人工神经网络及其数据拟合中的应用
深度神经网络模型解析

深度神经网络模型解析深度神经网络模型是一种基于人工神经网络的机器学习模型,它模仿人类大脑的结构和功能,通过多个神经元层次的连接进行信息处理和模式识别。
深度神经网络模型由输入层、隐藏层和输出层组成,每个层都包含多个神经元节点。
在本文中,我们将深入解析深度神经网络模型的内部结构和工作原理,以及其在各个领域的应用。
首先,我们将介绍深度神经网络模型的基本组成部分。
输入层接收来自外部的数据,并将其传递给隐藏层。
隐藏层通过线性变换和激活函数的运算对输入数据进行处理,以提取和学习数据的特征。
输出层则根据隐藏层的结果,进行最终的分类或预测。
深度神经网络模型中的隐藏层通常包含多个节点,这些节点通过权重和偏置进行连接。
权重和偏置是深度神经网络模型中的可调参数,通过训练调整其值以最大程度地减少模型的误差。
每个隐藏层节点都应用激活函数,以引入非线性因素,从而使模型能够拟合更加复杂的数据模式。
在深度神经网络模型中,最常使用的激活函数包括ReLU (Rectified Linear Unit)、Sigmoid和Tanh。
ReLU函数在负输入值时输出0,正输入值时输出输入值本身,它的简单性和计算高效性使其成为首选。
Sigmoid函数将输入值压缩到0到1之间,常用于二分类问题。
Tanh函数将输入值压缩到-1到1之间,常用于多分类问题。
深度神经网络模型训练的核心是反向传播算法。
反向传播算法通过计算损失函数对参数的导数,根据梯度下降法来更新权重和偏置的值。
这样,在迭代训练的过程中,模型逐渐减少误差,并提高对数据的拟合能力。
深度神经网络模型的应用非常广泛。
在计算机视觉领域,深度神经网络模型已被成功应用于图像分类、目标识别和图像生成等任务。
在自然语言处理领域,深度神经网络模型在机器翻译、情感分析和文本生成等任务中也取得了很好的效果。
另外,在推荐系统、金融预测和医学诊断等领域,深度神经网络模型也显示出了出色的性能。
然而,深度神经网络模型也存在一些挑战和限制。
bp人工神经网络的原理及其应用

廷塑签凰.B P人工神经网络的原理及其应用焦志钦(华南理工大学,广东广州510000)f}商鞫人工神经网络是计算智能和机器学习研究中最活跃的分交之一。
本文对神经网络中的BP算法的原理做了详尽的阐述,并用M a da b 程序对其进行了应用。
表明它具有强大的拟合功能。
房;建闭B P算法;M adab1人工神经网络的发展人工神经网络是一个由多个简单神经元相互关联构成的能够实现某种特定功能的并行分布式处理器。
单个神经元由杈值、偏置值、净输^和传输函数组成。
多输入单神经元模型如图1—1所示。
岛见:●仇图1—1多输入单神经元模型其中P为输入值,w.为连接权值,b为偏置值,f似o√为传输函数。
神经元值n=w p+b,输出值为a=f M。
人工神经网络的第一个应用是感知机网络和联想学习规则。
不幸的是,后来研究表明基本的感知机网络只能解决有限的几类问题。
单层感知机只能解决线性分类问题。
不能解决异或问题,也不能解决非线性问题,因此就有单层感知机发展为多层感知机。
多层神经网络中—个重要的方法是B P算法。
BP网络属于多层前向网络,如图1—2所示:卫咒鼍旬k图卜2卵网络模型2B P算法B P网络计算方法如式(2—1)所示,为简化,将神经元的阈值8视为连接权值来处理,并令xo=go=ho=一1,故式(5-1)可以改写为式(2—2)。
92‘i互%蕾一8少j=I,2,…,,17也=,f∑峭一日.J j卢7,22,…,n2(2,1)^=,f2郴一日。
Jj卢7,,…,(2—1)心y,--f凭峭叫i j=1,2,…,n29=7i互w刚∥j=1,2,..’,几7^-f嚷郴一日小』=7,2,…,n2(2—2)M=f f三峭一日,Jj j=l,2,…,n2,=,B P算法是一种有导师的学习算法,这种算法通常是应用最速下降法。
图2—1描述了B P网络的一部分,其中包括工作信号(实线)和误差信号(虚线)两部分。
2002。
10。
1。
0。
’。
年。
人工神经网络在自动化领域的应用

人工神经网络在自动化领域的应用【摘要】人工神经网络在自动化领域的应用正日益广泛,不仅为智能控制系统、智能制造和自动化设备维护等方面提供了有效的解决方案,还为自动化领域的发展带来了新的机遇和挑战。
本文将首先介绍人工神经网络的基本原理,然后探讨其在自动化领域中的具体应用,包括智能控制系统、智能制造和自动化设备维护等方面。
结合实际案例分析,总结出人工神经网络在自动化领域的应用前景,并指出其未来发展方向。
通过本文的阐述,读者将深入了解人工神经网络在自动化领域的重要性和潜力,为相关领域的研究和实践提供有益参考。
【关键词】人工神经网络、自动化领域、智能控制系统、智能制造、自动化设备维护、应用、前景、总结1. 引言1.1 人工神经网络在自动化领域的应用人工神经网络在自动化领域的应用正日益广泛,其强大的模拟人类神经系统的能力使其成为自动化领域中的重要工具。
人工神经网络是一种模拟人类大脑神经网络运作方法的计算系统,通过学习和训练,能够模拟人类的认知能力和决策过程。
在自动化领域中,人工神经网络可以被广泛应用于智能控制系统、智能制造和自动化设备维护等方面。
通过人工神经网络的基本原理,可以实现自动化系统对环境的感知和响应能力,从而实现智能控制系统的设计与优化。
在智能制造领域,人工神经网络可以通过学习和模拟生产过程中的数据,提高制造过程的效率和质量。
在自动化设备维护方面,人工神经网络可以通过分析设备运行数据,预测设备故障和提前维护,降低设备维护成本和生产停机时间。
人工神经网络在自动化领域的应用前景十分广阔,随着技术的不断发展和进步,人工神经网络将在自动化领域中发挥更加重要的作用,为实现智能化、自动化生产和管理提供强有力的支持和保障。
2. 正文2.1 人工神经网络的基本原理人工神经网络的基本原理是模拟人类大脑神经元之间的连接和传递信息的过程。
它由多个神经元组成的网络结构,每个神经元接收多个输入信号,然后通过激活函数处理这些信号并产生输出。
在Matlab中使用神经元网络进行数据拟合的技巧

在Matlab中使用神经元网络进行数据拟合的技巧在Matlab中使用神经网络进行数据拟合的技巧引言:在现代数据科学领域中,数据拟合是一项非常重要的任务。
数据拟合可以理解为通过数学模型来拟合已知的数据,以便更好地理解和预测未知的数据。
在数据拟合方法中,神经网络被广泛应用。
神经网络是一种模拟生物神经网络的人工智能方法,以其灵活性和强大的拟合能力受到了广大研究者的青睐。
在本文中,将探讨如何在Matlab中使用神经网络进行数据拟合,并分享一些技巧和经验。
一、Matlab中的神经网络工具箱Matlab提供了强大的神经网络工具箱,使得我们能够轻松地构建并训练神经网络模型。
该工具箱包含了多种神经网络类型,如前馈神经网络、递归神经网络等,并提供了丰富的功能和参数调整选项。
在使用神经网络进行数据拟合之前,首先需要导入神经网络工具箱,并了解一些基本的函数和工具。
二、数据准备和预处理在进行数据拟合之前,我们需要准备和预处理原始数据,以确保数据的完整性和准确性。
数据准备的过程包括数据收集、数据清洗、数据变换等。
在Matlab中,可以使用一些内置函数和工具箱来帮助我们进行数据准备和预处理。
例如,可以使用Matlab的数据导入工具箱来导入和预览数据,使用数据清洗工具箱来清洗和去除异常值,使用数据变换方法来调整数据的规模和分布。
三、神经网络模型设计神经网络模型的设计是数据拟合中的重要步骤。
在设计模型时,需要选择适当的网络结构和参数设置。
常见的网络结构包括单层感知器、多层感知器、径向基函数网络等。
在选择网络结构时,需要考虑数据的特点和需求,以及模型的复杂度和计算效率。
此外,还需要确定模型的激活函数、误差函数和学习算法等参数。
这些参数的选择将直接影响到模型的拟合效果和性能。
在Matlab中,可以使用图形化界面或编程的方式来构建和调整神经网络模型。
四、神经网络的训练和验证神经网络的训练是数据拟合过程中的核心步骤。
训练过程通过不断调整网络的权重和偏置值,使得网络能够逼近目标函数。
人工智能专家系统与神经网络的应用与优缺点

人工智能专家系统与神经网络的应用与优缺点人工智能(AI)是一种模拟人类智能的技术,它通过模仿人类的思维和行为,使机器能够自主地处理复杂任务。
人工智能专家系统和神经网络是AI中两个重要的子领域,它们都在不同的领域有广泛的应用。
本文将探讨人工智能专家系统和神经网络的应用以及它们的优缺点。
一、人工智能专家系统的应用人工智能专家系统是一种基于知识的计算机系统,它模拟了领域专家解决问题的过程。
专家系统通过收集和整理专家的知识,将其编码为规则和推理机制,使系统能够模拟专家的决策过程。
以下是人工智能专家系统的应用领域:医疗诊断:专家系统可以通过收集大量的病例数据和医学知识,对疾病进行精确的诊断和治疗。
它可以帮助医生更快速、准确地做出诊断,提高医疗水平。
企业管理:专家系统可以用于企业决策制定和管理。
通过评估和分析大量的数据,它可以帮助企业领导层做出更明智的决策,提高企业的效率和竞争力。
工业控制:专家系统可以应用于工业生产中的自动控制系统,使生产过程更加自动化、高效化。
它可以根据传感器收集到的数据进行实时监测和控制,提高生产质量和效率。
二、人工神经网络的应用人工神经网络是一种仿真人脑神经元结构和工作方式的计算模型。
它由大量的人工神经元和连接它们的权重组成,通过学习和调整权重来预测结果或解决问题。
以下是人工神经网络的应用领域:图像识别:神经网络可以用于图像识别和分类。
通过训练神经网络,它可以学习到不同图像的特征和模式,并能够自动识别出不同类别的图像。
自然语言处理:神经网络可以用于自然语言处理任务,如语言翻译、情感分析等。
它可以学习语言的语法和语义规则,并能够生成准确的翻译结果或情感分析报告。
金融预测:神经网络可以用于金融市场的预测和分析。
通过学习历史数据和市场规律,它可以预测股票价格、货币兑换率等金融指标的变化趋势。
三、人工智能专家系统的优缺点人工智能专家系统的优点之一是它可以利用专家的知识和经验,进行准确、快速的决策。
人工神经网络原理、分类及应用

学 术 论 坛240科技资讯 SCIENCE & TECHNOLOGY INFORMATION神经网络是一门发展十分迅速的交叉学科,它是由大量的处理单元组成非线性的大规模自适应动力系统。
神经网络具有分布式存储、并行处理、高容错能力以及良好的自学习、自适应、联想等特点。
该模型对于拟合现实复杂世界有着重要的实用价值。
1 神经网络简介人工神经网络(Artificial Neural Network,ANN),亦称神经网络(Neural Network,NN),是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、统计学、物理学、计算机科学以及工程科学的一门技术。
心理学家Mcculloch,数学家Pitts在20世纪40年代第一次提出了神经网络模型,从此开创了神经科学理论的研究时代,此后半个世纪神经网络技术蓬勃发展。
神经网络是一种计算模型,由大量的神经元个体节点和其间相互连接的加权值共同组成,每个节点都代表一种运算,称为激励函数(activation function)。
每两个相互连接的节点间都代表一个通过该连接信号加权值,称值为权重(weight),神经网络就是通过这种方式来模拟人类的记忆,网络的输出则取决于网络的结构、网络的连接方式、权重和激励函数。
而网络本身通常是对自然界或者人类社会某种算法或函数的逼近,也可能是一种逻辑策略的表达。
神经网络的构筑理念是受到生物的神经网络运作启发而产生的。
人工神经网络则是把对生物神经网络的认识与数学统计模型向结合,借助数学统计工具来实现。
另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。
2 神经网络模型及训练2.1生物神经元模型人脑是自然界所造就的高级动物,人的思维是由人脑来完成的,而思维则是人类智能的集中体现。
人工神经网络的基本原理和应用

人工神经网络的基本原理和应用概述人工神经网络是一种受到人脑神经元启发的计算模型。
它由许多高度互连的处理单元(神经元)组成,这些神经元之间通过连接强度(权值)相互通信。
人工神经网络能够通过学习和训练,自动调整权值和拓扑结构,从而实现某种特定任务。
基本原理人工神经网络的基本原理是模拟生物神经元的工作方式。
每个神经元接收一组输入信号,并根据这些输入信号的权值和激活函数的输出,产生一个输出信号。
这个输出信号又可以作为其他神经元的输入信号,从而实现信息的传递和处理。
人工神经网络通常由多层神经元组成,包括输入层、隐藏层和输出层。
输入层接收外部输入信号,隐藏层和输出层对输入信号进行处理和转换。
隐藏层和输出层之间的连接强度(权值)通过训练过程进行学习和调整,以实现预期的输出结果。
应用领域人工神经网络在各个领域都有广泛的应用,包括但不限于以下几个方面:1.图像识别–人工神经网络可用于图像识别任务,如人脸识别、物体识别等。
通过训练大量图像数据,神经网络可以学习到图像中的特征,并通过对输入图像进行处理,达到准确分类和识别的目的。
2.自然语言处理–人工神经网络在自然语言处理方面也有着广泛的应用。
它可以用于语音识别、情感分析、机器翻译等任务。
通过训练大量文本数据,神经网络可以学习到单词和语义之间的关联,从而实现对自然语言的理解和处理。
3.预测和分类–人工神经网络可以通过训练历史数据,对未来事件进行预测。
例如,它可以用于股票市场预测、天气预报等领域。
此外,神经网络还可用于数据分类,如垃圾邮件过滤、疾病诊断等任务。
4.控制与优化–人工神经网络在控制与优化领域也有着广泛应用。
它可以用于自动驾驶车辆、工业生产优化、智能电网调度等控制系统中,通过学习和训练,实现自动控制和优化的目标。
优势与挑战人工神经网络相比传统的算法有一些明显的优势,但同时也面临一些挑战。
优势•并行处理能力:神经网络的并行处理能力可以加快训练和推理的速度。
•自适应学习:神经网络可以通过训练和反馈机制,自动学习和调整权值,适应输入数据的变化。
人工神经网络建模

语音识别
总结词
语音识别是将人类语音转换成文本的过程, 利用人工神经网络进行语音特征提取和分类 。
详细描述
语音识别技术使得人机交互更加自然,广泛 应用于智能助手、语音搜索、语音翻译等领
域。
自然语言处理
要点一
总结词
自然语言处理是利用人工神经网络对人类语言进行分析、 理解和生成的过程。
要点二
详细描述
自然语言处理技术包括文本分类、情感分析、机器翻译等 ,使得计算机能够更好地理解人类语言,提高人机交互的 效率和自然度。
人工神经网络的应用领域
语音识别
利用循环神经网络(RNN)和 长短时记忆网络(LSTM)识 别语音并转换成文本。
推荐系统
利用深度神经网络为用户推荐 感兴趣的内容。
图像识别
利用卷积神经网络(CNN)识 别图像中的物体和特征。
自然语言处理
利用循环神经网络和注意力机 制处理自然语言任务,如机器 翻译、文本生成等。
训练算法
总结词
训练算法是指导神经网络学习和优化的算法,常用的有梯度下降法等。
详细描述
训练算法根据学习率和优化目标,不断迭代更新网络权重,使网络在训练数据上 获得更好的性能表现。
03
常见的人工神经网络模型
前馈神经网络
总结词
前馈神经网络是一种最基础的人工神 经网络模型,信息从输入层开始,逐 层向前传递,直至输出层。
数据清洗与预处理
去除异常值、缺失值,进 行数据标准化、归一化等 处理,以提高模型的准确 性和稳定性。
数据划分
将训练数据集划分为训练 集、验证集和测试集,以 便于模型训练、验证和评 估。
训练过程中的优化算法
梯度下降法
基于梯度下降的优化算法,通 过迭代更新权重和偏置项,最
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工神经网络及其数据拟合中的应用人工神经网络及其数据拟合中的应用摘要本文将讲述人工神经网络及其数据拟合中的应用。
人工神经网络是在现代神经科学的基础上提出和发展起来的,旨在反映人脑结构及功能的一种抽象数学模型。
它在模式识别,图像处理,智能控制,组合优化,金融预测与管理通信机器人以及专家系统等领域得到广泛的应用。
文章首先介绍人工神经元和人工神经网络的数学结构,然后介绍神经网络的建立、训练与泛化的概念以及MATLAB语言的神经网络工具箱在解决这些问题中的应用。
通过实际例题来巩固这些知识点。
关键词:人工神经网络拟合径向基结构MATLAB一、神经网络基础知识1.1人工神经元模型(i )一组连接(对应于生物神经元的突触) ,连接强度由各连接上的权值表示,权值为正表示激活,为负表示抑制。
(ii )一个求和单元,用于求取各输入信号的加权和(线性组合) 。
(iii )一个非线性激活函数,起非线性映射作用并将神经元输出幅度限制在一定范围内(一般限制在(0,1)或(-1,1)之间)。
此外还有一个阈值 以上作用可分别以数学式表达出来: 式中nx x x ,,21为输入信号, 为神经元k 之权值, 为线性组合结果, 为阈值, 为激活函数又称为传输函数, 为神经元k 的输出。
常用的传输函数有:Sigmoid 函数和对数Sigmoid 函数。
在神经元中,权值和传输函数是两个关键的因素。
权值的物理意义是输入信号的强度,多个神经元则是连接强度。
神经元的权值应该通过神经元对样本点反复的学习过程而确定,这个过程称为训练。
1.2神经网络结构从连接方式上可将其划分为前馈型网络和反馈型网络。
(i )前馈型网络各神经元接受前一层的输入,并输出给下一层,没有反馈。
结点分为两类,即输入单元和计算单元,每一计算单元可有任意个输入,但只有一个输出(它可耦合到任意多个其它结点作为其输入) 。
通常前馈网络可分为不同的层,第i 层的输入只与第 1 − i 层输出相连,输入和输出结点与外界相连,而其它中间层则称为隐层。
(ii )反馈型网络所有结点都是计算单元,同时也可接受输入,并向外界输出。
1.3神经网络结构工作方式神经网络的工作过程主要分为两个阶段: 第一个阶段是学习期,此时各计算单元状态不变,各连线上的权值可通过学习来修改;第二阶段是工作期,此时各连接权固定,计算单元状态变化,以达到某种稳定状态。
从作用效果看,前馈网络主要是函数映射,可用于模式识别和函数逼近。
反馈网络按对能量函数的极小点的利用来分类有两种:第一类是能量函数的所有极小点都起作用,这一类主要用作各种联想存储器;第二类只利用全局极小点,它主要用于求解最优化问题。
所以我们知道,神经网络要解决的问题是通过已知数据,反复训练神经网络,得到加权量和阀值,使得神经网络的计算输出信号与实际期望输出信号 误差最小 。
一种较适合的方式就是使得误差的平方和最小,即∑==-==pj kkkkkjkjkv y u v x w u 1)(,,ψθkpk k w w w ,...,,21kuθ(.)ψy y其中上标k 为样本组数。
对于w v 采用共轭梯度法来搜索最优值。
给出权值和的初值和,则可以通过下面的递推算法修正权值MATLAB 里利用newff()函数来建立前馈的神经网络模型,其调用格式为, 分别为列向量,存储各个样本输入数据的最小值和最大值,第二个输入变量是一个行向量,将神经网络的节点数输入,单元的个数是隐层的层数;第三个输入变量为单元数组。
1.4神经网络的训练与泛化建立了神经网络模型net ,则可以调用train ()函数对神经网络参数进行训练。
调用格式为其中,变量为n*M 矩阵,n 为输入变量的路数,M 为样本的组数,Y 为m*M 矩阵,m 为输出变量的路数,X ,Y 分别存储样本点的输入和输出数据。
由样本点数据进行训练得出训练后的神经网络对象net 。
神经网络训练完成后,可以利用该网络对样本区域内的其他输入量求解其输出值,这种求值的方法称为神经网络的泛化或仿真。
可以理解为利用神经网络进行数据拟合,对新的输入数据 调用sim()函数进行泛化,得出这些输入点处的输出矩阵 ,且 二、 径向基网络结构与应用径向基网络是一类特殊的神经网络结构。
隐层的传输函数为径向基函数,输出的传输函数为线性函数,则此结构的网络称为径向基网络。
径向基函数是一类特殊的指数函数,数学描述为其中,c 为聚类中心点,b>0为调节聚类效果的参数。
径向基网络的使用:newrbe()和sim()实现神经网络的建立、训练和泛化全过程。
三、 例题详解3.1例10-29用神经网络对二元函数∑∑==-N l mi li li v w y y 11,2)^ˆ(min ljltljtl jtliljlijl ijd v v ae w w γαβ+=+=++11,}),...,,{],,...,,[],,([2121kkMmf f f h h h x x newff net =x x),,(],,,[1Y X net train E Y tr net =),(X net sim Y =)(x F )(x F )()()(c x c x b c x b e e x -----==ψxyy x ex x y x f z ----==22)2(),(2进行曲面拟合。
求解思路:先考虑用下面的语句输入样本数据,选择3隐层网络,第1,2层有10个节点,采用Sigmoid函数作为输出函数,这样就可以用下面的语句度该网络进行训练,并得出如图所示的泛化结果。
程序如下:[x,y]=meshgrid(-3:.6:3,-2:.4:2);x=x(:)';y=y(:)';z=(x.^2-2*x).*exp(-x.^2-y.^2-x.*y); %注意这三个变量都是行向量net=newff([-3 3;-2 2],[ 10,10,1],{'tansig','tansig','tansig'});net.trainParam.epochs=1000;net.trainFcn='trainlm';[net,b]=train(net,[x;y],z); %训练神经网络[x2,y2]=meshgrid(-3:.1:3,-2:.1:2);x1=x2(:)';y1=y2(:)';figure;z1=sim(net,[x1;y1]);z2=reshape(z1,size(x2));surf(x2,y2,z2)得到第2隐层有10节点的拟合图:泛化结果不是很理想,部分点处有较大的波动,现在设定第2层选择20个节点,则可以得处如图所示的泛化结果,可见泛化结果恶化,说明节点数选择过多。
从总体拟合效果来看,因为样点不充足,不足以用神经网络得出较好的拟合结果,所以神经网络直接拟合结果较差。
程序如下:net=newff([-3 3;-2 2],[10,20,1],{'tansig','tansig','tansig'});[net,b]=train(net,[x;y],z); %训练神经网络z1=sim(net,[x1;y1]);z2=reshape(z1,size(x2));surf(x2,y2,z2)得到第2隐层有20个节点拟合图:从总体拟合效果看,样本点不充足,现在给出密集一点的样本点,则可以用下面的命令[x,y]=meshgrid(-3:.6:3,-2:.4:2); x=x(:)';y=y(:)';z=(x.^2-2*x).*exp(-x.^2-y.^2-x.*y); %注意这三个变量都是行向量 net=newff([-3 3;-2 2],[10,10,1],{'tansig','tansig','tansig'}); net.trainParam.epochs=100; net.trainFcn='trainlm'; [net,b]=train(net,[x;y],z);[x1,y1]=meshgrid(-3:.1:3,-2:.1:2); a=x1;x1=x2(:)';y1=y2(:)'; figure;z1=sim(net,[x1;y1]);z2=reshape(z1,size(a));surf(x2,y2,z2);net=newff([-3 3;-2 2],[10,20,1],{'tansig','tansig','tansig'}); [net,b]=train(net,[x;y],z);%修改节点个数后的泛化结果 figure;z1=sim(net,[x1;y1]); z2=reshape(z1,size(a)); surf(x2,y2,z2)分别得出当地2层节点个数为10和20时,二元曲面的拟合效果,如图下所示。
可见拟合效果比前面的结果好,但远没有第8章中减少的样条插值的效果。
-22-2-11对这个例子来说,在当前测试的组合下效果远远差于样条插值算法。
用前馈神经网络拟合时,无论采用哪种训练方法,选择哪种网络和节点组合,得出的误 差曲线基本均如图所示010101010100 EpochsT r a i n i n g -B l u ePerformance is 0.00138671, Goal is 0当误差准则等于0.0021时不在减少,所以不能得出令人满意的拟合效果。
在神经网络研究中,经常有人引用这样的结论结果,即三层BP 网络可以按任意精度逼近给定函数。
不过从这样普通的例子看,即使选定500个隐层节点,试用了神经网络工具箱中提供的群补训练算法,也无法得出小于10^-3的误差,故而此例子作者没有得出任意精度的可行的神经网络。
3.2例10-22用径向基网络对二元函数xyy x ex x y x f z ----==22)2(),(2进行曲面拟合。
利用已知工具箱函数进行径向基网络的曲面拟合,程序如下:[x,y]=meshgrid(-3:.6:3,-2:.4:2);x=x(:)';y=y(:)';z=(x.^2-2*x).*exp(-x.^2-y.^2-x.*y);%注意这三个变量均应为行向量 net=newrbe([x;y],z);[x2,y2]=meshgrid(-3:.1:3,-2:,.1:2);x1=x2(:)';y1=y2(:)';z1=sim(net,[x1;y1]);z2=reshape(z1,size(x2));surf(x2,y2,z2)得出的拟合效果如图:可见,这样得出的拟合效果远远优于BP网络,虽然略差于二维样条插值效果。