数学北师大版《数轴》教案(七年级上)
北师大版七年级上册数轴教案

数轴执教人:刘磊山东省滕州市滕南中学教材:北师大版数学实验教科书七年级上册第二章第二节一、教材的分析1.教材的地位和作用《数轴》是北师大版数学实验教科书七年级上册第二章第二节的内容从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导及不等式的求解. 同时,也是学习直角坐标系的基础;从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学,学好数学的重要思想方法. 数轴是形象直观表示数的一种方法,在数字问题和生活实际中有着广泛应用,掌握好本节内容对今后学习和生活有着积极意义.2. 重点、难点重点:经历观察、操作、想象、推理、交流等活动深刻理解数轴的概念及其应用.难点:数轴的建模过程.二、教学目标的分析知识目标:①识记数轴的三要素并会画数轴;②能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数.能力目标:①培养学生的观察能力,推理能力以及有条理表达的能力.②培养学生把实际问题抽象成数学问题的能力,并向学生渗透数形结合的数学思想情感目标:经历观察、操作、想象、推理、交流等活动,感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣.三、教学过程的设计主要从以下4个环节来讲述多媒体展示①〜②题二.有理数与数轴上点的关系 如图:温度计(略) ① 你能读出温度计的温度值吗?试一试② 温度计上有0刻度,单位刻度它是一条数轴吗? ③ 如果不是数轴,你能将它抽象成一条数轴 吗? ④ 如果是-7 C,你能在数轴上找到它的位置 吗? C 呢?接下来,我们进一步得来认识数轴, 看看能发现什么规律?观察数轴, 思考以下问题① 原点表示什么数?② 原点右边表示什么性质的数?原点左边呢?③ 请在上面的数轴上表示出+3, -4,1/4,, 结论:数轴上原点右边的数表示正数原点 左边的数表示负数•任何一个有理数都可以用数轴上的一个点 来表示.做一做:1. 指出数轴上A, B, C, D 各点分别表示什么数-2 -1 0 1 2 3 4 /2. 画出数轴,并用数轴上的点表示下列各数3/2 , -5, 0, 5, -4 , -3/2四、教学设计的几点补充(二) 动 手动 脑 探索新进一步强化了学生 对数轴概念的理解,加 深了对数轴画法的认 识,同时培养了学生的 图形识别能力.学数学, 用数学的意识,使用学 生品尝到成功的喜悦, 树立了信心,继续解决 问题.使学生在温度计上 初步建立由点表示数, 由数找点的数形结合思 想.以上探索结论的过 程中,体现了由易到难, 由直观到抽象,由特殊 到一般的思维过程,尊 重学生的个体差异,使 不同的学生在数学学习 中都能得到发展,进一 步渗透了数形结合的思 想.两道题目从各自不 同的侧面体现出数形结 合,进一步强化了数形 之间相互转化的数学思 想.学生:分组讨 论回答 师:适当总结 教师:演示温 度计的变化, 并引导学生, 分组讨论,合 作探究• 学生:积极思 考学生:小组讨 论教师:适当点 拨总结归纳 生:说出第1 题中数轴上 的已知点表 示的数;把第 2题中给定的 有理数用数 轴上的点表 示.师:完善四、教学设计的几点补充说明1.创设情境环节,我为什么分三个层次完成呢?目的是从高处着眼,低处着手,由生活走向数学,实现了由面到线,由线到数轴的建模过程,无形中培养了学生的数学建模能力.2.教材中的例题为什么作为练习出现呢?这样更有利于学生自主探索学习,符合学生认知规律中的最近发展区原理.3.为什么设计图片欣赏和瓢虫回家游戏呢?通过欣赏图片既能放松学生紧张的学习心理,又能为下面的学习积蓄力量,同时,使学生体会到理论与实践的统一;瓢虫回家游戏更有利于体现数形结合思想,分类发散思想,更有利于培养学生运动变化、整体认知、逆向思维的能力,为今后学习相反数、绝对值,有理数的运算打下良好的基石.五、教法、学法的分析1.依据构建主义认知原理,体现发现学习法,主要通过:①动——师生互动,共同探讨.②导——知识类比,合理引导等突出学生主体地位,教师成为学生学习的组织者、引导者、合作者.对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步. 实现了课堂教学的“新”、“活”、“实” .2.利用课件辅助教学,一方面能够生动直观地反映情境,增加课堂容量,同时有利于突出重点,化解难点,更好地提高课堂效率.。
七年级数学上册 数轴教案 北师大版 教案

课 题:2.2数轴1、 掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。
2、 理解相反数的意义及求法。
3、了解数轴的意义及画法。
1、前置准备:(1) 你会读温度计吗?完成课本43页最上面的读温度计的问题。
(2) 你能用直线上的点表示有理数吗?课题:数轴 2、自主学习:认真阅读课本第43页至45页,完成下列问题(1)画一条水平直线,在直线上取一点C (叫做▁▁▁),选取某一长度作为▁▁▁▁,规定向右的方向为▁▁▁,就得到了数轴。
(2)如图,指出数轴上A 、B 、C 各点表示的有理数,并用“〈”将它们连接起来:▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁。
B C A-3 –2 –1 0 1 2 3(3) 5的相反数是▁▁▁;▁▁▁▁的相反数是-3.5。
(4) 数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数。
(5) 比较大小:-3▁▁▁5;0 ▁▁▁-4;-3 ▁▁▁2.5。
3、合作交流(1) 什么是数轴?怎样画数轴。
(2) 有理数与数轴上的点之间存在怎样的关系? (3) 什么是相反数?怎样求一个数的相反数? (4) 如何利用数轴比较有理数的大小?4、归纳总结:▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁。
5、当堂训练:(1)下列说法正确的是( )A 、 数轴上的点只能表示有理数B 、 一个数只能用数轴上的一个点表示C 、 在1和3之间只有2D 、 在数轴上离原点2个单位长度的点表示的数是2(2)语句:①-5是相反数、②-5与+3互为相反数③-5是5的相反数④-5和5互为相反数⑤0的相反数是0⑥-0=0。
上述说法中正确的是( ) A 、①②⑥ B 、②③⑤ C 、①④ D 、③④⑤⑥ (3)大于-4而小于4的整数有▁▁▁▁▁▁。
(4)用“﹤”或“﹥”号填空①-5▁▁-7②0 ▁▁-2③0.01▁▁▁-0.1 (5)写出下列各数的相反数3.4,-3,0,a ,2a-3。
北师大版数学七年级上册2.2《数轴》教学设计

北师大版数学七年级上册2.2《数轴》教学设计一. 教材分析《数轴》是北师大版数学七年级上册第二章第二节的内容。
数轴是中学数学中重要的概念之一,是实数与几何相结合的桥梁。
通过数轴,学生可以直观地理解实数的性质,如大小比较、距离、相反数等。
同时,数轴也是解决方程、不等式等问题的重要工具。
二. 学情分析七年级的学生已经学习了有理数,对实数的概念有一定的了解。
但在实际操作中,部分学生可能对数轴的理解仍存在困难,如数轴的表示方法、数轴上的点与实数的关系等。
因此,在教学过程中,需要注重引导学生从实际操作中理解数轴的概念,并能运用数轴解决实际问题。
三. 教学目标1.理解数轴的概念,掌握数轴的表示方法。
2.能正确地在数轴上表示数,判断两个实数的大小关系。
3.理解数轴上的点与实数的一一对应关系,能运用数轴解决实际问题。
四. 教学重难点1.数轴的概念及其表示方法。
2.数轴上的点与实数的关系。
3.运用数轴解决实际问题。
五. 教学方法采用问题驱动法、情境教学法和小组合作学习法。
通过设置问题情境,引导学生主动探究数轴的概念及其应用;利用数轴模型,让学生在实际操作中理解数轴的性质;小组讨论,培养学生的团队协作能力。
六. 教学准备1.准备数轴模型或挂图,以便学生在课堂上直观地理解数轴。
2.准备与数轴相关的问题案例,用于引导学生探究和解决实际问题。
3.准备PPT,用于展示数轴的相关概念和例题。
七. 教学过程1.导入(5分钟)利用数轴模型或挂图,引导学生观察数轴,提出问题:“数轴是什么?数轴上的点与实数有什么关系?”让学生回顾数轴的基本概念。
2.呈现(15分钟)通过PPT展示数轴的定义和表示方法,讲解数轴上的点与实数的一一对应关系。
同时,给出一些例子,让学生判断两个实数的大小关系。
3.操练(15分钟)让学生分组进行讨论,每组选取一个实数,然后在数轴上表示出来。
接着,让学生判断其他组表示的实数与自己的实数的大小关系。
最后,各组汇报讨论成果。
七年级数学《数轴》教案

2、学情分析
(1)知识掌握上,七年级学生刚刚学习了有理数中的正负数,对正负数的概念理解不一定深刻,所以应全面系统的去讲述。
(2)学生对数轴的概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中应予以简单明白、深入浅出的分析。
七年级学生年龄小,注意力易分散,教学中一方面要运用直观生动的形象,引发学生的兴趣;另一方面要创造条件和机会让学生发表见解,发挥学生学习的主动性。
案例名称
数轴
科目
数学
教学对象
七年级三班
主备人
课时
一课时
参与者
教材分析
1、教材的地位和作用
“数轴”是北师大版七年级上册第二章第二节“有理数及其运算”的重点内容之一,是在引进负数及分析了有理数的分类后给出的。数轴是理解有理数的概念和运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它解决一些实际问题:包括绝对值,有理数的运算等,非常直观的把数与点结合起来,渗透着初步的数形结合思想。还是以后学好不等式的解法,平面直角坐标系等打下良好的基础,起到承上启下的作用,可见地位之重要。
出示自学指导,要求学生按设问进行学习:
1、画出一条数轴可以分为哪几步?
2、什么是数轴?它有哪几个基本要素?
3、原点表示什么数?原点右边表示什么数?左边呢?
4、有理数与数轴上的点有什么关系?
5、数轴上两个点表示的数的大小如何确定?
6、正数、0、负数的大小关系在数轴上看出是怎样的?
北师大七上数轴教案

北师大七上数轴教案教案标题:北师大七上数轴教案教学目标:1. 理解数轴的概念和作用。
2. 掌握数轴上正数、负数和零的表示方法。
3. 能够在数轴上比较和排序数值大小。
4. 能够在数轴上进行简单的加减运算。
教学重点:1. 数轴的概念和作用。
2. 正数、负数和零在数轴上的表示方法。
3. 比较和排序数值大小。
教学准备:1. PowerPoint演示文稿。
2. 数轴模型或图片。
3. 学生练习题。
教学过程:一、导入(5分钟)1. 利用PPT展示数轴的图片,引导学生思考数轴的作用和意义。
2. 提问学生关于数轴的问题,例如:你在什么场景中见过数轴?数轴有什么作用?二、概念讲解(10分钟)1. 通过PPT介绍数轴的定义和结构,解释数轴上的刻度和标记的含义。
2. 引导学生理解数轴上的正数、负数和零的表示方法。
三、数轴上的数值比较(15分钟)1. 利用数轴模型或图片,展示一些数值,并要求学生在数轴上标出这些数值。
2. 引导学生比较和排序这些数值,帮助他们理解数轴上数值大小的关系。
四、数轴上的加减运算(20分钟)1. 通过PPT演示数轴上的加法运算,例如:2+3=5。
2. 引导学生在数轴上进行简单的加法和减法运算,例如:在数轴上标出2,然后向右走3个单位,找到5。
3. 给学生一些练习题,让他们在数轴上进行加减运算。
五、巩固练习(10分钟)1. 分发练习题,让学生独立完成。
2. 收集学生的练习题,检查他们的答案,并给予必要的指导和讲解。
六、总结和反思(5分钟)1. 总结数轴的概念和作用。
2. 让学生反思本节课的学习收获和困惑,并鼓励他们提出问题。
教学延伸:1. 引导学生设计自己的数轴游戏,加深对数轴的理解和运用。
2. 鼓励学生在日常生活中观察和应用数轴的场景,例如:温度计、地图等。
教学评估:1. 教师观察学生在课堂上的参与程度和回答问题的准确性。
2. 收集学生的练习题,检查他们对于数轴概念和运用的掌握程度。
3. 学生之间互相交流和讨论,评价对方的数轴使用是否正确。
七年级数学上册第2章《数轴》名师教案(北师大版)

北师大版本数学七年级上册第二章第二课时《数轴》教学设计课题 2.2数轴单元第二单元学科数学年级七年级学习目标1、掌握数轴的概念,理解数轴上的点与有理数的对应关系;2、会画正确的数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3、感受特定的条件下数与形是可以相互转化的,体验生活中的数学。
重点数轴的概念和用数轴上的点表示有理数。
难点数轴的概念和用数轴上的点表示有理数。
教学过程教学环节教师活动学生活动设计意图导入新课师(导语):大家在日常生活中见过温度计吗?你知道它的用途是什么吗?教师评价学生的回答后,出示问题:师:三个温度计所表示的温度是多少?学生一:5℃。
学生二:0℃。
学生三:-10℃。
教师对学生的回答给予鼓励性评价,并提问:温度计上的刻度有什么特点?教师综合学生的回答并总结:a、在温度计上,零刻度线以上,数字越大,温度越高。
b、温度计的零刻度表示温度正负分界线,以零度为参考温度(冰水混合物的温度),比零度高则是正值,比零度低则是负值。
学生踊跃发言。
学生仔细观察,举手回答。
激情导入,激发学生的兴趣。
考查学生的生活经验,培养学生的观察能力,同时为引入新课作下铺垫。
讲授新课师:温度计有正负分界线,有正负值。
如果我们把温度计横放,它就像我们今天所要学习的数轴。
那什么数轴究竟是怎样的呢?它由什么构成呢?学生一:数轴是直的。
学生二:数轴上右边有箭头。
(取正方向)学生三:数轴上有分界点“0”点。
(规定原点)学生上:数轴上有正负数值,负的在“0”的左边,正的在“0”的右边。
(标上单位长度,以及部分数值)教师综合学生的回答并总结:规定了原点、正方向和单位长度的直线叫数轴,其中原点、正方向和单位长度称为数轴的三要素。
画数轴的注意事项:(1)原点、单位长度和正方向三要素缺一不可;(2)直线一般是水平的分;(3)正方向用箭头表示,一般取从左到右;(4)取单位长度要切合实际需要,但要做到刻度均匀。
北师大版七年级数学上册:2.2数轴(教案)

1.讨论主题:学生将围绕“数轴在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
我也在思考,如何在接下来的课程中更好地帮助学生突破难点。可能我需要设计更多的互动环节,比如让学生们上台来亲自操作数轴,讲解他们的思考过程。这样不仅能够加深他们对知识的理解,还能锻炼他们的表达能力和逻辑思维。
此外,学生在小组讨论中分享的成果也让我收获颇丰。他们从不同的角度看待问题,提出了许多有创意的想法。这让我意识到,作为教师,我要更多地倾听学生的声音,给他们提供展示自己的平台。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与数轴相关的实际问题,如如何用数轴表示银行账户的存款和取款。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,使用数轴来模拟解决一个简单的一元一次方程。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
-数轴上的数的大小比较:学生应掌握数轴上数的大小关系,了解左边的数总是小于右边的数。
-数轴在求解方程和不等式中的应用:学生需要学会使用数轴来表示方程的解集,以及不等式的解集。
-举例:
-解释数轴上的点3.5与实数3.5的对应关系。
-比较数轴上-2和2.5的大小,并说明原因。
-利用数轴求解方程x-2=0,以及不等式x>3。
在实践活动中,我鼓励学生们分成小组讨论数轴在日常生活中的应用,并进行了实验操作。这个环节中,学生们积极参与,热烈讨论,展示了他们对数轴应用的探索和理解。但我也注意到,有些小组在操作过程中还是遇到了一些困难,尤其是在解决一些稍微复杂的问题时。这说明学生们在将理论知识应用到实际问题中还需要更多的练习和指导。
七年级数学上册《数轴》教案 北师大版

课题数轴课型新授课教学目标知识与能力1.通过与温度计的类比认识数轴,会用数轴上的点表示有理数.2.借助数轴了解相反数的概念,知道互为相反数的一对数在数轴上的位置关系.3.能利用数轴比较有理数的大小.过程与方法1.掌握数轴的三要素.会用数轴上的点表示有理数.知道任一个有理数在数轴上都有惟一的点与之对应.2.会比较数轴上数的大小,初步理解有理数的有序性.3.充分利用数轴使数与形结合起来.情感态度与价值观1.充分为学生创设情景,学生可以借助生活经验解决问题.2.给学生充余的活动空间,鼓励学生积极进行归纳、比较、交流等活动,提高学习的兴趣.教学重点1.在理解数轴概念的基础上掌握数轴的三要素,并且会用数轴上的点表示有理数.2.互为相反数的几何意义.教学难点1.数轴的画法.2.如何比较两个负数的大小.教学方法引导、探求、比较、归纳四步教学法.即在教师引导下,学生进行探求、比较,最后归纳、总结出本节所学内容,并初步了解数形结合的数学思想.教学用具中国地形图、温度计投影片六张板书设计§2.2 数轴一、(1)数轴的定义(2)数轴的三要素例1、例2二、互为相反数三、比较有理数的大小四、课堂练习五、课时小结教学过程教师活动学生活动Ⅰ.创设情景问题,导入新课[师](出示“中国地形图”)我们来看“中国地形图”,从图中知道珠穆朗玛峰的海拔高度是8848米.测量它时是以海平面为“基准”的,如果“基准”不选在海平面上,那么珠穆朗玛峰的高度是否还是8848米呢?[师]如果“基准”选在海拔5000米的某处,那么珠穆朗玛峰的高度是多少?海拔为-155米的吐鲁番盆地的高度是多少?[[师]回答正确.一般情况下,我们由于所选择的“基准”不同,所以同一个地方表示的结果也不一样.我们经常见温度计,你们会读吗?[[师]好.现在我们看图填空(出示投影片§2.2 A)[师]谁能说出你刚才如何读温度计的?[师]很好.我们看温度计时,因为它上面标有刻度、数,所以我们只需看一看温度计液面指在哪个刻度上.刻度上标有数.这时就知道这个温度计所显示的度数.我们看到温度计上有好多数:正整数、负整数、零,而这些数都是有理数.那大家想想能不能把所有的有理数都放在温度计上呢?[生]不是.[生]珠穆朗玛峰的高度为3848米,吐鲁番盆地的高度是-5155米.生齐声会.[生]+5 ℃0 ℃-10 ℃[生甲]温度计上标有刻度、数字.[生乙]还有0.再看看液面[师]为什么呢?[师]想一想,把有理数放在什么上就可以全部放下呢?[师]好.小学里我们已经学到直线可以向两方无限延伸.所以可以在一条直线上画出刻度,标出读数.用直线上的点表示有理数(即正数、负数和零).也就是(出示投影片§2.2 B):画一条水平直线,在直线上取一点表示0(叫做原点,origin),选取某一长度作为单位长度(unit length),规定直线上向右的方向为正方向(positive DireCtion),就得到下面的数轴(numBer Axis)今天我们就来学习数轴.Ⅱ.讲授新课刚才我们知道了数轴的特征,现在来根据数轴的特征画一条数轴.(师生共画,教师叙述数轴的画法)画一条水平的直线.(画竖直的直线行不行呢?也行,现在为了读画方便,通常把数轴画成水平的).在这条直线上任取一点作为原点,用这点表示0(相当于温度计上的0 ℃).规定直线上从原点向右为正方向,用箭头表示出来,那么相反的方向,即从原点向左的方向为负方向(相当于温度计上0 ℃以上为正,0 ℃以下为负).选适当的长度为单位长度(相当于温度计上每 1 ℃占一小格的长度),在直线上,从原点向右每隔一个单位长度取一点,依次表示为1,2,3,……;从原点向左,每隔一个单位长度取一点,依次表示-1,-2,-3…….我们也可以在直线上找出表示分数或小数的点.如指在哪个刻度上.[生]不行.[生]因为温度计上的数只是有限的.如:8848是有理数,在温度计上是找不到的.[生甲]射线,它可以延伸.[生乙]不对,应该是直线.射线只是向一方延伸,而直线可以向两方延伸.图,从原点向右41个单位长度的A 点表示41,从原点向左1.5个单位长度的B 点表示-1.5等等.像这样规定了原点、正方向和单位长度的直线叫数轴.由上面可知:任何一个有理数都可以用数轴上的一个点来表示.即所有的有理数都可以用数轴上的点表示.比如:+8可以用数轴上位于原点右边8个单位的点表示.-9.5可以用数轴上位于原点左边9.5个单位的点表示.[[师]对.(出示温度计).我们来比较一下:温度计上必须有一个0 ℃.类似的数轴上有什么呢?[师生共析]温度计上0 ℃以上为正,0 ℃以下为负,类似的数轴规定从原点向右的方向为正方向,相反的方向为负方向.温度计上每1 ℃占1小格的长度,类似的数轴上选择适当的长度为单位长度.因而原点、正方向、单位长度为数轴的三要素.[师]想一想:(出示投影片§2.2 C)在数轴上,已知一点P 表示数(-5),如果数轴上的原点不选在原来的位置,改选在另一位置,那么P 点对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?[[师]由此可见,数轴的三要素——原点、正方向、单位长度缺一不可.下面我们看例题(出示投影片§2.2 D)[例1]指出数轴上A ,B ,C ,D 各点分别表示什么数?分析:已知数轴上的点,指出已知点所表示的数.由生]老师,数轴就像一个平放的温度计.[生]数轴上规定了一个原点.[生]原点的位置变化后,点P 表示的数不是-5;单位长度改变.同样点P 表示的数不是-5;直线的正方向改变后,点P 也不表示-5;图形变成数,像看温度计.(口答)解:点A 表示-2;点B 表示2;点C 表示0;点D 表示-1;[例2]画出数轴,并用数轴上的点表示下列各数:23,-5,0,5,-4,-23 分析:画数轴时注意画法.(学生上黑板板书)把给定的数用数轴上的点表示,是把“数”变成“形”.注意在数轴上画点表示这些数时,点是实心点;解:[师]大家做得挺好.画数轴时也注意了三要素.下面我们再画一数轴,在数轴上把+2和-2表示出来,并回答它们的位置关系如何?[师]回答正确.看例2中的“23与-23”“5和-5”等它们的位置关系怎样?[师]大家归纳一下:“2与-2”“23与-23”“5与-5”等的特征.[生甲]这样的数一出现便是两个,即成对出现,并且是一正一负.[生乙]这两个数在数轴上表示的点总是位于原点的两侧,且到原点的距离相等.[师]很好.除这些数外还有吗?举例.[师]好.像这样只有符号不同的两个数,我们说其中一个数是另一个数的相反数.如:+2是-2的相反数,-2是+2的相反数,也称这两个数互为相反数.特别地,0的相反数为0.我们知道,互为相反数是成对出现的,不能单独存在.[生]+2表示的点在原点的右边,-2表示的点在原点的左边,并且这两个点到原点的距离都是2个单位长度.[生甲]23表示的点在原点右边,-23表示的点在原点左边,这两个点到原点的距离都是23个单位长度; [生乙]5表示的点在原点右边,-5表示的点在原点左边,这两个点到原点的距离都是5个单位长度.[生]有.如:17与-17,-9与9,8.5与-8.5,67与-67……在数轴上,表示互为相反数的两个点位于原点的两侧,且与原点的距离相等.因此可知:正数的相反数是负数,负数的相反数是正数,零的相反数是零.下面做一练习,来熟悉互为相反数的定义.(出示投影片§2.2 E)1.填空:9的相反数是_____,-2.4是_____的相反数. -7的相反数是_____,53是_____的相反数. 0的相反数是_____.2.一个人第一次收入6元,第二次收入-6元,两次一共收入多少元?答案:1.-9,2.4,7,-53,0 2.0元.[师]小学已学过如何比较数的大小.现在引入负数后,数扩大到有理数.那么如何比较有理数的大小呢?大家议一议、总结.[[师]大家总结得很准确.利用数轴可以比较有理数的大小.即:在数轴上表示的两个数右边的数总比左边的数大.由正数、负数在数轴上的位置可知:正数都大于0,负数都小于0,正数大于一切负数.两个正数可以比较大小,那么两个负数如何比较呢? [师]现在我们又可以利用数轴来比较任意有理数的大小.下面通过练习来熟悉一下比较有理数大小的方法(出示投影片§2.2 F).[例3]比较下列每组数的大小: (1)-2和+6 (2)0和-1.8 (3)-43和-4 分析:(由学生讨论、自己动手做)可利用数轴,也可学生分小组讨论,教师找学生回答[生甲]正数是比0大的数,所以正数都大于0,0小于一切正数.[生乙]盈余一般用正数表示,亏损用负数表示,所以正数大于负数. [生丙]零下温度比0 ℃低,所以负数小于0;[生丁]噢,温度计上显示的两个温度,上边的温度总比下边的高.数轴像平放的温度计,则在数轴上表示的两个数,右边的数总比左边的数大.利用定义、性质.解:(1)-2<+6(正数大于负数);(2)0>-1.8(负数小于零);(3)-43>-4(在数轴上,-43所对应的点在-4所对应的点的右侧.如图)Ⅲ.课堂练习课本P39随堂练习1.写出三对非零的相反数,在数轴上将它们表示出来,并比较其中三个负数的大小.解:三对非零的相反数:+3与-3;+5与-5,-1.3与+1.3三个负数的大小:-5<-3<-1.32.在数轴上距原点2个单位长度的点表示什么数?解:+2或-2.Ⅳ.课时小结本节课我们学习了数轴,原点、正方向、单位长度是数轴的三要素,三者缺一不可.因为任何一个有理数都可以用数轴上的一个点来表示.所以由此还可利用数轴来比较两个有理数的大小.互为相反数是成对出现的.不单独存在.正数的相反数是负数,负数的相反数是正数.零的相反数是零.Ⅴ.课后作业(一)看课本P36~38.(二)课本P39习题2.2(三)1.预习内容:P41~42生]可以把这两个负数用数轴上的两个点表示.在右边的那个数总比在左边的那个数大.学生分小组讨论并总结,教师及时给与鼓励,肯定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六课时数轴(1)
二、教学目标
1.使学生正确理解数轴的意义,掌握数轴的三要素;
2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;
3.使学生初步理解数形结合的思想方法.
三、教学重点和难点
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有认知结构提出问题
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.
(二)、讲授新课
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.
进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.
三、运用举例变式练习
例1画一个数轴,并在数轴上画出表示下列各数的点:
例2指出数轴上A,B,C,D,E各点分别表示什么数.
课堂练习
说出下面数轴上A,B,C,D,O,M各点表示什么数?
最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.
(四)、小结
指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.
七、练习设计
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)A,H,D,E,O各点分别表示什么数?
2.在下面数轴上,A,B,C,D各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
八、板书设计
2.2数轴(1)
(一)知识回顾(三)例题解析(五)课堂小结
例1、例2
(二)观察发现(四)课堂练习练习设计
九、教学后记
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.。