2010年甘肃省武威市中考数学试题
甘肃省武威市中考数学试卷

甘肃省武威市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.(3分)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×1063.(3分)4的平方根是()A.16 B.2 C.±2 D.4.(3分)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.5.(3分)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=06.(3分)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135° D.145°7.(3分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<08.(3分)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.09.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=57010.(3分)如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)分解因式:x2﹣2x+1=.12.(3分)估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)13.(3分)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.14.(3分)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=°.15.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.16.(3分)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.(3分)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC 的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)18.(3分)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.20.(4分)解不等式组,并写出该不等式组的最大整数解.21.(6分)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).22.(6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)23.(6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m=,n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(7分)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.26.(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.28.(10分)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.2017年甘肃省武威市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2017•白银)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2017•白银)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于393000有6位,所以可以确定n=6﹣1=5.【解答】解:393000=3.93×105.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2017•白银)4的平方根是()A.16 B.2 C.±2 D.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.(3分)(2017•白银)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:空心圆柱由上向下看,看到的是一个圆环,并且大小圆都是实心的.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.5.(3分)(2017•白银)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=0【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x2,故A不正确;(B)原式=x6,故B不正确;(C)原式=x5,故C不正确;(D)原式=x2﹣x2=0,故D正确;故选(D)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分)(2017•白银)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135° D.145°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°,∵直尺的两边互相平行,∴∠2=∠3=135°.故选C.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.(3分)(2017•白银)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、三象限,∴k>0,又该直线与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时图象在一、二、三象限.8.(3分)(2017•白银)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c ﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=a+b﹣c+c﹣a﹣b=0.故选D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9.(3分)(2017•白银)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.10.(3分)(2017•白银)如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.【分析】根据运动速度乘以时间,可得PQ的长,根据线段的和差,可得CP的长,根据勾股定理,可得答案.【解答】解:点P运动2.5秒时P点运动了5cm,CP=8﹣5=3cm,由勾股定理,得PQ==3cm,故选:B.【点评】本题考查了动点函数图象,利用勾股定理是解题关键.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2017•白银)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.(3分)(2017•白银)估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【解答】解:∵﹣0.5=﹣=,∵﹣2>0,∴>0.答:>0.5.【点评】此题主要考查了两个实数的大小,其中比较两个实数的大小,可以采用作差法、取近似值法等.13.(3分)(2017•白银)如果m是最大的负整数,n是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为0.【分析】根据题意求出m、n、c的值,然后代入原式即可求出答案.【解答】解:由题意可知:m=﹣1,n=0,c=1∴原式=(﹣1)2015+2016×0+12017=0,故答案为:0【点评】本题考查代数式求值,解题的关键根据题意求出m、n、c的值,本题属于基础题型.14.(3分)(2017•白银)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=58°.【分析】由题意可知△OAB是等腰三角形,利用等腰三角形的性质求出∠AOB,再利用圆周角定理确定∠C.【解答】解:如图,连接OB,∵OA=OB,∴△AOB是等腰三角形,∴∠OAB=∠OBA,∵∠OAB=32°,∴∠OAB=∠OAB=32°,∴∠AOB=116°,∴∠C=58°.故答案为58.【点评】本题是利用圆周角定理解题的典型题目,题目难度不大,正确添加辅助线是解题关键,在解决和圆有关的题目时往往要添加圆的半径.15.(3分)(2017•白银)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是k≤5且k≠1.【分析】根据一元二次方程有实数根可得k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解之即可.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.【点评】本题主要考查一元二次方程根的判别式和定义,熟练掌握根的判别式与方程的根之间的关系是解题的关键.16.(3分)(2017•白银)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.【分析】根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即折痕的长.【解答】解:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴=,∴=,∴GH=cm.故答案为:.【点评】本题考查了折叠的性质和相似三角形的性质和判定,折叠是一种对称变换,它属于轴对称,本题的关键是明确折痕是所折线段的垂直平分线,利用三角形相似来解决.17.(3分)(2017•白银)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)【分析】先根据ACB=90°,AC=1,AB=2,得到∠ABC=30°,进而得出∠A=60°,再根据AC=1,即可得到弧CD的长.【解答】解:∵∠ACB=90°,AC=1,AB=2,∴∠ABC=30°,∴∠A=60°,又∵AC=1,∴弧CD的长为=,故答案为:.【点评】本题主要考查了弧长公式的运用,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).18.(3分)(2017•白银)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为8,第2017个图形的周长为6053.【分析】根据已知图形得出每增加一个小梯形其周长就增加3,据此可得答案.【解答】解:∵第1个图形的周长为2+3=5,第2个图形的周长为2+3×2=8,第3个图形的周长为2+3×3=11,…∴第2017个图形的周长为2+3×2017=6053,故答案为:8,6053.【点评】本题主要考查图形的变化类,根据已知图形得出每增加一个小梯形其周长就增加3是解题的关键.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)(2017•白银)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.【解答】解:﹣3tan30°+(π﹣4)0==.【点评】解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.20.(4分)(2017•白银)解不等式组,并写出该不等式组的最大整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解≤1得:x≤3,解1﹣x<2得:x>﹣1,则不等式组的解集是:﹣1<x≤3.∴该不等式组的最大整数解为x=3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2017•白银)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【点评】本题考查复杂作图、三角形的中位线的定义、线段的垂直平分线的性质等知识,解题的关键是掌握基本作图,属于中考常考题型.22.(6分)(2017•白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【解答】解:过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(6分)(2017•白银)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案.【解答】解:(1)根据题意列表如下:可见,两数和共有12种等可能结果;(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为=;刘凯获胜的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)(2017•白银)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m=70,n=0.2;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)本次调查的总人数为10÷0.05=200,则m=200×0.35=70,n=40÷200=0.2,故答案为:70,0.2;(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,∴这200名学生成绩的中位数会落在80≤x<90分数段,故答案为:80≤x<90;(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.25.(7分)(2017•白银)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.【分析】(1)根据P(,8),可得反比例函数解析式,根据P(,8),Q(4,1)两点可得一次函数解析式;(2)根据中心对称的性质,可得点P关于原点的对称点P'的坐标;(3)过点P′作P′D⊥x轴,垂足为D,构造直角三角形,依据P'D以及AP'的长,即可得到∠P'AO的正弦值.【解答】解:(1)∵点P在反比例函数的图象上,∴把点P(,8)代入可得:k2=4,∴反比例函数的表达式为,∴Q (4,1).把P(,8),Q (4,1)分别代入y=k1x+b中,得,解得,∴一次函数的表达式为y=﹣2x+9;(2)点P关于原点的对称点P'的坐标为(,﹣8);(3)过点P′作P′D⊥x轴,垂足为D.∵P′(,﹣8),∴OD=,P′D=8,∵点A在y=﹣2x+9的图象上,∴点A(,0),即OA=,∴DA=5,∴P′A=,∴sin∠P′AD=,∴sin∠P′AO=.【点评】本题主要考查了反比例函数与一次函数的交点问题,中心对称以及解直角三角形,解决问题的关键是掌握待定系数法求函数解析式.26.(8分)(2017•白银)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.27.(8分)(2017•白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【分析】(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10分)(2017•白银)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;(2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n 的值,即可求得N点的坐标;(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系.【解答】解:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,∴二次函数的表达式为y=﹣x2+x+4;(2)设点N的坐标为(n,0)(﹣2<n<8),则BN=n+2,CN=8﹣n.∵B(﹣2,0),C(8,0),∴BC=10,在y=﹣x2+x+4中令x=0,可解得y=4,∴点A(0,4),OA=4,=BN•OA=(n+2)×4=2(n+2),∴S△ABN∵MN∥AC,∴,∴==,∴,∵﹣<0,∴当n=3时,即N(3,0)时,△AMN的面积最大;(3)当N(3,0)时,N为BC边中点,∵MN∥AC,∴M为AB边中点,∴OM=AB,∵AB===2,AC===4,∴AB=AC,∴OM=AC.【点评】本题为二次函数的综合应用,涉及待定系数法、平行线分线段成比例、三角形的面积、二次函数的性质、直角三角形的性质、勾股定理等知识.在(1)中注意待定系数法的应用,在(2)中找到△AMN和△ABN的面积之间的关系是解题的关键,在(3)中确定出AB为OM和AC的中间“桥梁”是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2010-2023历年甘肃武威第五中学九年级上学期期中数学试卷(带解析)

2010-2023历年甘肃武威第五中学九年级上学期期中数学试卷(带解析)第1卷一.参考题库(共20题)1.计算:(1)2+-42.把方程:3x(x-1)=(x+2)(x-2)+9化成一般式为_________3.如图所示,△ABC与△A’B’C’关于点O成中心对称,则下列结论不成立的是()A.点A与点A’是对称点B.BO=B’O’C.∠ACB=∠C’A’B’D.△ABC≌△A’B’C’4.计算÷×结果为()A.3B.4C.5D.65.某厂一月份生产某机器100台,计划二、三月份共生产280台,设二、三月份每月的平均增长率为,根据题意列出的方程是6.如图所示,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°将△ADC绕点A顺时针旋转90°后,得到△AFB,下列结论错误的是()A.点A是旋转中心B.AE=ADC.∠FAD=90°D.△ADC≌△AFB7.一元二次方程的根的情况为A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.我县华联超市服装柜台在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元,为了迎接“元旦”佳节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。
经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装最多可降价多少?9.如下图所示,,△A′B′C′是由△ABC向右平移5个单位,然后绕B点逆时针旋转90°得到的(其中A’、B’、C’的对应点分别是A、B、C),点A’的坐标是(4,4),点B’的坐标是(1,1),则点A的坐标是_________10.如下图所示的图案中,弧=弧=弧=弧=60°,绕中心O至少旋转________度后,能与原来的图案重合。
11.已知圆的半径为3,一点刭圆心的距离是5,则这点在A.圆内B.圆上C.圆外D.都有可能12.如果关于的方程是一元二次方程,则m为A.-1B.-l或3C.3D.1或-313.如图所示方格纸上一圆经过(2,6)、(-2,2);(2,-2)、(6,2)四点,则该圆圆心的坐标为()A.(2,-1)B.(2,2)C.(2,1)D.(3,1)14.在下列二次根式中,x的取值范围是x≥2的是()A.B.C.D.15.若方程(m+2)x+3mx+1=0是关于x的一元二次方程,则m=____________16.方程的解是A.=5B.=5或=6C.=7D.=5或=717.如下图所示的美丽图案中,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个18.方程2x(x-3)=5(x-3)的根为()A.x=B.x=="3"C.x1=-,x2=-3D.x1=,x2=319.若= ·成立,则x的取值范围是____________20.解下列方程:(1)(x-1)(x+2)=2(x+2)(2)3x2-9x+2=0(3)(4)第1卷参考答案一.参考题库1.参考答案:2.参考答案:3.参考答案:C4.参考答案:B5.参考答案:6.参考答案:B7.参考答案:B8.参考答案:每件童装最多可降价20元。
2010年甘肃武威中考化学试卷

186573136.doc 第1页,共8页 186573136.doc 第2页,共8页…………○…………密…………封…………线…………内…………不…………要…………答…………题…………○…………武威市2010年初中毕业与高中招生考试化 学 试 卷本试卷满分为l00分。
考试时间为90分钟。
可能用到的相对原子质量:H —l C —l2 N —l4 0—1 6 C1—35.5 Ca —O 一、选择题(本题包括28小题,1~16小题每题l 分,l7~28小题每题2分,共40分。
每小题只有一个选项符合题意)1.厨房中处处有化学。
下列变化属于物理变化的是 ( ) (A)瓷碗破碎 (B)煤气燃烧(C)铁锅生锈 (D)食物变馊2.2010年春我国云南遭遇百年一遇的特大旱灾,温家宝总理深入旱灾最严重的地区指导抗旱救灾工作。
省政府组织实施了人工降雨,以缓解旱情。
下列物质可用于人工降雨的是 ( )(A)食盐 (B)干冰 (C)蔗糖 (D)面粉 3.下列各组物质不能形成溶液的是 ( )(A)碘和酒精 (B)纯碱和水 (C)蔗糖和水 (D)植物油和水 4.下列各图所示实验操作或装置正确的是 ( )5.2010年我国纪念“世界水日”和开展“中国水周”活动的宣传主题为“严格水资源管理,保障可持续发展”。
下列认识或做法不符合...这一主题的是 ( ) (A)为了节约用水,用工业废水直接浇灌农田 (B)合理施用农药、化肥,以减少水体污染 (C)洗菜、淘米的水用来浇花、冲厕所(D)加强工业废水的排放监控,坚持达标排放6.“闻香识茶”的意思是指通过闻的方法可以判断出茶的类别。
人们能够闻到茶香的原因是 ( )(A)分子之间存在间隔 (B)分子的质量和体积都很小 (C)分子在不断地运动 (D)分子是由原子构成的 7.下列粒子结构示意图中,表示原子的是 ( )8.下列化学用语中,既能表示一种元素,又能表示该元素的一个原子,还能表示由该元素组成的单质的是 ( ) (A)O (B)Zn (C)N2 (D)CO9.为预防手足口病,可用84消毒液(主要成分是NaClO)对生活用品消毒。
甘肃省武威市中考数学试卷

甘肃省武威市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) -3的相反数是()A . 3B . -3C .D .2. (2分)(2018·阳信模拟) 下列运算正确的是()A .B .C .D .3. (2分)(2017·南山模拟) 某小镇在2017年常住人口达到25.8万,用科学记数法表示应为()A . 25.8×104B . 25.8×105C . 2.58×105D . 2.58×1064. (2分) (2019八下·鄂城期末) 下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A . 甲B . 乙C . 丙D . 丁5. (2分)(2019·宜兴模拟) 函数y= 中,自变量x的取值范围是()A . x>7B . x≤7C . x≥7D . x<76. (2分) (2019七上·榆次期中) 如图是一个由相同小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,则该几何体从正面看是()A .B .C .D .7. (2分) (2020八上·百色期末) 已知直线y=mx-4经过P(-2,-8),则m的值为()A . 1B . -1C . -2D . 28. (2分) (2016九上·竞秀期中) 如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1 ,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2 ,…,如此进行下去,得到四边形AnBnCnDn .下列结论正确的有()①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是,④四边形AnBnCnDn的面积是.A . ①②③B . ②③④C . ①②D . ②③9. (2分) (2017九上·开原期末) 在△ABC中,∠C=90°,AB=6,cosA= ,则AC等于().A . 18B . 2C .D .10. (2分) (2017九上·陆丰月考) 如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为()A . 0B . -1C . 1D . 2二、填空题 (共6题;共13分)11. (1分)(2017·眉山) 分解因式:2ax2﹣8a=________.12. (8分) (2017七下·南通期中) 按图填空, 并注明理由已知: 如图, ∠1=∠2,∠3=∠E.求证: AD∥BE证明: ∵∠1 = ∠2 (已知)∴________∥________( ________)∴ ∠E = ∠________(________)又∵ ∠E = ∠3 ( 已知 )∴ ∠3 = ∠________( 等量代换 )∴________∥________( 内错角相等,两直线平行 )13. (1分) (2018九下·新田期中) 如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A,B 两点的点O处,再分别取OA,OB的中点M,N,量得MN=20m,则池塘的宽度AB为________m.14. (1分)(2018·湛江模拟) 不等式组的解集是________15. (1分) (2019八下·天河期末) 把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为________.16. (1分) (2017七上·南京期末) 线段,是的中点,是的中点,是的中点,是的中点,依此类推……,线段的长为________.三、解答题 (共4题;共25分)17. (5分)(2019·朝阳模拟) 计算:2sin45°+|﹣ |﹣(π﹣2019)0﹣18. (5分)(2012·遵义) 化简分式(﹣)÷ ,并从﹣1≤x≤3中选一个你认为合适的整数x代入求值.19. (5分)(2016·庐江模拟) 如图,正方形ABCD中,点E是BC上一点,直线AE交BD于点M,交DC的延长线于点F,G是EF的中点,连结CG.求证:①△ABM≌△CBM;②CG⊥CM.20. (10分)(2017·埇桥模拟) 如图,在平面直角坐标系中,四边形OABC是正方形,过点B(2,2)的直线l与y轴交于点D,且OD=AD,直线l上的点E在第三象限,且到x轴的距离为.(1)求直线l的表达式;(2)若反比例函数y= 的图象经过点E,求k的值.四、实践应用题 (共4题;共41分)21. (11分)(2017·成武模拟) 随着互联网、移动终端的迅速发展,数字化阅读越来越普及,公交上的“低头族”越来越多.济南市某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(如表),并将调查结果绘制成图1和图2所示的统计图(均不完整).数字化阅读问卷调查表您好!这是一份关于您如何看待数字化阅读的问卷调查表,请在下列四个选项中选择一项您最认同的观点,然后在其后的括号中打“√”,非常感谢您的合作.观点A获取信息方便,可以随时随地阅读()B阅读费用低廉()C使得人们成为“低头族”,不利于人际交往()D影响视力()根据统计图中提供的信息,解答下列问题:(1)求本次接受调查的总人数,并将条形统计图补充完整;(2)扇形统计图中“观点B”所对应的圆心角的度数为________度;(3)若济南市人口总数约为705万,请根据图中信息,估计济南市市民认同观点D的人数.22. (15分)某工厂投入生产一种机器,当该机器生产数量至少10台,但不超过70台,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如表:x(单位:台)102030y(单位:万元∕台)605550(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系,求z 与a之间的函数关系式.(3)若该厂第一个月生产这种机器50台,且第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)23. (10分)(2017·唐河模拟) 如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)24. (5分)如图,从正三角形出发,利用旋转,作一个飞鸟图.请你也利用正三角形用旋转设计一个图案.五、推理论证题 (共1题;共11分)25. (11分)如图(1)问题提出:如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为________.(2)问题探究:如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.(3)问题解决:如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,∠BAC=60°,弧BC所对的圆心角为60°.新区管委会想在弧BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在弧BC、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P 的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求此时AP的值(各物资站点与所在道路之间的距离、路宽均忽略不计).六、拓展探索题 (共1题;共15分)26. (15分)(2018·益阳模拟) 如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF 为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;(3)如图③,将②中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共13分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共4题;共25分)17-1、18-1、19-1、20-1、20-2、四、实践应用题 (共4题;共41分)21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、五、推理论证题 (共1题;共11分) 25-1、25-2、25-3、六、拓展探索题 (共1题;共15分)26-1、26-2、26-3、。
2010年凉山州中考数学试题及答案

2010年凉山中考数学试题及答案本卷共10页,分为A 卷(120分)、B 卷(30分),全卷满分150分,考试时间120分钟。
A 卷又分第Ι卷和第II 卷。
A 卷(共120分) (选择题 共44分)注意事项:1. 答在答题卡上,不能打在试卷上。
答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用2B 或3B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案。
一、选择题:(共11个小题,每小题4分,共44分)在每个小题的四个选项中只有一个是正确的,请把正确选项的字母填涂在答题卡上相应的位置。
1. 4-的倒数是A .4B .4-C .14D .14-2. 下列计算正确的是A.= B.1)(11=C .422()a a a --÷=D .2111()24xy xy xy -⎛⎫=⎪⎝⎭ 3.在函数21y x =-x 的取值范围是A .1x -≥B .1x >-且12x ≠C .1x >-D .1x -≥且12x ≠4. 将一副三角板按图中的方式叠放,则角α等于A .75B .60C .45D .305. 下列说法中:①一组数据不可能有两个众数;②将一组数据中的每一个数据都加上(或都减去)同一个常数后,方差恒不变;③随意翻到一本书的某页,这页的数码是奇数,这个事件是必然发生的;④要反映西昌市某一天内气温的变化情况,宜采用折线统计图。
其中正确的是 A .①和② B .③和④ C .①和③ D .②和④ 6. 下列图案中,只要用其中一部分平移一次就可以得到的是A .B .C .D .7. 已知函数25(1)my m x -=+是反比例函数,且图像在第二、四象限内,则m 的值是A .2B .2-C .2±D .12-8. 如图所示,90E F ∠=∠= ,B C ∠=∠,AE AF =,结论:①EM FN =;②CD D N =;③FA N E A M ∠=∠;④ACN ABM △≌△.其中正确的有 A .1个 B .2个 C .3个 D .4个9. 2010年因干旱影响,凉山州政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是A .中位数是6吨B .平均数是5.8吨C .众数是6吨D .极差是4吨10.如图,因水桶中的水由图①的位置下降到图②的位置的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图像是11.已知在ABC △中,90C ∠=,设sinB n =,当B ∠是最小的内角时,n 的取值范围是A .02n <<B .102n <<C .0n <<D .0n <<本卷共10页,分为A 卷(120分)、B 卷(30分),全卷满分150分,考试时间120分钟。
武威中考数学试题及答案

武威中考数学试题及答案第一部分选择题(共50分)1. 在同一个平面内,已知点P(-2,3),若直线L过原点O(0,0),且L上的点Q满足PQ与OP互为正数整数倍,那么直线L的方程为()A. y=2xB. y=-2xC. y=-0.5xD. y=0.5x答案:C2. 已知集合A={x|1≤x≤6},集合B={y|2≤y≤5},则集合A∩B的元素个数为()A. 1B. 2C. 3D. 4答案:C3. 在平面直角坐标系中,点A(x,y)满足条件:x-3≥y且y≤x+3. 那么点A的取值范围为()A. x≤3且y≤6B. x≥3且y≥-3C. x≥3且y≤6D. x≤3且y≥-3答案:D4. 下列运算正确的是()A. 5x2-3y=-25,x=4解得y=-7B. 2(x-3)=2x-6C. 5(x+1)+2=5x-3D. 0.4x+0.3=0.7,解得x=1答案:C5. 判断命题“三角形ABC是等腰三角形”是否正确,其中:AB=AC,∠B=∠CA. 正确B. 错误答案:A第二部分解答题(共50分)1. 若正方体ABCD-A1B1C1D1的棱长为a,则其对角线的长度为多少?解:设正方体的一条棱的长度为a,则对角线的长度为√(a^2+a^2+a^2)=√3a答案:√3a2. 解方程:2x-3+4(x+5)=-2(2-x)解:2x-3+4(x+5)=-2(2-x)2x-3+4x+20=-4+2x6x+17=2x-44x=-21x=-21/4答案:x=-21/43. 若等差数列{an}的首项为2,公差为3,求满足an≥20的正整数n 的最小值。
解:等差数列的通项公式为an=a1+(n-1)d代入a1=2,d=3,得到an=2+3(n-1)=3n-1当3n-1≥20时,即n≥7,满足条件的最小正整数n为7。
答案:74. 如图所示,ABCD是一个矩形,M、N分别是BC、CD的中点。
连接AM、DN交于点P。
若AB的长度为8cm,BC的长度为6cm,求四边形DPMB的面积。
甘肃武威中考数学试卷真题

甘肃武威中考数学试卷真题中考数学试卷(满分150分)考试时间:120分钟题目一:选择题1. 已知整式f(x)的一个零点是x=2,那么多项式F(x)=-f(x+1)的一个零点是:A) x=1 B) x=2 C) x=3 D) x=42. 设比例p:q=2:3,且p+q=50,那么p的值是:A) 20 B) 25 C) 30 D) 403. 若三角形ABC中,a=4,b=3,c=5,则该三角形的类型是:A) 正三角形 B) 等腰直角三角形 C) 等腰锐角三角形 D) 不等边直角三角形题目二:填空题4. 在平面直角坐标系中,点A(2,3)关于原点O(0,0)的对称点的坐标是____________。
5. 解方程组:2x-y=5x+3y=11,得到x的值为____________。
题目三:解答题6. 某商品的原价为680元,现在打折促销,降价20%出售。
求现价是多少元?7. 已知函数y=2x+3,求x=5时,y的值是多少?8. 某批苹果共有500个,其中一半重200克,三分之一重180克,剩余的重量为多少克?题目四:应用题9. 某超市每盒卖相同价格的饮料,每盒12瓶,若每瓶定价5元,则每盒减价2元,瓶定价3元,则瓶减价多少元?10. 某花园一周的总面积为3500平方米,长是宽的5倍,求此花园的长和宽分别是多少米?题目五:解答题11. 设一个有20个数字的数列,前10个数字的和等于55,求后10个数字的和。
12. 在平面直角坐标系中,直线y=3x-1与直线y=kx-5相切,求k的值。
题目六:填空题13. 若点A(x,y)在四个象限中,且对任意给定的坐标(a,b),都有满足|y-b|=2|x-a|这个条件的点(x,y),这个点A所在的象限是____________。
14. 解方程组:2x-y=4x+3y=17,得到y的值为____________。
题目七:选择题15. 已知sinθ=-1/2,且θ在第三象限,那么θ的终边是:A) x轴的正半轴 B) y轴的负半轴 C) x轴的负半轴 D) y轴的正半轴16. 解方程组:3x-y=8-x+2y=5,得到y的值为:A) 3 B) 5 C) 4 D) 8题目八:解答题17. 甲、乙两人共修建一条长150米的水泥路,甲修建水泥路的效率是乙的3倍,若乙独立修建水泥路需要15天,求甲独立修建水泥路需要多少天?18. 在某堂考试中,班级平均成绩为80分,男生平均成绩为85分,女生平均成绩为77分,若男生人数是女生人数的2倍,求男女生的平均分别是多少分?题目九:填空题19. 若mx+(1/m)y=7,my-(1/m)x=11,求x和y的和为____________。
甘肃省武威市中考数学试题

2012年甘肃省武威市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个选项是符合题目要求的,将此选项的代号填入题后的括号内. 1.327=()A .3 B .-3 C .-2 D .22.将如图所示的图案通过平移后可以得到的图案是( )A B C D 3.下列调查中,适合用普查(全面调查)方式的是( )A .了解一批袋装食品是否含有防腐剂B .了解某班学生“50M 跑”的成绩C .了解江苏卫视“非诚勿扰”节目的收视率D .了解一批灯泡的使用寿命4.方程2101x x -=+的解是( )A .x =±1 B .x =1 C .x =-1 D .x =05.将如图所示的Rt △ACB 绕直角边AC 旋转一周,所得几何体的主视图(正视图)是( )A .B .C .D .6.地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是( )A .10吨B .9吨C .8吨D .7吨7.如图,直线l 1∥l 2,则∠α为( )A .150° B .140° C .130° D .120°8.如图,边长为(m +3)的正方形纸片,剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m +3 B .m +6 C .2m +3 D .2m +69.二次函数2y ax bx c =++的图象如图所示,则函数值0y <时x 的取值范围是()A .1x <-B .x >3C .-1<x <3D .x <-1或x >310.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D ,E 两点,且∠ACD =45°,DF ⊥AB 于点F ,EG ⊥AB于点G ,当点C 在AB 上运动时,设AF =x ,DE =y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )A B C D 二、填空题:本大题共8小题,每小题3分,共24分.把答案写在题中的横线上. 11.分解因式:3aa -=.12.不等式224x x -<-的解集是.13.已知两圆的半径分别为3cm 和4cm ,这两圆的圆心距为1cm ,则这两个圆的位置关系是. 14.如图,在△ABC 中,AC =BC ,△ABC 的外角∠ACE =100°,则∠A =度.15.某学校为了了解学生课间体育活动情况,随机抽取本校100名学生进行调查.整理收集到的数据,绘制成如图的统计图.若该校共有1200名学生,则估计该校喜欢“踢毽子”的学生有人.16.如图所示,已知点A 、D 、B 、F 在一条直线上,AC =EF ,AD =FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是.(只需填一个即可)17.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC ,则△ABC 中BC 边上的高是.18.在-1,1,2这三个数中任选2个数分别作为P 点的横坐标和纵坐标,过P 点画双曲线ky x=,该双曲线位于第一、三象限的概率是.三、解答题(一):本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程 19.计算:02112sin 30( 3.14)()2π---︒+-+20.若方程组ax y b x by a +=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,求2()()()a b a b a b +--+21.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使P到该镇所属A村、B村、C村的村委会所在地的距离都相等(A、B、C不在同一直线上,地理位置如下图),请你用尺规作图的方法确定点P的位置.要求:写出已知、求作;不写作法,保留作图痕迹.22.假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC 的长为10M,小强的身高AB为1.55M,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到≈≈)1M,参考数据2 1.414,3 1.7323.衬衫系列大都采用国家5.4规范号、型(通过抽样分析取的平均值).“号”指人的身高,“型”指人的净胸围,码数指衬衫的领围(领子大小),单位均为:厘M.下表是男士衬衫的部分号、型和码数的对应关系:号/型…170/84 170/88 175/92 175/96 180/100 …码数…38 39 40 41 42 …(1)设男士衬衫的码数为y,净胸围为x,试探索y与x之间的函数关系式;(2)若某人的净胸围为108厘M,则该人应买多大码数的衬衫?四、解答题(二)本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程演算步骤.24.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.25.某玩具店购进一种儿童玩具,计划每个售价36元,能盈利80%,在销售中出现了滞销,于是先后两次降价,售价降为25元.(1)求这种玩具的进价;(2)求平均每次降价的百分率(精确到0.1%).26.如图,已知△ABC 是等边三角形,点D 、F 分别在线段BC 、AB 上,∠EFB =60°,DC =EF . (1)求证:四边形EFCD 是平行四边形;(2)若BF =EF ,求证:AE =AD .27.如图,点A ,B ,C ,D 在⊙O 上,AB =AC ,AD 与BC 相交于点E ,12AEED =,延长DB 到点F ,使12F B B D =,连接AF .(1)证明:△BDE ∽△FDA ;(2)试判断直线AF 与⊙O 的位置关系,并给出证明.28.已知,在Rt △OAB 中,∠OAB =90°,∠BOA =30°,AB =2.若以O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内.将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处.(1)求点C 的坐标; (2)若抛物线2(0)y ax bx a =+≠经过C 、A 两点,求此抛物线的解读式;(3)若上述抛物线的对称轴与OB 交于点D ,点P 为线段DB 上一动点,过P 作y 轴的平行线,交抛物线于点M ,问:是否存在这样的点P ,使得四边形CDPM 为等腰梯形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年甘肃省武威市中考数学试题一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内. 1.()=-21( )A .1 B .-1 C .2 D .-22. 小杰从正面(图示“主视方向”)观察左边的热水瓶时,得到的俯视图是( )3.下列计算中正确的是( )A.325+=B .321-= 3333=+ D .822-=4.甘肃省位于黄河上游,简称甘或陇,因甘州(今张掖)与肃州(今酒泉)而得名,省会为兰州。
据省统计局最新发布:2009年末全省常住人口为2635.46万人.将数字2635.46用科学计数法(保留三个有效数字)表示为( )A.226.410⨯ B.31064.2⨯ C.32.6310⨯ D.226.310⨯ 5.已知y 关于x 的函数图象如图所示,则当0y <时,自变量x 的取值范围是( )A .0x <B .11x -<<或2x >C .1x >-D .1x <-或12x <<6.如图,AB CD ∥,EF AB ⊥于E EF ,交CD 于F ,已知160∠=°,则2∠=( )A .30°B .20°C .25°D .35°7.已知大圆的半径为5,小圆的半径为3,两圆圆心距为7,则这两圆的位置关系为( ) A .外离 B .外切 C.相交 D .内含 8.如图,矩形ABOC 的面积为3,反比例函数ky x=的图象过点A ,则k =( ) A .3 B .5.1-C .3-D .6-9.近年来,全国房价不断上涨,某县201 0年4月份的房价平均每平方米为3600元, 比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x ,则关于x 的方程为( )A .()212000x += B .()2200013600x +=A. B. C. D.主视方向 C D B A E F1 2第6题图 第8题图 1 O y1- 2A F C D B E第18题图C .()()3600200013600x -+=D .()()23600200013600x -+=10.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y=ax 2bx+c (a ≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( ) A .第8秒 B .第10秒 C .第12秒 D .第15秒 二、填空题:本大题共8小题,每小题3分,共24分.把答案写在题中的横线上. 11.分式方程211x x=+的解是 . 12.观察:1234111111113243546a a a a =-=-=-=-,,,,…,则n a = (n=1,2,3,…). 13.将点P (1-,3)向右平移2个单位得到点P ',则P '的坐标是___ ___.14. 某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这20万件产品中合格品...约为 万件. 15. 若不等式组,420x a x >⎧⎨->⎩的解集是12x -<<,则a = .16.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为 米.17.如图,在一个正方形围栏中均匀散布着许多米粒,正方形内画有一个圆.一只小鸡在围栏内啄食,则“小鸡正在圆圈内” 啄食的概率为___ ___.第17题图18 如图,在ABC △中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA ∥,DF BA ∥.下列四种说法: ①四边形AEDF 是平行四边形;②如果90BAC ∠=,那么四边形AEDF 是矩形; ③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形.其中,正确的有 .(只填写序号) 三、解答题(一):本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19. (5分)化简:()()()222m n m n m n m -+++-.20. (5分)图①、图②均为76⨯的正方形网格,点A B C 、、在格点(小正方形的顶点)上.(1)在图①中确定格点D ,并画出一个以A B C D 、、、为顶点的四边形,使其为轴对称图形; (2)在图②中确定格点E ,并画出一个以A B C E 、、、为顶点的四边形,使其为中心对称图形.A B C 图① A B C 图②DOB A 21.(5甲 10.8 10.9 11.0 10.7 11.2 10.8 乙10.910.910.810.810.510.9请你比较这两组数据的众数、平均数、中位数,并利用这些数据对甲、乙两名运动员进行评价.22.(5分)小明同学看到路边上有人设摊玩“有奖掷币”游戏,规则是:交2元钱可以玩一次掷硬币游戏,每次同时掷两枚硬币,如果出现两枚硬币正面朝上,奖金5元;如果是其它情况,则没有奖金(每枚硬币落地只有正面朝上和反面朝上两种情况).小明拿不定主意究竟是玩还是不玩,请同学们帮帮忙! (1)求出中奖的概率;(2)如果有100人,每人玩一次这种游戏,大约有 人中奖,奖金共约是 元;设摊者约获利元;(3)通过以上“有奖”游戏,你从中可得到什么启示? 23.(6分)某会议厅主席台上方有一个长12.8m 的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?四、解答题(二):本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤. 24.(7分)如图,BAC ABD ∠=∠.(1)要使OC OD =,可以添加的条件为: 或 ;(写出2个符合题意的条件即可) (2)请选择(1)中你所添加的一个条件,证明OC OD =.25.(7分)如图,李明同学在东西方向的滨海路A 处,测得海中灯塔P 在北偏东60°方向上,他向东走400米至B 处,测得灯塔P 在北偏东30°方向上,求灯塔P 到滨海路的距离.(结果保留根号)甘肃省 ……大会边空 字宽字距26.(8分)如图所示是一个家用温度表的表盘.其左边为摄氏温度的刻度和读数(单位℃),右边为华氏温度的刻度和读数(单位℉).左边的摄氏温度每格表示1℃,而右边的华氏温度每格表示2℉.已知表示-40℃与-40℉的刻度线恰好对齐(在一条水平线上),而表示50℃与122℉的刻度线恰好对齐.(1)若摄氏温度为x ℃时,华氏温度表示为y ℉,求y 与x 的一次函数关系式;(2) 当摄氏温度为0℃时,温度表上华氏温度一侧是否有刻度线与0℃的刻度线对 齐?若有,是多少华氏度?27.(8分)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,CD AC =,0120=∠ACD , (1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积.28.(10分) 如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3),设抛物线的顶点为D .(1)求该抛物线的解析式与顶点D 的坐标;(2)以B 、C 、D 为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.A BC EABCEA BD A BCDC2010年甘肃省武威市中考 数学试题参考答案与评分标准一、选择题:本大题共10小题,每小题3分,共30分.二、填空题:本大题共8小题,每小题4分,共32分.11.1=x 12.211+-n n 13.(1,3) 14.19 15.-1 16.9.6 17.4π18.①②③④三、解答题(一):本大题共5小题,共38分. 19.本小题满分6分解:()()()222m n m n m n m -+++-2222222m n mn m n m -+++-= ……………………………………………4分 mn 2=. ………………………………………………………………………………6分 20.本小题满分6分 解:(1)有以下答案供参考:…………………3分(2)有以下答案供参考:…………………6分21.本小题满分8分解:甲:众数为10.8,平均数为10.9,中位数为10.85. …………………………3分 乙:众数为10.9,平均数为10.8,中位数为10.85. …………………………5分 分析:从众数上看,甲的整体成绩优于乙的整体成绩;从平均数上看,乙的平均成绩优于甲的平均成绩;从中位数看,甲、乙的成绩一样好. …………………………8分22.本小题满分9分 解:(1)41. ……………………………………………………………3分 (2)25, 125, 75. ……………………………………………………………6分 (3)获奖的概率较低,小明同学还是要三思而后行,最好还是不要去玩.如果是国家严DO B A 令禁止的赌博行为,我们还应该及时举报,让有关部门予以取缔. ………9分 说明:第(3)问,只要回答合理就酌情给分. 23. 本小题满分9分解:设边空、字宽、字距分别为9x(cm)、6x(cm)、2x(cm), …………………2分则 926182(181)1280.x x x ⨯+⨯+-= …………………………………6分 解得 8x =. ………………………………………8分∴ 边空为72cm ,字宽为48cm ,字距为16cm. ………………………………………9分 四、解答题(二):本大题共5小题,共50分. 24.本小题满分8分 解:(1)答案不唯一. 如C D ∠=∠,或ABC BAD ∠=∠,或OAD OBC ∠=∠,或AC BD =. ……4分说明:2空全填对者,给4分;只填1空且对者,给2分. (2)答案不唯一. 如选AC BD =证明OC=OD.证明: ∵ BAC ABD ∠=∠,∴ OA=OB. ……………………6分又 AC BD =,∴ AC-OA=BD-OB ,或AO+OC=BO+OD. ∴ OC OD =. ……………………8分 25.本小题满分10分解:过点P 作PC ⊥AB ,垂足为C. ………………………………………………1分由题意, 得∠PAB =30°,∠PBC =60°.∵ ∠PBC 是△APB 的一个外角,∴ ∠APB =∠PBC-∠PAB=30O . …………………3分∴ ∠PAB =∠APB. ………………………………………………………4分 故 AB=PB=400米. …………………………6分在Rt △PBC 中,∠PCB =90°,∠PBC =60°,PB=400,∴ PC=PB sin 60︒⋅ …………………………8分=400×23=3200(米).…………………10分 26.本小题满分10分解:(1)设一次函数关系式为y=kx+b. ………………………………………1分将(-40,-40),(50,122)代入上式,得4040,50122.k b k b -+=-⎧⎨+=⎩ ………………………4分解得 .32,59==b k ∴ y 与x 的函数关系式为3259+=x y . …………………………………6分 说明:只要学生求对9,32,5k b == 不写最后一步不扣分. PA B C 30°60°北东(2)将0=x 代入3259+=x y 中,得32=y (℉). ………………………………8分 ∵ 自-40℉起,每一格为2℉,32℉是2的倍数,∴ 32℉恰好在刻度线上,且与表示0℃的刻度线对齐. ……………………………10分 27.本小题满分10分(1)证明:连结OC . ………………1分∵ CD AC =,120ACD ︒∠=,∴ 30A D ︒∠=∠=. ………………2分 ∵ OC OA =,∴ 230A ︒∠=∠=. ………………3分∴ 290OCD ACD ︒∠=∠-∠=. …………………………………………………4分 ∴ CD 是O ⊙的切线. ……………………………………………………………5分 (2)解:∵∠A=30o , ∴ 1260A ︒∠=∠=. ……………………………6分 ∴ 323602602ππ=⨯=OBCS 扇形. …………………………………………………7分在Rt △OCD 中, ∵ tan 60CDOC ︒=, ∴ 32=CD . …………………………8分 ∴ 323222121=⨯⨯=⨯=∆CD OC S OCD Rt . …………………………9分∴ 图中阴影部分的面积为-3232π. ………………………………………10分28.本小题满分12分解:(1)设该抛物线的解析式为c bx ax y ++=2,由抛物线与y 轴交于点C (0,-3),可知3-=c .即抛物线的解析式为32-+=bx ax y . ………………………1分把A (-1,0)、B (3,0)代入, 得30,9330.a b a b --=⎧⎨+-=⎩解得2,1-==b a .∴ 抛物线的解析式为y = x 2-2x -3. ……………………………………………3分 ∴ 顶点D 的坐标为()4,1-. ……………………………………………………4分 说明:只要学生求对2,1-==b a ,不写“抛物线的解析式为y = x 2-2x -3”不扣分. (2)以B 、C 、D 为顶点的三角形是直角三角形. ……………………………5分理由如下:过点D 分别作x 轴、y 轴的垂线,垂足分别为E 、F.在Rt △BOC 中,OB=3,OC=3,∴ 182=BC . …………………………6分 在Rt △CDF 中,DF=1,CF=OF-OC=4-3=1,∴ 22=CD . …………………………7分在Rt △BDE 中,DE=4,BE=OB-OE=3-1=2,∴ 202=BD . …………………………8分∴ 222BD CD BC =+, 故△BCD 为直角三角形. …………………………9分 (3)连接AC ,可知Rt △COA ∽ Rt △BCD ,得符合条件的点为O (0,0). ………10分过A 作AP 1⊥AC 交y 轴正半轴于P 1,可知Rt △CAP 1 ∽ Rt △COA ∽ Rt △BCD , 求得符合条件的点为)31,0(1P . …………………………………………11分 过C 作CP 2⊥AC 交x 轴正半轴于P 2,可知Rt △P 2CA ∽ Rt △COA ∽ Rt △BCD , 求得符合条件的点为P 2(9,0). …………………………………………12分 ∴符合条件的点有三个:O (0,0),)31,0(1P ,P 2(9,0).。