静态随机存储器实验
静态存储器 实验报告

静态存储器实验报告静态存储器实验报告引言:静态存储器(Static Random Access Memory,简称SRAM)是一种常见的存储器类型,具有快速读写速度和稳定性等优点。
在本次实验中,我们将对SRAM 进行测试和分析,以评估其性能和可靠性。
实验目的:1. 了解静态存储器的基本原理和工作方式;2. 测试SRAM的读写速度和稳定性;3. 分析SRAM的性能特点和应用范围。
实验步骤:1. 准备工作:搭建SRAM测试平台,包括电源、控制电路和数据输入输出接口等;2. 读写速度测试:通过控制电路发送读写指令,并记录SRAM的读写时间;3. 稳定性测试:连续进行大量的读写操作,并观察SRAM的稳定性表现;4. 性能分析:根据测试结果,分析SRAM的读写速度、稳定性和功耗等性能指标。
实验结果:1. 读写速度:经过多次测试,我们得出了SRAM的平均读写速度为XX ns。
这一速度相对较快,适用于对存储器响应速度要求较高的应用场景。
2. 稳定性:在连续读写测试中,SRAM表现出了较好的稳定性,未出现数据丢失或错误的情况。
这证明了SRAM在数据存储和传输过程中的可靠性。
3. 功耗:SRAM在读写操作时会消耗一定的功耗,但相对于动态存储器(DRAM)而言,SRAM的功耗较低。
这使得SRAM在低功耗要求的电子设备中具有一定的优势。
讨论与分析:1. SRAM的优点:相对于动态存储器,SRAM具有读写速度快、稳定性高和功耗低等优点。
这使得SRAM在高性能计算机、嵌入式系统和高速缓存等领域得到广泛应用。
2. SRAM的缺点:与之相对应的是,SRAM的成本较高。
由于SRAM采用了更复杂的电路结构,导致其制造成本较高。
这使得SRAM在大容量存储器领域的应用受到一定的限制。
3. SRAM的应用范围:由于SRAM的快速读写速度和稳定性,它在高性能计算领域得到了广泛应用。
同时,由于SRAM的低功耗特性,它也适用于移动设备、物联网和嵌入式系统等低功耗要求的场景。
计算机组成原理实验之静态随机存储器实验

图1 存储器实验原理图1静态随机存储器实验一.实验目的掌握静态随机存储器RAM 工作特性及数据的读写方法。
二.实验设备1.TDN-CM+或TDN-CM++教学实验系统一台。
2.PC 微机(或示波器)一台。
三.实验原理实验所用的半导体静态存储器电路原理如图所示,实验中的静态存储器由一片6116 (2K ×8)构成,其数据线接至数据总线,地址线由地址锁存器(74LS273)给出。
地址灯AD0~AD7与地址线相连,显示地址线内容。
数据开关经一个三态门(74LS245)连至数据总线,分时给出地址和数据。
实验四图2 静态随机存储器实验接线图2 因地址寄存器为8位,所以接入6116的地址为A7~A0,而高三位A8~A10接地,所以其实际容量为256字节。
6116有三个控制线:CE (片选线)、OE (读线)、WE (写线)。
当片选有效(CE=0)时,OE=0时进行读操作,WE=0时进行写操作。
本实验中将OE 常接地,在此情况下,当CE=0、WE=0时进行读操作,CE=0、WE=1时进行写操作,其写时间与T3脉冲宽度一致。
实验时将T3脉冲接至实验板上时序电路模块的TS3相应插孔中,其脉冲宽度可调,其它电平控制信号由“SWITCH UNIT ”单元的二进制开关模拟,其中SW-B 为低电平有效,LDAR 为高电平有效。
四.实验步骤(1) 形成时钟脉冲信号T3。
具体接线方法和操作步骤如下:① 接通电源,用示波器接入方波信号源的输出插孔H23,调节电位器W1及W2 ,使H23端输出实验所期望的频率及占空比的方波。
② 将时序电路模块(STATE UNIT )单元中的ф和信号源单元(SIGNAL UNIT )中的H23排针相连。
③在时序电路模块中有两个二进制开关“STOP ”和“STEP ”。
将“STOP ”开关置为“RUN ”状态、“STEP ”开关置为“EXEC ”状态时,按动微动开关START ,则TS3端即输出为连续的方波信号,此时调节电位器W1,用示波器观察,使T3输出实验要 求的脉冲信号。
静态随机存储器实验报告 计算机组成原理

1.接线:MBUSB连US2;
EXJ1连BUS3;
跳线器J22的T3连TS3;
跳线器J16的SP连H23。
2.跳线器SWB、CE、WE、LDAR拨在左边(手动位置)。
3.接通电源。
四、实验结论和体会
1.通过本次实验,我掌握了静态随机存储器RAM工作特性,还掌握了数据的读写方法。
2.本次实验按照老师的要求,我选取了如下三组数:
1)0100 0100
0011 0011
2)1000 1000
1110 1110
3)110数据依次存入到相应地址中,并成功读取了写入地址单元的内容,内容与写入的一致。
3.本次实验还让我学到了团队合作的重要性,线路是我和搭档两个人接的,我们两个人很好的合作,最后,成功地完成了实验,本次实验,我受益匪浅。
《计算机组成与结构》课程实验报告
实验名称
静态随机存储器实验
实验序号
3
实验日期
2013.3.29
姓名
院系
计算机
班级
学号
专业
计算机科学与技术
指导教师
成绩
一、实验目的及要求
1.掌握静态随机存储器RAM工作特性及;
2.掌握数据的读写方法。
三、实验内容
1.形成时钟脉冲信号T3。在时序电路模块中有两个二进制开关“运行控制”和“运行方式”。将“运行控制”开关置为“运行”状态、“运行方式”开关置为“单步”状态,每按动“启动运行”开关,则T3输出一个正单脉冲,其脉冲宽度与连续方式相同。
2.给存储器的00地址单元中写入数据11。SWB=1;KD0~KD7=00000000;SWB=0;CE=1;SWB=0;CE=1;LDAR=1;T3启动运行;SWB=1;KD0~KD7=00010001;SWB=0;LDAR=0;SWB=0;CE=0;WE=1;LDAR=0;T3启动运行;
静态存储器实验报告

静态存储器实验报告静态存储器实验报告引言静态存储器是计算机中重要的一部分,它用于存储和读取数据。
本实验旨在通过实际操作,深入了解静态存储器的原理和工作方式。
通过观察和分析实验结果,我们可以更好地理解计算机内存的工作原理,并且为日后的学习和研究打下基础。
实验目的本实验的主要目的是探究静态存储器的工作原理,并通过实际操作来验证理论知识。
具体的实验目标如下:1. 了解静态存储器的组成和结构;2. 掌握静态存储器的读写操作;3. 分析实验结果,深入理解静态存储器的工作原理。
实验器材与方法实验器材:1. 静态存储器芯片;2. 逻辑分析仪;3. 示波器;4. 电源供应器;5. 连接线等。
实验方法:1. 连接静态存储器芯片到逻辑分析仪和示波器上,确保信号传输的正确性;2. 使用逻辑分析仪和示波器监测存储器读写操作的时序信号;3. 进行一系列的读写操作,并记录实验数据;4. 分析实验结果,总结静态存储器的工作原理。
实验过程与结果在实验过程中,我们首先将静态存储器芯片正确连接到逻辑分析仪和示波器上,以确保信号传输的正确性。
然后,我们进行了一系列的读写操作,并使用逻辑分析仪和示波器监测了存储器读写操作的时序信号。
通过分析实验结果,我们观察到了以下几点:1. 静态存储器的读写操作是基于地址信号和数据信号的传输。
读操作时,通过给定地址信号,存储器将对应地址的数据输出;写操作时,通过给定地址信号和数据信号,存储器将对应地址的数据写入。
2. 存储器的读写操作需要一定的时间,这是由存储器芯片内部的电路结构和时序要求决定的。
我们通过示波器观察到了读写操作的时序信号,包括地址信号和数据信号的传输时间。
3. 存储器的读写操作是可靠的,我们进行了多次读写操作,并观察到了一致的实验结果。
讨论与分析通过本次实验,我们深入了解了静态存储器的工作原理和操作方法。
静态存储器是计算机内存的重要组成部分,它的性能和可靠性对计算机的整体性能有着重要影响。
北科大计组原理实验报告_静态随机存储器

北京科技大学计算机与通信工程学院实验报告实验名称:静态随机存储器学生姓名:专业:计算机科学与技术班级:学号:指导教师:实验成绩:实验地点:机电楼301实验时间:2015 年 6 月 1 日一、实验目的与实验要求1、实验目的(1)掌握微程序控制器的组成原理;(2)掌握微程序的编制、写入方法;(3)观察并掌握微程序的运行过程;(4)掌握静态随机存储器的基本结构;(5)掌握静态随机存储器RAM工作特性及数据的读写方法。
2、实验要求(1)验证性实验:微程序控制器实验(2)用QuartusⅡ软件编写一个静态随机存储器二、实验设备(环境)及要求实验箱,Window 8,QuartusⅡ软件三、实验内容与步骤1、实验1(1)实验原理微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制的硬件逻辑部件工作的微命令序列,完成数据传送和各种处理操作。
它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示成为微命令。
这样就可以用一个由多条微指令组成的序列表示一条机器指令,这种微指令序列称为微程序。
微程序存储在一种专用的存储器中,成为控制存储器,微程序控制器原理框图如图3.25所示。
本实验所用的微程序控制器单元主要有编程部分和核心微控器组成,如图3.26所示。
本实验中的微指令字长共24位,控制位顺序如表3.8所示。
本实验安排了四条机器指令,分别为ADD(0000 0000)、IN(0010 0000)、OUT(0011 0000)和HLT(0101 0000),括号中为各指令的二进制代码,指令格式如表3.9所示,其中高4位为操作码。
实验中的4条机器指令由CON单元的二进制开关手动给出,其余单元的控制信号均由微程序控制器自动产生,为此可以设计出相应的数据通路图,见图3.27所示。
将全部微程序按微指令格式变成二进制微代码,可得到表3.10的二进制代码表。
静态随机存储器实验报告

静态随机存储器实验报告1. 背景静态随机存储器(SRAM)是一种用于存储数据的半导体器件。
与动态随机存储器(DRAM)相比,SRAM速度更快、功耗更低,但成本更高。
SRAM通常用于高速缓存、寄存器文件和数据延迟线等需要快速访问的应用。
本实验旨在通过设计和实现一个简单的SRAM电路来深入了解SRAM的工作原理和性能特点。
2. 设计和分析2.1 SRAM基本结构SRAM由存储单元组成,每个存储单元通常由一个存储电容和一个存储转换器(存储反转MOSFET)组成。
存储电容用于存储数据位,存储转换器用于读取和写入数据。
存储单元按照空间布局进行编址,每个存储单元都有一个唯一的地址。
地址线和控制线用于选择要读取或写入的存储单元。
SRAM还包括写入电路、读取电路和时钟控制电路等。
2.2 SRAM工作原理在SRAM中,数据是以二进制形式存储。
写入操作通过将所需的位值写入存储电容来完成。
读取操作通过将控制信号应用到存储单元和读取电路上来完成。
读取操作的过程如下: 1. 选择要读取的存储单元,将其地址输入到地址线上; 2. 控制信号使存储单元的存储转换器进入放大模式,将存储电容中的电荷放大到可观测的输出电压; 3. 读取电路将放大后的信号恢复到合适的电平,供外部电路使用。
写入操作的过程如下: 1. 选择要写入的存储单元,将其地址输入到地址线上; 2. 控制信号使存储单元的存储转换器进入写入模式; 3. 将数据位的值输入到写入电路; 4. 控制信号触发写入电路将输入的值写入存储电容。
2.3 SRAM性能指标SRAM的性能指标主要包括存储体积、访问速度、功耗和稳定性。
存储体积是指存储单元和控制电路的总体积,通常以平方毫米(㎡)为单位衡量。
访问速度是指读写操作的平均时间。
它受到电路延迟、线材电容和电阻等因素的影响。
功耗是指SRAM在正常操作期间消耗的总功率,通常以毫瓦(mW)为单位衡量。
功耗由静态功耗和动态功耗组成,其中静态功耗是在存储器处于静止状态时消耗的功率,动态功耗是在读取和写入操作期间消耗的功率。
静态随机存储器实验实验报告

静态随机存储器实验实验报告摘要:本实验通过对静态随机存储器(SRAM)的实验研究,详细介绍了SRAM的工作原理、性能指标、应用领域以及实验过程和结果。
实验使用了仿真软件,搭建了SRAM电路,通过对不同读写操作的观察和分析,验证了SRAM的可靠性和高速性。
一、引言静态随机存储器(SRAM)是一种常用的存储器类型,被广泛应用于计算机系统和其他电子设备中。
它具有存储速度快、数据可随机访问、易于控制等优点,适用于高速缓存、寄存器堆以及其他要求高速读写和保持稳定状态的场景。
本实验旨在通过设计和搭建SRAM电路,深入理解SRAM的工作原理和性能指标,并通过实验验证SRAM的可靠性和高速性。
二、实验设备和原理1. 实验设备本实验使用了以下实验设备和工具:- 电脑- 仿真软件- SRAM电路模块2. SRAM原理SRAM是由静态触发器构成的存储器,它的存储单元是由一对交叉耦合的反相放大器构成。
每个存储单元由6个晶体管组成,分别是两个传输门、两个控制门和两个负反馈门。
传输门被用于读写操作,控制门用于对传输门的控制,负反馈门用于保持数据的稳定状态。
SRAM的读操作是通过将存储单元的控制门输入高电平,将读取数据恢复到输出端。
写操作是通过将数据线连接到存储单元的传输门,将写入数据传输到存储单元。
三、实验过程和结果1. 设计电路根据SRAM的原理和电路结构,我们设计了一个8位的SRAM 电路。
电路中包括8个存储单元和相应的读写控制线。
2. 搭建电路通过仿真软件,我们将SRAM电路搭建起来,连接好各个线路和电源。
确保电路连接正确无误。
3. 进行实验使用仿真软件中提供的读写操作指令,分别进行读操作和写操作。
观察每个存储单元的输出情况,并记录数据稳定的时间。
4. 分析实验结果根据实验结果,我们可以得出以下结论:- SRAM的读操作速度较快,可以满足高速读取的需求。
- SRAM的写操作也较快,但需要保证写入数据的稳定性和正确性。
静态随机存取存贮器实验

计算机组成原理实验报告
写数据:
1、传入数据的存储地址:
照连线图连接实验仪
使nWR = 1,nRD = 1,IN单元的nCS=0、nRD=0(即为禁止对存贮器读写),将IN单元中的地址数据输出
MAR单元的nMAROE = 0,允许MAR中锁存的地址数据输出到地址总线上;wMAR = 0,允许写MAR,按CON单元的STEP键一次,依次发出T1、T2、T3信号,在T3的下降沿,IN单元给出的地址数据锁存到MAR中。
2、写数据在存储地址上
禁止对存储器6116的读写(nWR = 1,nRD = 1)、MAR的写(wMAR = 1);
IN单元的拨动开关给出8位数据,IN单元的nCS=0、nRD=0,允许IN单元
输出;
允许对6116写(M_nIO = 1,nRD = 1, nWR = 0),按uSTEP键三次,在T2
的下降沿,数据写入存储器6116中。
3读取数据
通过in单元给出地址,并紧张in单元输出数据
使 M_nIO = 1,nRD = 0, nWR = 1
在T2、T3信号有效时,6116向数据总线输出数据
实验结果
分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实
验
项
目
静态随机存储器实验实验时间2015-11-14
实
验
目
的
掌握静态随机存储器RAM 工作特性及数据的读写方法。
实
验
设
备
PC机一台,TD-CMA实验系统一套
实验原理
实验所用的静态存储器由一片6116(2K×8bit)构成(位于MEM 单元),如图2-1-1 SRAM 6116引脚图所示。
6116 有三个控制线:CS(片选线)、OE(读线)、WE(写线),其功能如表2-1-1 所示,当片选有效(CS=0)时,OE=0 时进行读操作,WE=0 时进行写操作,本实验将CS 常接地。
图2-1-1 SRAM 6116引脚图
由于存储器(MEM)最终是要挂接到CPU上,所以其还需要一个读写控制逻辑,使得CPU 能控制MEM的读写,实验中的读写控制逻辑如图2-1-2所示,由于T3的参与,可以保证MEM的写脉宽与T3一致,T3由时序单元的TS3给出(时序单元的介绍见附录2)。
IOM用来选择是对I/O 还是对MEM进行读写操作,RD=1时为读,WR=1时为写。
实
验
原
理
图2-1-2 读写控制逻辑
实验原理图如图2-1-3所示,存储器数据线接至数据总线,数据总线上接有8个LED灯显示D7…D0的内容。
地址线接至地址总线,地址总线上接有8个LED灯显示A7…A0的内容,地址由地址锁存器(74LS273,位于PC&AR单元)给出。
数据开关(位于IN单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。
地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。
图2-1-3 存储器实验原理图
实验箱中所有单元的时序都连接至时序与操作台单元,CLR都连接至CON单元的CLR按钮。
实验时T3由时序单元给出,其余信号由CON单元的二进制开关模拟给出,其中IOM应为低(即MEM操作),RD、WR高有效,MR和MW低有效,LDAR高有效。
实验步骤(1)关闭实验系统电源,按图2-1-4连接实验电路,并检查无误,图中将用户需要连接的信号用圆圈标明。
(2)将时序与操作台单元的开关KK1、KK3置为运行档、开关KK2置为‘单步’档。
(3)将CON单元的IOR开关置为1(使IN单元无输出),打开电源开关,如果听到有‘嘀’报警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。
图2-1-4 实验接线图
(4) 给存储器的00H、01H、02H、03H、04H地址单元中分别写入数据11H、12H、13H、14H、15H。
由前面的存储器实验原理图(图2-1-3)可以看出,由于数据和地址由同一个数据开关给出,因此数据和地址要分时写入,先写地址,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0),数据开关输出地址(IOR=0),然后打开地址寄存器门控信号(LDAR=1),按动ST产生T3脉冲,即将地址打入到AR中。
再写数据,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0)和地址寄存器门控信号(LDAR=0),数据开关输出要写入的数据,打开输入三态门(IOR=0),然后使存储器处于写状态(WR=1,RD=0,IOM=0),按动ST产生T3脉冲,即将数据打入到存储器中。
写存储器的流程如图2-1-5所示(以向00地址单元写入11H为例):
图2-1-5 写存储器流程图
(5) 依次读出第00、01、02、03、04号单元中的内容,观察上述各单元中的内容是否与前面写入的一致。
同写操作类似,也要先给出地址,然后进行读,地址的给出和前面一样,而在进行读操作时,应先关闭IN单元的输出(IOR=1),然后使存储器处于读状态(WR=0,RD=1,IOM=0),此时数据总线上的数即为从存储器当前地址中读出的数据内容。
读存储器的流程如图2-1-6所示(以从00地址单元读出11H为例):
图2-1-6 读存储器流程图
如果实验箱和PC联机操作,则可通过软件中的数据通路图来观测实验结果,方法是:打开软件,选择联机软件的“【实验】—【存储器实验】”,打开存储器实验的数据通路图,如图2-1-7所示。
进行上面的手动操作,每按动一次ST按钮,数据通路图会有数据的流动,反映当前存储器所做的操作(即使是对存储器进行读,也应按动一次ST按钮,数据通路图才会有数据流动),或在软件中选择“【调试】—【单周期】”,其作用相当于将时序单元的状态开关置为‘单步’档后按动了一次ST按钮,数据通路图也会反映当前存储器所做的操作,借助于数据通路图,仔细分析SRAM的读写过程。
图2-1-7 数据通路图
实
验
结
果
以从00地址单元读出11H为例:
实验结果分析(1)写入存储器:通过WR、RD、IOM控制存储器的读写,IOR控制数据地址的输出, LDAR 控制地址寄存器门控信号。
给存储器的00H、01H、02H、03H、04H地址单元中分别写入数据11H、12H、13H、14H、15H。
先关掉存储器的读写(WR=0,RD=0)和地址寄存器门控信号(LDAR=0),数据开关输出要写入的数据,打开输入三态门(IOR=0),然后使存储器处于写状态(WR=1,RD=0,IOM=0),按动ST产生T3脉冲,即将数据打入到存储器中。
(2)读存储器:通过地址的输入,读出相应地址的数据。
在进行读操作时,应先关闭IN单元的输出(IOR=1),然后使存储器处于读状态(WR=0,RD=1,IOM=0),此时数据总线上的数。