可行方向法简介
第十章+可行方向法

判定:d 是可行点 x 处的可行方向的充要条 件是
aiT d = 0, i ∈ E aiT d ≤ 0, i ∈ I (x)
2. 可行下降方向
d 既是可行点 x 处的可行方向,又是 x 处的
x(
k
)
⎫ )⎬
,
otherwise
⎭
(6)令 k=k+1,转(2)。
3. 投影矩阵 P(k) 和 ((N (k) )T N (k) )−1 的简化计算
迭代一次,N(k) 至多只有增加一列或减少一
列,因此 ((N (k) )T N (k) )−1 的计算可以简化,具体请见
课本中的相关部分。
三、既约梯度法:将单纯形法推广到非线性规划
下降方向。
判定:若 d 满足
aiT d = 0, i ∈ E aiT d ≤ 0, i ∈ I (x) ∇f (x)T d < 0
则 d 是 x 处的可行下降方向。
(10.1.1)
(二)可行下降方向的求取
寻找满足条件(10.1.1),且使 ∇f (x)T d 达到最
小的 d:
min ∇f (x)T d
第十章 可行方向法
min f (x)
x∈Rn
s.t. aiT x − bi = 0, i ∈ E = {1, , l} aiT x − bi ≤ 0, i ∈ I = {l +1, , l + m}
(10.0.1)
一、可行方向法 (一)可行方向与可行下降方向
1. 可行方向 d (d ≠ 0, d ∈ Rn ) 是约束问题(10.0.1)在可行点
zoutendijk可行方向法例题

zoutendijk可行方向法例题摘要:1.介绍zoutendijk 可行方向法2.阐述zoutendijk 可行方向法的应用3.分析zoutendijk 可行方向法的优势和局限性4.总结zoutendijk 可行方向法的重要性正文:1.介绍zoutendijk 可行方向法zoutendijk 可行方向法是一种用于解决运输问题的优化算法,它的核心思想是寻找一条最短路径,使得该路径上的运输成本最小。
这种方法主要应用于物流和运输领域,可以帮助企业有效地规划运输路线,降低运输成本,提高运输效率。
2.阐述zoutendijk 可行方向法的应用zoutendijk 可行方向法在实际应用中具有广泛的应用价值。
例如,在物流配送中,该方法可以帮助企业找到最佳的配送路线,减少运输时间和成本。
在运输规划中,zoutendijk 可行方向法可以协助企业优化运输网络,提高运输能力。
此外,在供应链管理中,该方法也有助于企业降低库存成本,提高库存周转率。
3.分析zoutendijk 可行方向法的优势和局限性zoutendijk 可行方向法具有以下优势:首先,该方法可以快速找到最短路径,计算速度快;其次,zoutendijk 可行方向法可以处理大规模的运输问题,具有较强的实用性;最后,该方法可以有效地降低运输成本,提高运输效率。
然而,zoutendijk 可行方向法也存在一定的局限性。
首先,该方法需要预先设定运输成本,对于不同成本的运输问题,需要分别计算;其次,zoutendijk 可行方向法对于某些特殊情况的运输问题可能无法找到最优解;最后,该方法需要较大的计算资源,对于计算能力有限的企业可能不太适用。
4.总结zoutendijk 可行方向法的重要性总之,zoutendijk 可行方向法是一种重要的运输优化算法,它的应用可以帮助企业降低运输成本,提高运输效率。
zoutendijk可行方向法的matlab实现(最新整理)

例2
min
f x x12 4x22
s.t
x1 x2 1 15x1 10x2 12
x1 0
x2 0
最优解
x
4 5
,
1 5
,
f
x
4 5
A=[-1 -1;-15 -10;-1 0;0 -1] b=[-1 -12 0 0]' x0=[0 2] Aeq=[] beq=[] label=1;
b2(i,:)=[]; end end for i=m:-1:1 if abs(A1(i,:)*x0-b1(i,:))>=0.1
A1(i,:)=[]; b1(i,:)=[]; end end A1; A2; b1; b2;
i2=rank(A2); AE=[A1;Aeq]; [i1,j1]=size(AE); r=rank(AE); if r<i1
p=zeros(k1,1); q=zeros(k2,1); [d0,mn,m1,m2,m3]=linprog(c,A1,p,Aeq,q,lb,ub); d0;mn;
df=abs(s*d0); if df<0.1
'最优解为:'
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@'
fmin(x0,d0,vmax)求函数在[0,vmax]上的最小值 function h=fmin(x0,d0,vmax)
func syms h; a=x0+h*d0; f_val=inline(subs(f,x,a)); if vmax==inf
min_h=fminbnd(f_val,0,10000); else
0418 可行方向法

Page 7
ቤተ መጻሕፍቲ ባይዱ
经整理即为
2d1 d 2 3d3 4d 4 0 2d1 3d 2 d 3 2d 4 0 d1 3d 2 d 3 d 4 0
d1 0 T d ( d , d , d , d ) 满足上述不等式组的 均为可行方向. 1 2 3 4
现只求一个可行方向, 所以令不等式改为等号, 求解
2)若 x是D的边界点, 那么该点必位于某约
Page 4
束直线(曲面)上,记作 g k ( x) 0.
则与 g k ( x) 夹角小于90度方向都是该点的可行方向。
特殊地,当不等式约束函数为线性函数时,
则与g k ( x) 夹角小(等)于90度方向是该点的可行方向. 由 g k ( x) 0 知,此约束条件 g k ( x) 0 对x而言是有效
max
得到下一个迭代点 . 依次迭代下去, 直至求得最优解.
线性约束的Zoutendijk方法的计算步骤
Page 21
0 x Step1: 给定问题(LNP1)的初始可行点 , 令k 0. k T 在点 x 处把 A 和 b 分解成 A ( A , A ) , Step2: 1 2
b (b1 , b2 )T ,其中A1 x k b1 , A2 x k b2 . 计算f ( x k ).
条件可写为: u v 0, 即 v u ( ) 下面分两种情况讨论: (1) 若v 0, 则对任意 0, 式( )总成立.
(2)若v中至少有一个分量vi <0, 那么要使式( )成立, 应满足:
Min
ui vi 0 vi
Page 19
ui Min v i 0 vi
8约束优化-可行方向法

4、第二次迭代的线形搜 索: x ( 2) d ( 2) [5 / 6,5 / 6]T [1,1 / 5]T [5 / 6 ,5 / 6 / 5]T f ( x (1) d (1) ) 125/ 8 22 / 15 622 / 25 s.t. 0 5 / 12 可得 55 / 186 ,x (3) [35 / 31,24 / 31]T , f ( x (3) ) [32 / 31,160/ 31]T 5、第三次迭代,确定可 行方向d的LP问题为: min z 32d1 / 31 160d 2 / 31 s.t. d1 5d2 0 1 d1 1 1 d2 1 可解得最优解 d (3) [1,1 / 5]T ,z ( 3) 0 最优解x x (3) [35 / 31,24 / 31]T ,f ( x) 7.16
第二种情况是 在约束面上的迭代 点xk处,产生一个 可行方向d,沿此方 向作一维最优化搜 索,所得到的新点x 在可行域外,则设 法将x点移到约束面 上,即取d与约束面 的交点。
第三种情况是沿约 束面搜索。 对于只具有线性约 束条件的非线性规划问 题,沿约束面移动,在 有限的几步内即可搜索 到约束最优点;
(一)可行方向法的搜索策略: 可行方向法的第一步迭代都是从可行的初始 点x0出发,沿负梯度方向将初始点移动到某一个 约束面(只有一个起作用的约束时)上或约束面的 交集(有几个起作用的约束时)上。然后根据约束 函数和目标函数的不同性状.分别采用以下几种 策略继续搜索。
第一种情况是在约束 面上的迭代点xk处, 产生一个可行方向d, 沿此方向作一维最优 化搜索,所得到的新 点x在可行域内,即 令xk+1 =x,再沿xk+1点 的负梯度方向继续搜 索。
可行方向法

a1 , a2 ,, am 和 b 是 n
维
的向量 p
T ai p 0, i 1, 2,, m
T b p0
也满足
的充要条件是,存在非负数
i 1
m b i ai .
Farkas引理的几何解释:
1 , 2 ,, m
,使得
T
j I ( x).
I ( x)是x 起作用约束集
证明:充分性
d 设 x 是问题(1)可行解,满足定理条件。来自必要性: d 是可行方向
T 是 的下降方向,则有 d x f ( x) d ,因此 0
T d 从 x 出发,选择 ,应使f ( x) d越小越好。
所以规划问题: min f ( x)T d ,
设可行域D R , x D, 若存在非零向量
n
d R , 存在 0, t (0, ),均有
n
x td D, 则称d为x的可行方向。
d
D
1
x
d
Farkas引理:
首先介绍两个引理,这两个引理本身在最优化理论中 处于很重要的地位。
引理4.7(Farkas) 设 向量,则满足
(1)
min f ( x),
T T
x Rn i 1,, l j 1, , m
s.t. i x bi 0
j x bj 0
(1’)
定理:设
x 是约束问题的可行点,则 d 为
x 可行方向的充分必要条件是:
iT d 0, i 1,2, l
j d 0,
可行方向法
1、可行方向的两个相关结论
d是x D的可行方向 , 则gi ( x)T d 0 i I ( x)
最优化:可行方向法概要
x是问题(13.1) 的KKT点
由上面的分析, 我们有下列结论:
定理13.1.1 设x D, d是线性规划问题 (13.2)的解 , 则 (1) 若f ( x ) T d 0, 即d 0, 则x是问题 (13.1)的KKT点; (2) 若f ( x )T d 0, 即f ( x )T d 0, 则d是函数 f在可行 点x处的一个下降可行方向 .
情形2 : i I \ I ( x ), 但a d 0
T i
显然, 对任意的t 0, 我们有 aiT ( x td ) aiT x taiT d bi , i I \ I ( x )
情形3 : i I \ I ( x ), 但a d 0.
若要使 bi aiT x t , T ai d bi aiT x T t min T i I \ I ( x ), ai d ai d
由定理13.1.1知, 当(13.2)的解d 0时, x不是KKT点, 我们 需计算新的可行点 : x x td D 其中t由线性搜索产生的步长
2.线性搜索—计算步长
为确保 x x td D 关于t的计算, 我们考虑三种情形 :
情形1 :i I ( x )及 j E ,
min s.t. f ( x ) T d aiT d 0, i I ( x ) aT j d 0, j E || d || 1
(13.2)
确保目标函数有界
约束 || d || 1也可写成如 || d || 1等其它有界形式
设(13.2)的最优解为d , 则f ( x ) d 0.
最优化可行方向法
最优化可行方向法最优化问题是数学中的一类重要问题,目标在于找到使得目标函数取得最大或最小值的变量取值。
可行方向法是一种常用的最优化算法,它通过在每个迭代步骤中确定一个可行方向,并将变量值沿该方向进行调整,逐步逼近最优解。
可行方向法的核心思想是从当前解的邻域中选择一个可以改进目标函数的方向。
具体而言,它通过计算目标函数的梯度(或是次梯度)来确定一个可行方向,并沿该方向对解进行调整。
这个过程可以反复迭代,直到满足终止条件为止。
在可行方向法中,选择合适的可行方向是一个关键问题。
一种常用的方法是梯度下降法,它使用目标函数的梯度方向作为可行方向,以减小目标函数的值。
另一种常用的方法是牛顿法,它使用目标函数的海森矩阵(Hessian Matrix)作为可行方向,以更快地逼近最优解。
可行方向法的具体步骤如下:1.初始化变量的取值。
2.计算目标函数在当前解的梯度或次梯度。
3.判断是否满足终止条件。
如果满足,结束迭代,输出当前解;否则,继续下面的步骤。
5.根据可行方向,计算变量的调整量。
6.更新变量的取值。
7.转到步骤2可行方向法的收敛性分析是一个重要的研究课题。
对于一般的最优化问题,如果目标函数是Lipschitz连续可微的,并且可行解集是非空、有界的,则可行方向法在有限步后可以找到一个近似最优解。
但对于非凸问题或非平滑问题,可行方向法的收敛性可能会有所不同。
除了梯度下降法和牛顿法外,可行方向法还有其他的变种,如共轭梯度法、拟牛顿法等。
这些方法在选择可行方向和调整变量值的方式上有所差别,但其基本思想仍然是寻找使目标函数得以改进的方向。
在实际应用中,可行方向法通常结合其他算法一起使用,以充分发挥各种算法的优势。
例如,可以使用可行方向法寻找一个大致的最优解,然后再使用更精确的算法对该解进行优化。
总之,可行方向法是一种重要的最优化方法,它通过选择合适的可行方向来逼近最优解。
尽管不同的变种方法有所差异,但它们的核心思想都是通过迭代调整变量值来逐步逼近最优解。
可行方向法
可行方向法摘要可行方向法是求解最优化问题的重要方法,在可行方向法求解过程中,一般需要构造一个求解可行下降方向的子问题,而可行方向法的不同取决于所采用的求解可行下降方向的子问题,它具有如下特点:迭代过程中所采用的搜索方向为可行方向,所产生的迭代点列是中在可行域内,目标函数值单调下降,由此可见,很多方法都可以归入可行方向法一类,本文主要介绍Frank-Wolf 方法。
一、问题形式min ().. 0f x Ax b s t x ≥⎧⎨≥⎩ (11.1)其中A 为m n ⨯矩阵,m b R ∈,n x R ∈。
记{},0,n D x Ax b x x R =≥≥∈并设()f x 一阶连续可微。
二、算法基本思想D 是一个凸多面体,任取0x D ∈,将()f x 在0x 处线性展开 000()()()()()T L f x f x f x x x f x ≈+∇-= 用min ().. 0L f x Ax b s t x ≥⎧⎨≥⎩ 或 0min ().. 0T f x xAx b s t x ∇≥⎧⎨≥⎩ (11.2)逼近原问题,这是一个线性规划问题,设0y D ∈是其最优解。
1)若000()()0T f x y x ∇-=,则0x 也是线性规划问题(11.2)的最优解,此时可证0x 为原问题的K-T 点。
2)若000()()0T f x y x ∇-≠,则由0y 是(11.2)的最优解,故必有0000()()T T f x y f x x ∇<∇从而 000()()0T f x y x ∇-<即00y x -为()f x 在0x 处的下降方向,沿此方向作有约束的一维搜索 00001min (())f x y x λλ≤≤+-设最佳步长因子为0λ,令100000000()(1)()x x y x y x D λλλ=+-=+-∈当λ充分小时100000001()min (())(())f x f x y x f x y x λλλ≤≤=+-≤+-00000()()()()()T f x f x y x o f x λλ=+∇-+< 用1x 取代0x ,重复以上计算过程。
第四章 非线性规划5-可行方向法
第五节 可行方向法(FDM )可行方向法是用梯度去求解约束非线性最优化问题的一种有代表性的直接探索方法,也是求解大型约束优化设计问题的主要方法之一。
其收敛速度快,效果较好,适用于大中型约束最优化问题,但程序比较复杂。
可行方向法(Feasible Direction Method)是一种直接搜索方法,其搜索方向的获取利用了目标函数和约束函数的梯度信息。
用目标函数的梯度可以得到目标函数值的下降方向,而利用约束函数的梯度则可以得到可行的搜索方向。
因此,可行方向法的搜索方向实质上是既使目标函数值下降,同时又可行的方向,即可行下降方向。
满足这一条件的方法就称为可行方向法。
一、基本原理当求解目标函数的极小值min () ..()0 1,2,3,nu f X X R s t g X u m ⎧∈⎨≤=⎩ 当设计点()k X 处于起作用约束i g 上时,下降可行方向S 必须同时满足条件: ()0T k i S g X ∇≤()0T k S f X ∇<由于于多数非线性规划的最优点都处在可行区的约束边界上或者几个约束边界的交点上,因此最优搜索如能沿着约束边界附近进行,就有可能加速最优化搜索的进程。
按照这一基本思路,在任意选定—初始点后到最后得到最优点必须解决三个问题: 一是如何尽快使最优搜索从初始点到达约束边界二是到达边界后怎样判断所找到的边界点是否是最优点;三是如果边界点经判断不是最优点,那么下一步应如何进行最优搜索。
二、如何从初始点尽快到达边界在任意选定初始点0X 之后,首先判断0X 是否为可行点,若是可行点,则选择目标函数的负梯度方向作为下一步的搜索方向。
若是非可行点,则选择目标函数的梯度方向为搜索方向。
搜索的步长可采用试探的方法逐步缩小,直到最后到达边界。
如图5-13表示了初始点为可行点时的搜索过程。
从初始点0X 出发沿0()f X -∇方向,取步长为t ,进行搜索,得到1X100()X X t f X =-∇若1X 仍在可行区内,则把步长加大一倍继续搜索得到2112()X X t f X =-∇若1X 仍在可行区内,则把步长再加大一倍继续搜索,如此方法得到新点只要仍在可行区内,则加大步长只到得到的点进入非可行区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
min f ( x k + λd k ) s.t. A2 x k + λA2 d k ≥ b2 (4)
λ≥0
由 ( 4 ) 的 约 束 可 求 出
λ
的 上 限
λmax
,
ˆ = b − A x k ,d = A d k ˆ 令b 2 ,于是 2 2
考虑问题
min f ( x) s.t. Ax = b x≥0
为 S = {x | Ax = b, x ≥ 0} 。 1. 近似线性化和可行下降方向
(5)
其中 A为 m × n 行满秩,b ∈ R m , f 为连续函数,并记可行域
设迭代点 x k ∈ S , 利用 Taylor 公式得到 f 在点 x k 处的线性 近似
处的可行方向的充要条件是 A1d ≥ 0, Ed = 0 。
因此,在 Zoutendijk 可行方向法中,确定搜 ∇f ( x)T d s.t. A1d ≥ 0 Ed = 0 -1 ≤ d j ≤ 1 , j = 1,
必定小于或等于零。
,n
(2)
在(2)中,显然 d = 0 是可行解,故目标函数的最优值
k
满足停机条件。 常用方法: Zoutendijk 可行方向法; 既约梯度法; Rosen 梯度投影法;Frank-Wolfe 方法
一. Zoutendijk 可行方向法(1960) 考虑线性约束问题
min f ( x) s.t. Ax ≥ b Ex = e
(1) 利用起作用约束构造可行下降方向
(1)
(6)
去掉目标函数中的常数项, (5)等价于 (7)
y k ,则由线性规划的基本知识 假设此问题存在有限最优解
可知,这个最优解可在某个极点上达到。可以证明:
k 定理 2 设 f 是可微函数, x ∈ S ,如果 y 是问题(7)
k
的最优解,则
∇f ( x k )T ( y k − x k ) = 0 时, x k 是问题(5)的 K-T 点; (1)当
∇f ( x k )T ( y k − x k ) ≠ 0 时,向量 d k = y k − x k 是 f 在点 (2)
x k 处的可行下降方向。
算法步骤:
x 0 ∈ S ,允许误差 ε > 0 , k = 0 ; 1. 选取初始点
2. 求解近似线性规划
min ∇f ( x k )T x s.t. x ∈ S
第三节 可行方向法 基本思想:从可行点出发,沿可行下降方向进行搜索, 求出使目标函数值下降的新的可行点。算法的主要步骤 是选择搜索方向和确定搜索步长。基本的迭代格式:
x 0 开始迭代,设已得到可行点 x k ; (1) 从可行点 x k 处用某种方法确定一可行下降方向 d k ; (2) 在
x k +1 = x k + λk d k ,使得 (3) 在 d 方向上寻找新的迭代点 k +1 f ( x k +1 ) < f ( x k ) ,令 k = k + 1, 转(2)直到 x 是可行点且
算法的收敛性: 在一定的条件下,Frank-Wolfe 法或在有限步迭代后 得到 K-T 点,或产生一个无穷点列,它的任一极限点都是 K-T 点.
f (x) 为可微函数, A ∈ R m×n , E ∈ R l×n , x ∈ R n , b ∈ R m , e ∈ R l 。 其中
定理 1 设 x 是问题(1)的可行解,在点 x 处有
⎛ A1 ⎞ ⎛ b1 ⎞ A1 x = b1 , A2 x > b2 ,其中 A = ⎜ A ⎟, b = ⎜ b ⎟ ,则非零向量 d 为 x ⎜ ⎟ ⎜ ⎟ ⎝ 2⎠ ⎝ 2⎠
标函数值尽可能减少,可考虑求解下列一维搜索问题确定
min f ( x k + λd k ) s.t. A( x + λd ) ≥ b
k k
E ( x k + λd k ) = e λ≥0
k
(3)
Ed k = 0, Ex k = e ,因此(3)中 由于 d 是可行方向,必有
的第二个约束是多余的。
x k 处,把不等式约束分为起作用约束和不起作 此外,在点
λmax
ˆ ⎧ bi ˆ ˆ/ ⎪min{ ˆ | d i < 0}, d ≥ 0 =⎨ di ⎪ ˆ ∞, d ≥0 ⎩
于是(3)最终可化简为
min f ( x k + λd k ) s.t.0 ≤ λ ≤ λmax
确定初始可行点的基本思想类似于在线性规划中求初始可 行解的方法。 算法的基本步骤(P236) 对非线性约束情形,可作类似的考虑,关键问题仍是确定 可行下降方向及一维搜索步长。 二. Frank-Wolfe 方法(1954) 基本思想:将目标函数作线性近似,通过求解线性规划 求得可行下降方向,并沿该方向在可行域内作一维搜索。
f ( x ) ≈ f ( x k ) + ∇f ( x k )T ( x − x k )
用上式右边的线性函数近似代替问题(5)中的目标函数,
得到与问题(5)近似的一个线性规划问题
min f ( x k ) + ∇f ( x k )T ( x − x k ) s.t. x ∈ S min ∇f ( x k )T x s.t. x ∈ S
yk ; 的最优解
|| ∇f ( x k )T d k ||≤ ε , 3. 构造可行下降方向 d = y − x ,若
k k k
xk ; d k 为可行下降方向, 4; 停止计算, 输出 否则, 转
4. 进行一维搜索,求
min f ( x k + λd k )
0≤ λ ≤1
λk 。令 x k +1 = x k + λk d k , k = k + 1 ,转 2。 的最优解
∇f ( x)T d < 0 ,则 d 为可行下降方向; 若 ∇f ( x)T d = 0 , 若 可以证明 x 是问题 (1) K—T 点。P236) 的 (
(2)确定一维搜索步长
x k 出发,沿可行下降方向 d k 作一维搜索得 设从可行点
后继迭代点 步长
x k +1 = x k + λk d k , x k +1 的可行性和使目 为保证