巨磁阻效应实验报告数据
巨磁阻效应实验报告

巨磁阻效应实验报告巨磁阻效应实验报告引言:巨磁阻效应是一种材料在外加磁场下,磁阻发生显著变化的现象。
这种现象被广泛应用于磁存储、传感器等领域。
本实验旨在探究巨磁阻效应的基本原理和应用。
一、实验目的本实验的主要目的是通过实验验证巨磁阻效应的存在,并探究其与外加磁场强度、温度等因素的关系。
二、实验原理巨磁阻效应是指材料在外加磁场下,其电阻发生显著变化的现象。
这种变化是由于磁矩在外加磁场作用下发生重排而引起的。
当外加磁场增大时,磁矩的重排程度增加,导致电阻的变化。
巨磁阻效应的大小可以通过磁阻率的变化来衡量。
三、实验材料和仪器本实验所需的材料和仪器有:磁铁、巨磁阻效应样品、电源、万用表、恒温槽等。
四、实验步骤1. 将巨磁阻效应样品放置在恒温槽中,使其温度保持恒定。
2. 将电源接入巨磁阻效应样品,调节电流大小,测量电阻值。
3. 在不同的温度和磁场强度下,重复步骤2,记录数据。
4. 对实验数据进行分析和处理,得出结论。
五、实验结果和分析通过实验测量得到的数据,我们可以得出以下结论:1. 随着外加磁场强度的增加,巨磁阻效应样品的电阻值呈现出明显的变化。
这表明巨磁阻效应的存在。
2. 在一定的温度范围内,巨磁阻效应的大小与温度呈现出一定的关联性。
随着温度的升高,巨磁阻效应的大小逐渐减小。
3. 不同样品的巨磁阻效应大小有所差异,这与样品的材料特性有关。
六、实验误差分析在实验过程中,可能存在一些误差,如电流的测量误差、温度控制的误差等。
这些误差可能会对实验结果产生一定的影响。
为了减小误差,我们可以采取一些措施,如提高仪器的精度、增加数据的重复性等。
七、实验应用巨磁阻效应在磁存储、传感器等领域有着广泛的应用。
通过巨磁阻效应,我们可以设计出更加灵敏、高效的传感器,提高磁存储设备的性能等。
八、结论通过本次实验,我们验证了巨磁阻效应的存在,并探究了其与外加磁场强度、温度等因素的关系。
巨磁阻效应在磁存储、传感器等领域具有重要的应用价值。
巨磁电阻效应及应用实验报告

巨磁电阻效应及其应用2007年诺贝尔物理学奖授予了巨磁电阻( Giant magneto resistance,简称GMR)效应的发现者:法国物理学家阿尔贝·费尔(Albert Fert)和德国物理学家彼得·格伦贝格尔( Peter Grunberg )。
诺贝尔奖委员会说明:“这是一次好奇心导致的发现,但其随后的应用却是革命性的,因为它使计算机硬盘的容量从几百、几千兆,一跃而提高几百倍,达到几百G乃至上千G。
”凝聚态物理研究原子,分子在构成物质时的微观结构,它们之间的相互作用力,及其与宏观物理性质之间的联系。
人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。
量子力学出现后,德国科学家海森伯(W. Heisenberg,1932年诺贝尔奖得主)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。
图 1 反铁磁有序后来发现很多的过渡金属和稀土金属的化合物具有反铁磁有序状态,即在有序排列的磁材料中,相邻原子因受负的交换作用,自旋为反平行排列,如错误!未找到引用源。
所示。
则磁矩虽处于有序状态,但总的净磁矩在不受外场作用时仍为零。
这种磁有序状态称为反铁磁性。
法国科学家奈尔(L.E. F. Neel)因为系统地研究反铁磁性而获1970年诺贝尔奖。
在解释反铁磁性时认为,化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。
另外,在稀土金属中也出现了磁有序,其中原子的固有磁矩来自4f电子壳层。
相邻稀土原子的距离远大于4f电子壳层直径,所以稀土金属中的传导电子担当了中介,将相邻的稀土原子磁矩耦合起来,这就是RKKY型间接交换作用。
直接交换作用的特征长度为0.1~0.3nm,间接交换作用可以长达1nm以上。
1nm已经是实验室中人工微结构材料可以实现的尺度。
1970年美国IBM实验室的江崎和朱兆祥提出了超晶格的概念,所谓的超晶格就是指由两种(或两种以上)组分(或导电类型)不同、厚度d极小的薄层材料交替生长在一起而得到的一种多周期结构材料。
巨磁电阻实验报告

巨磁电阻实验报告巨磁电阻实验报告引言:巨磁电阻(Giant Magnetoresistance,简称GMR)是一种在外加磁场下电阻发生巨大变化的现象。
它是由诺贝尔物理学奖得主阿尔伯特·菲尔斯和彼得·格鲁伯尔于1988年发现的。
GMR效应的发现不仅在科学界引起了轰动,而且也在技术领域引发了革命性的变革。
本实验旨在通过测量巨磁电阻效应,探索其原理和应用。
实验目的:1.了解巨磁电阻效应的基本原理;2.熟悉巨磁电阻材料的制备和测量方法;3.通过实验数据分析,探索巨磁电阻在信息存储和传感器领域的应用。
实验原理:巨磁电阻效应是指在外加磁场下,磁性材料中的电阻发生显著变化的现象。
这一现象的基础是磁性材料中的自旋极化和磁化方向之间的相互作用。
当自旋极化与磁化方向平行时,电阻较小,而当自旋极化与磁化方向反平行时,电阻较大。
巨磁电阻效应的大小与磁化方向的相对变化有关。
实验装置:本实验采用了一台巨磁电阻测量仪。
该测量仪包括一个磁场供应器和一个电阻测量器。
磁场供应器用于产生可调的磁场,而电阻测量器则用于测量样品的电阻值。
实验步骤:1.准备样品:将巨磁电阻材料切割成适当大小的样品,并确保其表面平整清洁。
2.安装样品:将样品固定在测量仪的夹持装置上,确保样品与磁场平行。
3.调整磁场:通过调节磁场供应器,使得磁场的大小和方向符合实验要求。
4.测量电阻:使用电阻测量器测量样品在不同磁场下的电阻值,并记录数据。
5.分析数据:根据测得的电阻数据,绘制电阻随磁场变化的曲线,并进行数据分析。
实验结果与讨论:通过实验测量,我们得到了样品在不同磁场下的电阻值。
根据这些数据,我们可以绘制出电阻随磁场变化的曲线。
根据曲线的形状和变化趋势,我们可以得出以下结论:1.在低磁场下,电阻值变化较小,巨磁电阻效应不显著。
2.随着磁场的增大,电阻值迅速增加,巨磁电阻效应开始显现。
3.在较高磁场下,电阻值趋于稳定,巨磁电阻效应达到饱和。
巨磁阻效应实验报告数据

数据处理
实验一线圈电流由零开始变化测得输出电压V和磁场B的关系如下图示
由上图可以看出2mT以下部分传感器的输出电压和磁场变化情况接近线性变化,其灵敏度K=0.1325相关系数为0.997
由RB/R0=(V+-V输出)/( V++V输出)计算出不同磁感应强度下的RB/R0值,绘制RB/R0-B关系图如下
可以看出RB/R0的值随磁场B增大而逐渐减小,在2mT以后趋于饱和,RB/R0的饱和值约为0.9。
则该传感器的电阻相对变化率(RB-R0)/R0的最大值约为0.9-1=-0.1=-10%
实验二测量时,巨磁阻传感器工作电压V+为5.00v,线圈电流为0.06A。
利用实验所得数据作V输出—COSθ关系图如下示:
从图中可以看出在COSθ=0.6附近有一个瑕点外,具有较良好的线性关系
V=0.1441COSθ,相关系数为0.9986,即传感器的输出电压与传感器敏感轴—磁场间夹角θ成余弦关系。
问题思考
1.如何避免地磁场影响,并解释原因。
本次实验中亥姆霍兹线圈产生磁场来验证材料在有无磁场的情况下电阻的变化,必然会受到地磁场的影响,故我们在实验过程中每次旋转角度后,应重新调零,
减小每次旋转角度地磁场对实验误差的积累。
巨磁电阻效应及其应用 实验报告

巨磁电阻效应及其应用【实验目的】1、 了解GMR 效应的原理2、 测量GMR 模拟传感器的磁电转换特性曲线3、 测量GMR 的磁阻特性曲线4、 用GMR 传感器测量电流5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理【实验原理】根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。
称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。
电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。
当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。
电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。
早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。
总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。
在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。
施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。
电流的方向在多数应用中是平行于膜面的。
无外磁场时顶层磁场方向顶层铁磁膜中间导电层 底层铁磁膜无外磁场时底层磁场方向图2 多层膜GMR 结构图图3是图2结构的某种GMR 材料的磁阻特性。
由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。
【大学物理实验(含 数据+思考题)】巨磁电阻效应及其应用

实验4.21 巨磁电阻效应及其应用一、实验目的(1)了解GMR效应的现象和原理(2)测量GMR的磁阻特性曲线(3)用GMR传感器测量电流(4)了解磁记录与读出的原理和方法二、实验仪器ZKY-JCZ巨磁电阻效应及应用实验仪ZKY-JCZ基本特性组件三、实验原理物质在磁场中电阻发生变化的现象,称为磁阻效应。
磁性金属和合金材料一般都有这种现象。
一般情况下,物质的电阻在磁场中仅发生微小的变化。
在某种条件下,电阻值变动的幅度相当大,比通常情况下高十余倍,称为巨磁阻(Giant magneto resistance,简称GMR)效应。
巨磁阻效应是一种量子力学效应,它产生于层状的磁性薄膜结构。
这种结构是由铁磁材料和非铁磁材料薄层交替叠合而成。
当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻;当铁磁层的磁矩相互反平行时,与自旋有关的散射最强,材料的电阻最大。
根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子发生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规则散射运动的叠加。
电子在两次散射之间走过的平均路程称为电子的平均自由程。
电子散射概率小,则平均自由程长,电阻率低。
一般把电阻定律R=ρl/S中的电阻率ρ视为与材料的几何尺度无关的常数,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约为34nm),可以忽略边界效应。
当材料的几儿何只度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边上的散射概率大大增加,可以明显观察到厚度减小电阻率增加的现象。
电子除携带电荷外,还具有自旋特性。
自旋磁矩有平行和反平行于外磁场两种取向。
英国物理学家诺贝尔奖获得者N.F.Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射概率远小于自旋磁矩与材料的磁场方向反平行的电子。
巨磁电阻效应及应用 实验内容与操作

巨磁电阻效应及应用 实验内容与操作一、GMR 模拟传感器的磁电转换特性测量在将GMR 构成传感器时,为了消除温度变化等环境因素对输出的影响,一般采用桥式结构,图10是某型号传感器的结构。
图10 GMR 模拟传感器结构图R 2R 1R 3 R 4输出- 输入+a 几何结构对于电桥结构,如果4个GMR 电阻对磁场的响应完全同步,就不会有信号输出。
图10中,将处在电桥对角位置的两个电阻R 3、R 4 覆盖一层高导磁率的材料如坡莫合金,以屏蔽外磁场对它们的影响,而R 1、R 2 阻值随外磁场改变。
设无外磁场时4个GMR 电阻的阻值均为R ,R 1、R 2 在外磁场作用下电阻减小ΔR ,简单分析表明,输出电压:UOUT = U IN ΔR/(2R-ΔR ) (2)屏蔽层同时设计为磁通聚集器,它的高导磁率将磁力线聚集在R 1、R 2电阻所在的空间,进一步提高了R 1、R 2 的磁灵敏度。
从图10的几何结构还可见,巨磁电阻被光刻成微米宽度迂回状的电阻条,以增大其电阻至k Ω数量级,使其在较小工作电流下得到合适的电压输出。
图11是某GMR 模拟传感器的磁电转换特性曲线。
图12是磁电转换特性的测量原理图。
图12 模拟传感器磁电转换特性实验原理图图11 GMR 模拟传感器的磁电转换特性 输出/V 磁感应强度/高斯 -30 -20 -10 0 10 20 30实验装置:巨磁阻实验仪,基本特性组件。
将GMR模拟传感器置于螺线管磁场中,功能切换按钮切换为“传感器测量”。
实验仪的4伏电压源接至基本特性组件“巨磁电阻供电”,恒流源接至“螺线管电流输入”,基本特性组件“模拟信号输出”接至实验仪电压表。
按表1数据,调节励磁电流,逐渐减小磁场强度,记录相应的输出电压于表格“减小磁场”列中。
由于恒流源本身不能提供负向电流,当电流减至0后,交换恒流输出接线的极性,使电流反向。
再次增大电流,此时流经螺线管的电流与磁感应强度的方向为负,从上到下记录相应的输出电压。
巨磁电阻实验报告

巨磁电阻实验报告【目的要求】1、了解GMR效应的原理2、测量GMR模拟传感器的磁电转换特性曲线3、测量GMR的磁阻特性曲线4、用GMR传感器测量电流5、用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理【原理简述】根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。
称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。
电阻定律 R=ρl/S中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。
当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。
电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。
早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。
总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。
在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。
施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。
电流的方向在多数应用中是平行于膜面的。
电阻\欧姆磁场强度/ 高斯图3 某种GMR材料的磁阻特性无外磁场时顶层磁场方向无外磁场时底层磁场方向图2 多层膜GMR结构图图3是图2结构的某种GMR材料的磁阻特性。
由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据处理
实验一线圈电流由零开始变化测得输出电压V和磁场B的关系如下图示
由上图可以看出2mT以下部分传感器的输出电压和磁场变化情况接近线性变化,其灵敏度K=0.1325相关系数为0.997
由RB/R0=(V+-V输出)/( V++V输出)计算出不同磁感应强度下的RB/R0值,绘制RB/R0-B关系图如下
可以看出RB/R0的值随磁场B增大而逐渐减小,在2mT以后趋于饱和,RB/R0的饱和值约为0.9。
则该传感器的电阻相对变化率(RB-R0)/R0的最大值约为0.9-1=-0.1=-10%
实验二测量时,巨磁阻传感器工作电压V+为5.00v,线圈电流为0.06A。
利用实验所得数据作V输出—COSθ关系图如下示:
从图中可以看出在COSθ=0.6附近有一个瑕点外,具有较良好的线性关系
V=0.1441COSθ,相关系数为0.9986,即传感器的输出电压与传感器敏感轴—磁场间夹角θ成余弦关系。
问题思考
1.如何避免地磁场影响,并解释原因。
本次实验中亥姆霍兹线圈产生磁场来验证材料在有无磁场的情况下电阻的变化,必然会受到地磁场的影响,故我们在实验过程中每次旋转角度后,应重新调零,
减小每次旋转角度地磁场对实验误差的积累。