R语言实验报告习题详解

合集下载

R语言实验报告—回归分析在女性身高与体重的应用

R语言实验报告—回归分析在女性身高与体重的应用

R语言实验报告—回归分析在女性身高与体重的应用【引言】身高和体重是人体健康状况的重要指标之一,身高一般与体重成正比,但具体的关系因个体差异而异。

为了探究女性身高与体重之间的关系,并通过回归分析建立二者之间的数学模型,本实验使用R语言进行实验。

【数据获取与处理】从网上收集了100名女性的身高和体重数据作为样本。

数据处理阶段,首先对数据进行了基本统计分析,包括计算身高和体重的平均值、标准差等;然后,进行了数据可视化,使用散点图展示了身高和体重之间的关系。

【回归建模】接下来,使用R语言进行回归分析建模。

假设身高为自变量x,体重为因变量y,建立线性回归模型y=β0+β1x+ε,其中ε为误差项。

使用最小二乘法对样本数据进行拟合,估计模型参数β0和β1【模型评估】为了评估模型的拟合程度,使用R方值和均方根误差(RMSE)进行评估。

R方值越接近1表示模型拟合效果越好,RMSE值越小表示模型预测结果与实际数据越接近。

【结果讨论】根据回归分析得到的模型参数估计值,可以判断女性身高和体重之间存在正相关关系。

同时,R方值为0.8,表明模型拟合效果较好。

但是,RMSE为3.2,表示模型的预测误差较大,可能存在其他影响体重的因素未考虑。

【结论】回归分析可以帮助我们了解女性身高和体重之间的关系,并建立数学模型预测体重。

本实验结果显示女性的身高与体重存在正相关关系。

但是,模型的预测效果可能还可以改进,需要进一步考虑其他可能的影响因素,例如年龄、饮食习惯等。

[2] Guo SS, Chumlea WC. Tracking of body mass index in children in relation to overweight in adulthood. Am J Clin Nutr, 1999, 70(1):145S-148S.【附录】实验中使用的R代码如下:```R#数据处理与可视化data <- read.csv("data.csv") # 读取数据文件summary(data) # 统计数据plot(data$height, data$weight, xlab="身高", ylab="体重",main="身高与体重关系散点图") # 绘制散点图#回归分析model <- lm(weight ~ height, data=data) # 建立回归模型summary(model) # 查看模型摘要信息plot(data$height, data$weight, xlab="身高", ylab="体重",main="身高与体重关系散点图") # 绘制散点图abline(model, col="red") # 绘制回归线#模型评估Rsquared <- summary(model)$r.squared # 计算R方值RMSE <- sqrt(mean((data$weight-predict(model))^2)) # 计算RMSE值```【Acknowledgement】感谢所有参与实验的被试者,以及提供数据的相关组织或个人。

R语言实验报告

R语言实验报告

一、实验目的1.用 R 生成服从某些具体已知分布的随机变量二、实验内容在 R 中各种概率函数都有统一的形式,即一套统一的前缀+分布函名:d 表示密度函数(density);p 表示分布函数(生成相应分布的累积概率密度函数);q 表示分位数函数,能够返回特定分布的分位(quantile);r 表示随机函数,生成特定分布的随机数(random)。

1、通过均匀分布随机数生成概率分布随机数的方法称为逆变换法。

对于任意随机变量X,其分布函数为F,定义其广义逆为:F-(u)=inf{x;F(x)≥u}若u~u (0,1),则F-(u)和X 的分布一样Example 1 如果X~Exp(1)(服从参数为 1 的指数分布),F(x)=1-e-x。

若u=1-e-x并且u~u(0,1),则X=-logU~Exp(1)则可以解出x=-log(1-u)通过随机数生成产生的分布与本身的指数分布结果相一致R 代码如下:nsim = 10^4U = runif(nsim)X = -log(U)Y = rexp(nsim)X11(h=3.5)Xpar(mfrow=c(1,2),mar=c(2,2,2,2))hist(X,freq=F,main="Exp from Uniform",ylab="",xlab="",ncl=150,col="grey",xlim=c(0,8))curve(dexp(x),add=T,col="sienna",lwd=2)hist(Y,freq=F,main="Exp from R",ylab="",xlab="",ncl=150,col="grey",xlim=c(0,8))curve(dexp(x),add=T,col="sienna",lwd=2)2、某些随机变量可由指数分布生成。

R语言总和性试验

R语言总和性试验

中北大学理学院实验报告实验课程名称:R语言与统计分析实验类别:验证型专业:应用统计学班级: 13080441学号: 1308044142姓名:吴庚雷中北大学理学院R语言与统计分析综合实验【实验类型】验证性【实验目的】(1)掌握利用R语言实现数据处理并进行严格的统计分析;(2)学会运用R语言进行程序的编写;(3)熟练掌握R语言绘图功能;(4)掌握R语言统计分析中的“参数估计”,“假设检验”,“方差分析”,“回归分析”,等基本分析函数。

【实验要求】(1)实验过程要求用R软件完成;(2)实验结果逐个导入Word文档,并按问题作出解释;(3)实验报告按照既定格式书写。

【实验仪器与软件平台】计算机 R软件【实验前的预备知识】1、实验室电脑要求安装有R软件;2、上实验课程的学生要对涉及到的统计概念有所了解;3、要求学生事先查阅并熟悉R的相关命令。

【实验内容】第二章:1、用rep()构造一个向量x,它由3个3,4个2,5个1构成。

x<-rep(c(3,2,1),c(3,4,5))2、由1.2...16构成两个方阵,其中矩阵A按列输入,矩阵B按行输入,并计算以下:A<-matrix(1:16,4,4)B<-matrix(1:16,4,4,byrow=TRUE)1、C=A+B2、> D=A*B3、> E=A%*%B4、F<-A[-3,][,1] [,2] [,3] [,4][1,] 1 5 9 13 [2,] 2 6 10 14 [3,] 4 8 12 16> G<-B[,-3][,1] [,2] [,3][1,] 1 2 4[2,] 5 6 8[3,] 9 10 12[4,] 13 14 16> H=F%*%G3、函数solve()有两个作用;solve(A,b)可用于求解线性方程组Ax=b,solve(A)可用于求解矩阵A的逆,用两种方法编程求解方程组Ax=b的解。

报告R语言实验五..docx

报告R语言实验五..docx

实验五常见分布的相关计算、随机抽样与模拟【实验类型】验证性【实验学时】2 学时【实验目的】1、掌握常见分布的分布函数、密度函数(或分布列)及分位数的计算方法;2、掌握样本统计量的计算方法及所表达的意义;3、了解随机模拟的基本思想及其应用。

【实验内容】1、组合数与组合方案的生成、概率的计算,2、常见分布的分布函数、密度函数(或分布列)以及分位数的计算;3、随机数的生成与随机模拟(蒙特卡洛仿真) 。

【实验方法或步骤】第一部分、课件例题:1.#从1~5 个数中,随机取3个的全部组合combn(1:5,3) # 共10 种组合方案combn(1:5,3,FUN=mean) # 对每种组合方案求均值choose(5,3) # 从5 个数里面选3个的组合数目choose(50,3)factorial(10) # 计算10!3.#3. 从一副完全打乱的52张扑克中任取 4 张,计算下列事件的概率#(1) 抽取 4 张依次为红心A,方块A,黑桃A和梅花A的概率1/prod(49:52) #prod() 表示连乘积#(2) 抽取 4 张为红心A,方块A,黑桃A和梅花A的概率.1/choose(52,4)4.设在15 只同类型的零件中有2只是次品,一次任取3只,以X表示次品的只数,求X的分布律.x<-c(1,1,rep(0,13));x # 样本空间( 用1 表示次品, 0 为正品) X<-combn(x,3,FUN=sum) #从样本空间中任取 3 个元素的方案,并对每个方案求和,共455 个数(取值0,1,2 )p<-numeric(3) # 定义p 为数值型的 3 维向量,且初值为0for (i in 1:3)p[i]<-sum(X==i-1)/length(X) #sum(X==i-1) 表示对X 取值为i-1 的个数求和,X 的长度为455# 例5.3 :计算3σ 原则对应的概率x <- 1:3; p <- pnorm(x) - pnorm(-x); p# 例5.4 :令α=0.025 ,计算上α 分位点z α alpha <- 0.025; z <- qnorm(1-alpha); z6.#例5.5 :计算P{X≤160} ,其中X~U[150,200] 。

r语言实验报告

r语言实验报告

武夷学院实验报告课程名称:大数据挖掘与统计机器学习项目名称:多元统计分析与R语言建模姓名:__张树捷__专业:数学与应用数学班级:__2班_学号:__20171071203__同组成员:无_时间:______一、实验部分:P37 3m=seq(0,3000,by=300)hist(as.matrix(jie),m,freq=F,col=1:7)m=seq(0,3000,by=300)hist(as.matrix(jie),m,freq=T,col=1:7)m=seq(0,96000,by=3000)t<-as.matrix(jie)cumsum(t)hist(cumsum(t),m,freq=F,col=1:12,las=3) 累计频率图:p55 二、2barplot(apply(dier,1,mean),las=3)#按行作均值条形图barplot(apply(dier,2,mean))#按列作均值图条形图boxplot(dier)#按列作箱尾图boxplot(dier,horizontal = T)#箱尾图中图形按水平放置stars(dier,full=T,key.loc = c(13,1.5))#具有图例的360度星相图stars(dier,full=T,draw.segments = T,key.loc = c(13,1.5))#具有图例的3 60度彩色星相图summary(dier)#数据分析图表faces(dier,ncol.plot = 7)#按每行7个作脸谱图library(MSG)#加载msg包andrews_curve(dier)#绘制调和曲线图P87 4cor(disan)#计算相关系数矩阵plot(disan)#散点图library(psych)#加载psych包corr.test(disan)#y,x1,x2,x3的相关系数fm=lm(y~.,data=disan)#显示多元线性回归模型summary(fm)#多元线性回归系数t检验(拟合优度检验)由于P<0.05,于是在05.0=α水平处拒绝0H ,接受1H ,即x1,x2,x3与y 之间存在回归关系。

R语言实验三

R语言实验三

实验三数组的运算、求解方程(组)和函数极值、数值积分【实验类型】验证性【实验学时】2 学时【实验目的】1、掌握向量的四则运算和内积运算、矩阵的行列式和逆等相关运算;2、掌握线性和非线性方程(组)的求解方法,函数极值的求解方法;3、了解 R 中数值积分的求解方法。

【实验内容】1、向量与矩阵的常见运算;2、求解线性和非线性方程(组);3、求函数的极值,计算函数的积分。

【实验方法或步骤】第一部分、课件例题:1.向量的运算x<-c(-1,0,2)y<-c(3,8,2)v<-2*x+y+1vx*yx/yy^xexp(x)sqrt(y)x1<-c(100,200); x2<-1:6; x1+x22.x<-1:5y<-2*1:5x%*%ycrossprod(x,y)x%o%ytcrossprod(x,y)outer(x,y)3.矩阵的运算A<-matrix(1:9,nrow=3,byrow=T);AA+1 #A的每个元素都加上1B<-matrix(1:9,nrow=3); BC<-matrix(c(1,2,2,3,3,4,4,6,8),nrow=3); C D<-2*C+A/B; D #对应元素进行四则运算x<-1:9A+x #矩阵按列与向量相加E<-A%*%B; E #矩阵的乘法y<-1:3A%*%y #矩阵与向量相乘crossprod(A,B) #A的转置乘以Btcrossprod(A,B) #A乘以B的转置4.矩阵的运算A<-matrix(c(1:8,0),nrow=3);At(A) #转置det(A) #求矩阵行列式的值diag(A) #提取对角线上的元素A[lower.tri(A)==T]<-0;A #构造A对应的上三角矩阵qr.A<-qr(A);qr.A #将矩阵A分解成正交阵Q与上三角阵R的乘积,该结果为一列表Q<-qr.Q(qr.A);Q;R<-qr.R(qr.A);R #显示分解后对应的正交阵Q与上三角阵Rdet(Q);det(R);Q%*%R #A=Q*Rqr.X(qr.A) #显示分解前的矩阵5.解线性方程组A<-matrix(c(1:8,0),nrow=3,byrow=TRUE)b<-c(1,1,1)x<-solve(A,b); x #解线性方程组Ax=bB<-solve(A); B #求矩阵A的逆矩阵BA%*%B #结果为单位阵6.非线性方程求根f<-function(x) x^3-x-1 #建立函数uniroot(f,c(1,2)) #输出列表中f.root为近似解处的函数值,iter为迭代次数,estim.prec为精度的估计值uniroot(f,lower=1,upper=2) #与上述结果相同polyroot(c(-1,-1,0,1)) #专门用来求多项式的根,其中c(-1,-1,0,1)表示对应多项式从零次幂项到高次幂项的系数7.求解非线性方程组(1)自编函数: (Newtons.R)Newtons<-function (funs, x, ep=1e-5, it_max=100){index<-0; k<-1while (k<=it_max){ #it_max 表示最大迭代次数x1 <- x; obj <- funs(x);x <- x - solve(obj$J, obj$f); #Newton 法的迭代公式norm <- sqrt((x-x1) %*% (x-x1))if (norm<ep){ index<-1; break #index=1 表示求解成功}; k<-k+1 }obj <- funs(x);list(root=x, it=k, index=index, FunVal= obj$f)} # 输出列表(2)调用求解非线性方程组的自编函数funs<-function(x){ f<-c(x[1]^2+x[2]^2-5, (x[1]+1)*x[2]-(3*x[1]+1)) # 定义函数组J<-matrix(c(2*x[1], 2*x[2], x[2]-3, x[1]+1), nrow=2,byrow=T) # 函数组的 Jacobi 矩阵list(f=f, J=J)} # 返回值为列表 : 函数值 f 和 Jacobi 矩阵 Jsource("F:/wenjian_daima/Newtons.R") # 调用求解非线性方程组的自编函数Newtons(funs, x=c(0,1))8.一元函数极值f<-function(x) x^3-2*x-5 # 定义函数optimize(f,lower=0,upper=2) # 返回值 : 极小值点和目标函数f<-function(x,a) (x-a)^2 # 定义含有参数的函数optimize(f,interval=c(0,1),a=1/3) # 在函数中输入附加参数9.多元函数极值(1)obj <-function (x){ # 定义函数F<-c(10*(x[2]-x[1]^2),1-x[1]) # 视为向量sum (F^2) } # 向量对应分量平方后求和nlm(obj,c(-1.2,1))(2)fn<-function(x){ # 定义目标函数F<-c(10*(x[2]-x[1]^2), 1-x[1])t(F)%*%F } # 向量的内积gr <- function(x){ # 定义梯度函数F<-c(10*(x[2]-x[1]^2), 1-x[1])J<-matrix(c(-20*x[1],10,-1,0),2,2,byrow=T) #Jacobi 矩阵2*t(J)%*%F } # 梯度optim(c(-1.2,1), fn, gr, method="BFGS")最优点 (par) 、最优函数值 (value)10.梯形求积分公式(1)求积分程序: (trape.R)trape<-function(fun, a, b, tol=1e-6){ # 精度为 10 -6N <- 1; h <- b-a ; T <- h/2 * (fun(a) + fun(b)) # 梯形面积 repeat{h <- h/2; x<-a+(2*1:N-1)*h; I <-T/2 + h*sum(fun(x)) if(abs(I-T) < tol) break; N <- 2 * N; T = I }; I}(2)source("F:/wenjian_daima/trape.R") # 调用函数f<-function(x) exp(-x^2)trape(f,-1,1)(3)常用求积分函数f<-function(x)exp(-x^2) # 定义函数integrate(f,0,1)integrate(f,0,10)integrate(f,0,100)integrate(f,0,10000) # 当积分上限很大时,结果出现问题integrate(f,0,Inf) # 积分上限为无穷大ft<-function(t) exp(-(t/(1-t))^2)/(1-t)^2 # 对上述积分的被积函数 e 2 作变量代换 t=x/(1+x) 后的函数integrate(ft,0,1) # 与上述计算结果相同,且精度较高第二部分、教材例题:1.随机抽样(1)等可能的不放回的随机抽样:> sample(x, n) 其中x为要抽取的向量, n为样本容量(2)等可能的有放回的随机抽样:> sample(x, n, replace=TRUE)其中选项replace=TRUE表示有放回的, 此选项省略或replace=FALSE表示抽样是不放回的sample(c("H", "T"), 10, replace=T)sample(1:6, 10, replace=T)(3)不等可能的随机抽样:> sample(x, n, replace=TRUE, prob=y)其中选项prob=y用于指定x中元素出现的概率, 向量y与x等长度sample(c("成功", "失败"), 10, replace=T, prob=c(0.9,0.1))sample(c(1,0), 10, replace=T, prob=c(0.9,0.1))2.排列组合与概率的计算1/prod(52:49)1/choose(52,4)3.概率分布qnorm(0.025) #显著性水平为5%的正态分布的双侧临界值qnorm(0.975)1 - pchisq(3.84, 1) #计算假设检验的p值2*pt(-2.43, df = 13) #容量为14的双边t检验的p值4.limite.central( )的定义limite.central <- function (r=runif, distpar=c(0,1), m=.5,s=1/sqrt(12),n=c(1,3,10,30), N=1000) {for (i in n) {if (length(distpar)==2){x <- matrix(r(i*N, distpar[1],distpar[2]),nc=i)}else {x <- matrix(r(i*N, distpar), nc=i)}x <- (apply(x, 1, sum) - i*m )/(sqrt(i)*s)hist(x,col="light blue",probability=T,main=paste("n=",i), ylim=c(0,max(.4, density(x)$y)))lines(density(x), col="red", lwd=3)curve(dnorm(x), col="blue", lwd=3, lty=3, add=T)if( N>100 ) {rug(sample(x,100))}else {rug(x)}}}5.直方图x=runif(100,min=0,max=1)hist(x)6.二项分布B(10,0.1)op <- par(mfrow=c(2,2))limite.central(rbinom,distpar=c(10,0.1),m=1,s=0.9)par(op)7.泊松分布: pios(1)op <- par(mfrow=c(2,2))limite.central(rpois, distpar=1, m=1, s=1, n=c(3, 10, 30 ,50)) par(op)8.均匀分布:unif(0,1)op <- par(mfrow=c(2,2))limite.central( )par(op)9.指数分布:exp(1)op <- par(mfrow=c(2,2))limite.central(rexp, distpar=1, m=1, s=1)par(op)10.混合正态分布的渐近正态性mixn <- function (n, a=-1, b=1){rnorm(n, sample(c(a,b),n,replace=T))}limite.central(r=mixn, distpar=c(-3,3),m=0, s=sqrt(10), n=c(1,2,3,10)) par(op)11.混合正态分布的渐近正态性op <- par(mfrow=c(2,2))mixn <- function (n, a=-1, b=1){rnorm(n, sample(c(a,b),n,replace=T))}limite.central(r=mixn, distpar=c(-3,3),m=0,s=sqrt(10),n=c(1,2,3,10)) par(op)第三部分、课后习题:3.1a=sample(1:100,5)asum(a)3.2(1)抽到10、J、Q、K、A的事件记为A,概率为P(A)=1(5220)其中在R中计算得:> 1/choose(52,20)[1] 7.936846e-15(2)抽到的是同花顺P(B)=(41)(91) (525)在R中计算得:> (choose(4,1)*choose(9,1))/choose(52,5) [1] 1.385e-053.3#(1)x<-rnorm(1000,mean=100,sd=100)hist(x)#(2)y<-sample(x,500)hist(y)#(3)mean(x)mean(y)var(x)var(y)3.4x<-rnorm(1000,mean=0,sd=1) y=cumsum(x)plot(y,type = "l")plot(y,type = "p")3.5x<-rnorm(100,mean=0,sd=1) qnorm(.025)qnorm(.975)t.test(x)由R结果知:理论值为[-1.96,1.96],实际值为:[-0.07929,0.33001]3.6op <- par(mfrow=c(2,2))limite.central(rbeta, distpar=c(0.5 ,0.5),n=c(30,200,500,1000))par(op)3.7N=seq(-4,4,length=1000)f<-function(x){dnorm(x)/sum(dnorm(x))}n=f(N)result=sample(n,replace=T,size = 1000)standdata=rnorm(1000)op<-par(mfrow=c(1,2)) #1行2列数组按列(mfcol)或行(mfrow)各自绘图hist(result,probability = T)lines(density(result),col="red",lwd=3)hist(standdata,probability = T)lines(density(standdata),col="red",lwd=3) par(op)。

R语言实验六

R语言实验六

R语言实验六实验六重要的参数检验与功效检验【实验类型】验证性【实验学时】2 学时【实验目的】1、掌握假设检验的基本思想;2、掌握重要的参数检验及功效检验的求解方法;3、了解非参数假设检验的基本思想及求解方法。

【实验内容】1、参数检验(t 检验、F 检验、二项分布检验和泊松检验等)的计算;2、功效检验的计算;3、非参数检验(符号与秩检验、分布的检验、相关性检验等)的求解。

【实验方法或步骤】第一部分、课件例题:#1 例6.2X<-c(159, 280, 101, 212, 224, 379, 179, 264,222, 362, 168, 250, 149, 260, 485, 170)t.test(X, alternative = "greater", mu = 225) #单侧检验由于p值(= 0.257)>0.05,不能拒绝原假设,接受H 0 ,即认为平均寿命不大于225h#2 例6.3X<-c(78.1, 72.4, 76.2, 74.3, 77.4, 78.4, 76.0, 75.5, 76.7, 77.3) Y<-c(79.1, 81.0, 77.3, 79.1, 80.0, 79.1,79.1, 77.3, 80.2, 82.1) t.test(X, Y, al = "l", var.equal = T) #H 1 :μ 1 -μ 2 <0t.test(X, Y, al = "l") #使用总体方差不同模型t.test(X, Y, al = "l", paired = TRUE) #配对数据检验## 公式形式obtain<-data.frame(value = c(78.1, 72.4, 76.2, 74.3, 77.4, 78.4, 76.0,75.5, 76.7, 77.3, 79.1, 81.0, 77.3, 79.1,80.0, 79.1, 79.1, 77.3, 80.2, 82.1),group = gl(2, 10)) #生成2水平、各有10个元素的因子向量t.test(value ~ group, data = obtain,alternative = "less", var.equal = TRUE)由于p值(= 0.000218)<0.05,拒绝原假设,即接受H 1 ,再利用μ 1 -μ 2 的置信区间,可以说明新操作方法能够提高得率。

R语言实验四

R语言实验四

R语言编程技术实验报告
题目:数据的导入导出
院系:计算机科学与工程学院
班级:170408
姓名:刘馨雨
学号:20172693
【实验题目】
数据的导入导出。

【实验目的】
1.熟练掌握从一些包中读取数据。

2.熟练掌握csv文件的导入。

3.创建一个数据框,并导出为csv格式。

【实验内容与实现】
1.创建一个csv文件(内容自定),并用readtable函数导入该文件。

图1.1 vim命令,按shift+zz可保存退出。

图1.2 进入R语言环境
图1.3 读取文件
2.查看R语言自带的数据集airquality(纽约1973年5-9月每日空气质量)。

图2 截了前24行
3.列出airquality的前十列,并将这前十列保存到air中。

图3.1 列出前十列
图3.2 保存到air数据框中
图3.3 保存到air.csv中并读取4.任选三个列,查看airquality中列的对象类型。

图4 查看3、4、5行数据类型5.使用names查看airquality数据集中各列的名称
图5
6.将air这个数据框导出为csv格式文件。

(write.table (x, file ="", sep ="", s =TRUE, s =TRUE, quote =TRUE))
图6 导出为test.csv并查看当前目录文件
【实验心得】
1.第3题出现了三个错误。

2.第4题出现了两个错误。

3.第5题出错name改为names。

4.第6题出现的错误没太明白,准备上课询问老师。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R语言实验报告习题详

标准化工作室编码[XX968T-XX89628-XJ668-XT689N]
R语言实验报告
习题详解
学院:
班级:
学号:
姓名:
导师:
成绩:
目录
一、实验目的
R是用于统计分析、绘图的语言和操作环境。

R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具;
本次试验要求掌握了解R语言的各项功能和函数,能够通过完成试验内容对R语言有一定的了解,会运用软件对数据进行分析;
通过本实验加深对课本知识的理解以及熟练地运用R语言软件来解决一些复杂的问题。

二、实验内容
1.1问题叙述
将1,2,…,20构成两个4×5阶的矩阵,其中矩阵A是按列输入,矩阵B 是按行输入,并做如下运算.
C=A+B;
D=A*B;
F是由A的前3行和前3列构成的矩阵;
G是由矩阵B的各列构成的矩阵,但不含B的第3列.
1.2问题求解
1.2.1创建按列、行输入的4×5矩阵;
程序求解
1.3结果展示
2.1问题叙述
已知有5名学生的数据,如下表所示.用数据框的形式读入数据.
2.2问题求解
StudentData数据框
程序求解
2.3结果展示
3.1问题叙述
3.2问题求解
直方图;
3.2.2运用lines函数绘制密度估计曲线;
3.2.3运用plot 函数绘制经验分布图;
3.2.4运用qqnorm 函数绘制QQ 图
3.3结果展示
直方图 密度估计曲线 经验分布图 QQ 图
4.1问题叙述
甲、乙两种稻谷分别播种在10块试验田中,每块实验田甲乙稻谷各种一半.假设两稻谷产量X ,Y 均服从正态分布,且方差相等.收获后10块试验田的产量
求出两稻种产量的期望差
12μμ- 的置信区间(0.05α= ).
4.2问题求解

t.test 函数求解
4.3结果展示
由以上程序运行得两稻种产量的期望差12μμ-的95%置信区间为 [ 7.53626, 20.06374].
5.1问题叙述
甲乙两组生产同种导线,现从甲组生产的导线中随机抽取4根,从乙组生产的导线中随机抽取5根,它们的电阻值(单位:Ω )分别为
假设两组电阻值分别服从正态分布
222
12(,)(,)N N μσμσσ和, 未知.试求
12
μμ-的置信区间系数为0.95的区间估计.
5.2问题求解

t.test 函数求解
5.3结果展示
Two Sample t-test data: x and y
t = 1.198, df = 7, p-value = 0.2699
alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.001996351 0.006096351 sample estimates: mean of x mean of y 0.14125 0.13920
由以上程序运行甲乙两电阻的期望差12μμ-的95%置信区间为[-
0.001996351, 0.006096351].
6.1问题叙述
已知某种灯泡寿命服从正态分布,在某星期所生产的该灯泡中随机抽取10只,测得其寿命(单位:小时)为
1067 919 1196 785 1126 936 918 1156 920 948 求这个星期生产出的灯泡能使用1000小时以上的概率.
6.2问题求解
x 数据框
pnorm 函数求解
6.3结果展示
由以上程序运行得,x<=1000的概率为0.509,故x大于1000的概率为0.491.
三、实验总结
在R语言实验学习中,通过实验操作可使我们加深对理论知识的理解,学习和掌握R语言的基本方法,并能进一步熟悉和掌握R软件的操作方法,培养我们分析和解决实际问题的基本技能,提高我们的综合素质.。

相关文档
最新文档