² - 4x + 4 = 0的解?A. x = 2B. x = -2C. x = 1D. x = 3答案:A10. 下列哪个选项是二次函数y = ax² + bx + c的对称轴?A. x = aB. x = bC. x = -b/2aD. x = -a/b答案:C二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。

中考数学试卷全国真题

一、选择题(每小题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-1C. πD. 2/32. 若m > 0,n < 0,则下列不等式中正确的是()A. m + n > 0B. m - n > 0C. mn > 0D. m/n > 03. 在等腰三角形ABC中,底边BC=6cm,腰AB=AC=8cm,则三角形ABC的周长是()A. 20cmB. 22cmC. 24cmD. 26cm4. 若a、b、c是等差数列,且a+b+c=9,a+c=5,则b的值为()A. 2B. 3C. 4D. 55. 下列函数中,是奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = x^2 + 16. 在平面直角坐标系中,点P(2,3)关于y轴的对称点坐标是()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)7. 若等比数列的首项为a,公比为q,则第n项an=()A. a q^(n-1)B. a q^nC. a / q^(n-1)D. a / q^n8. 在直角三角形ABC中,∠A=90°,∠B=30°,∠C=60°,若AB=6cm,则BC的长度为()A. 6cmB. 12cmC. 3√3cmD. 6√3cm9. 下列各式中,是等式的是()A. 2x + 3 = 7B. 3x - 5 < 2C. x^2 = 4D. x + 2y > 510. 在等差数列中,若前三项之和为9,第四项为5,则该数列的公差是()A. 1B. 2C. 3D. 4二、填空题(每小题3分,共30分)11. 已知等差数列的首项为2,公差为3,则第10项为______。

12. 在直角坐标系中,点A(1,2),点B(-3,4),则线段AB的中点坐标为______。

13. 若x^2 - 5x + 6 = 0,则x的值为______。

中招考试数学试题及答案

中招考试数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. √2C. 22/7D. 3.14答案:B2. 一个等腰三角形的底边长为6,高为4,其周长是多少?A. 16B. 18C. 20D. 22答案:C3. 以下哪个方程的解是x=1?A. x^2 - 2x + 1 = 0B. x^2 - x - 6 = 0C. x^2 + x - 6 = 0D. x^2 - 2x - 3 = 0答案:A4. 函数y=2x+3的图象与x轴的交点坐标是?A. (0, 3)B. (-3/2, 0)C. (3/2, 0)D. (0, -3)5. 一个数的平方是36,这个数是多少?A. 6B. ±6C. 36D. ±36答案:B6. 下列哪个图形是轴对称图形?A. 平行四边形B. 圆C. 任意三角形D. 不规则四边形答案:B7. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B8. 一个长方体的长、宽、高分别为3、4、5,那么它的体积是多少?A. 60B. 48C. 120D. 180答案:A9. 一个等差数列的首项是2,公差是3,那么第5项是多少?B. 14C. 11D. 8答案:A10. 一个二次函数的顶点坐标是(2, -1),且开口向上,那么它的对称轴是?A. x=-2B. x=2C. x=1D. x=3答案:B二、填空题(每题3分,共15分)11. 一个直角三角形的两直角边长分别为3和4,那么斜边长是________。

答案:512. 一个数的立方是-8,那么这个数是________。

答案:-213. 函数y=-x+1与y轴的交点坐标是________。

答案:(0, 1)14. 一个正五边形的内角和是________。

答案:540°15. 一个等比数列的首项是1/2,公比是2,那么第4项是________。

初中数学中考试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √25D. √362. 下列图形中,属于平行四边形的是()A. 正方形B. 等腰三角形C. 长方形D. 三角形3. 下列各式中,正确的是()A. a^2 = aB. (a+b)^2 = a^2 + b^2C. (a+b)^2 = a^2 + 2ab + b^2D. (a-b)^2 = a^2 - 2ab + b^24. 若a、b是方程2x^2 - 5x + 3 = 0的两个根,则a+b的值为()A. 1B. 2C. 3D. 45. 下列各数中,绝对值最大的是()A. -3B. -2C. 0D. 16. 已知直角三角形的两条直角边长分别为3cm和4cm,则斜边长是()A. 5cmB. 6cmC. 7cmD. 8cm7. 若a=5,b=3,则代数式a^2 - b^2的值为()A. 8B. 12C. 15D. 188. 下列函数中,y随x增大而减小的是()A. y = 2x + 1B. y = -x + 3C. y = x^2D. y = √x9. 下列各数中,无理数是()A. √4B. √9C. √16D. √2510. 若a、b是方程x^2 - 5x + 6 = 0的两个根,则a^2 + b^2的值为()A. 21B. 25C. 30D. 35二、填空题(每题5分,共25分)11. 完成下列乘法运算:3a^2 × 2a = ________,(a^2 + b^2) × (a^2 - b^2) = ________。

12. 解下列方程:3x - 5 = 2x + 1。

13. 简化下列根式:√(48) = ________。

14. 求下列函数的值:f(x) = 2x + 1,当x=3时,f(x) = ________。

15. 若直角三角形的两条直角边长分别为5cm和12cm,则斜边长是_______cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

马上就要中考了,祝大家中考都考上一个理想的高中!欢迎同学们下载,希望能帮助到你们!
最新全国各地中考数学常考试题及答案
一、函数与几何综合的压轴题
1.(2018安徽芜湖)如图①,在平面直角坐标系中,AB、CD 都垂直于x轴,垂足分别为B、D且AD与B相交于E点.已知:A(-2,-6),C(1,-3)
(1)求证:E点在y轴上;
(2)如果有一抛物线经过A,E,C三点,求此抛物线方程.
(3)如果AB位置不变,再将DC水平向右移动k(k>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于k的函数解析式.
[解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴
,EO DO EO BO AB DB CD DB
''''
==
又∵DO ′+BO ′=DB
∴1EO EO AB DC
''+= ∵AB =6,DC =3,∴EO ′=2 又∵
DO EO DB AB ''=,∴2
316
EO DO DB AB ''=⨯=⨯=
∴DO ′=DO ,即O ′与O 重合,E 在y 轴上
方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ②
图①
联立①②得0
2x y =⎧⎨=-⎩
∴E 点坐标(0,-2),即E 点在y 轴上
(2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3)
E (0,-2)三点,得方程组426
3
2a b c a b c c -+=-⎧⎪++=-⎨⎪=-⎩
解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2
(3)(本小题给出三种方法,供参考)
由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。

同(1)可得:
1E F E F
AB DC
''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '⇒=
,∴1
3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112
2223
DC DB DC DF DC DB •-•=•
=1
3
DC DB •=DB=3+k S=3+k 为所求函数解析式
方法二:∵ BA ∥DC ,∴S △BCA =S △BDA
∴S △AE ′C = S △BDE ′()113232
2
BD E F k k '=•=+⨯=+
∴S =3+k 为所求函数解析式.
证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2
同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2=1∶4 ∴()2213992
AE C ABCD S S AB CD BD k '∆==⨯+•=+梯形 ∴S =3+k 为所求函数解析式.
2. (2018广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标;
(2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明;
(3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若
4
21h
S S =,抛物线 y =ax 2+bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式.
[解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO =122=-OM AM ,
∴点A 的坐标为A (0,1)
(2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1
∴y=x +1
令y =0则x =-1 ∴B(—1,0),
AB =2112
222=+=+AO BO
在△ABM 中,AB =2,AM =2,BM =2
222224)2()2(BM AM AB ==+=+
∴△ABM 是直角三角形,∠BAM=90° ∴直线AB 是⊙M 的切线
(3)解法一:由⑵得∠BAC=90°,AB =2,AC =22, ∴BC= 10)22()2(2222=+=+AC AB ∵∠BAC=90° ∴△ABC 的外接圆的直径为BC ,
∴πππ25)210(
)2(221=•=•=BC S
而πππ2)222(
)2(2
22=•=•=AC S
421h S S =Θ,5,4225
=∴=h h 即 ππ 设经过点B (—1,0)、M (1,0
y =a (+1)(x -1),(a≠0)即y =ax 2-a ,∴-a =±5,。

相关文档
最新文档