巨磁阻效应实验报告
巨磁阻效应实验报告

巨磁阻效应实验报告巨磁阻效应实验报告引言:巨磁阻效应是一种材料在外加磁场下,磁阻发生显著变化的现象。
这种现象被广泛应用于磁存储、传感器等领域。
本实验旨在探究巨磁阻效应的基本原理和应用。
一、实验目的本实验的主要目的是通过实验验证巨磁阻效应的存在,并探究其与外加磁场强度、温度等因素的关系。
二、实验原理巨磁阻效应是指材料在外加磁场下,其电阻发生显著变化的现象。
这种变化是由于磁矩在外加磁场作用下发生重排而引起的。
当外加磁场增大时,磁矩的重排程度增加,导致电阻的变化。
巨磁阻效应的大小可以通过磁阻率的变化来衡量。
三、实验材料和仪器本实验所需的材料和仪器有:磁铁、巨磁阻效应样品、电源、万用表、恒温槽等。
四、实验步骤1. 将巨磁阻效应样品放置在恒温槽中,使其温度保持恒定。
2. 将电源接入巨磁阻效应样品,调节电流大小,测量电阻值。
3. 在不同的温度和磁场强度下,重复步骤2,记录数据。
4. 对实验数据进行分析和处理,得出结论。
五、实验结果和分析通过实验测量得到的数据,我们可以得出以下结论:1. 随着外加磁场强度的增加,巨磁阻效应样品的电阻值呈现出明显的变化。
这表明巨磁阻效应的存在。
2. 在一定的温度范围内,巨磁阻效应的大小与温度呈现出一定的关联性。
随着温度的升高,巨磁阻效应的大小逐渐减小。
3. 不同样品的巨磁阻效应大小有所差异,这与样品的材料特性有关。
六、实验误差分析在实验过程中,可能存在一些误差,如电流的测量误差、温度控制的误差等。
这些误差可能会对实验结果产生一定的影响。
为了减小误差,我们可以采取一些措施,如提高仪器的精度、增加数据的重复性等。
七、实验应用巨磁阻效应在磁存储、传感器等领域有着广泛的应用。
通过巨磁阻效应,我们可以设计出更加灵敏、高效的传感器,提高磁存储设备的性能等。
八、结论通过本次实验,我们验证了巨磁阻效应的存在,并探究了其与外加磁场强度、温度等因素的关系。
巨磁阻效应在磁存储、传感器等领域具有重要的应用价值。
巨磁阻效应实验报告

巨磁阻效应实验报告篇一:磁阻效应实验报告近代物理实验报告专业2011级应用物理学班级(2) 指导教师彭云雄姓名同组人实验时间 2013 年 12 月23 日实验地点 K7-108 实验名称磁阻效应实验一、实验目的1、2、3、4、测量电磁铁的磁感应强度与励磁电流的关系和电磁铁磁场分布。
测量锑化铟传感器的电阻与磁感应强度的关系。
作出锑化铟传感器的电阻变化与磁感应强度的关系曲线。
对此关系曲线的非线性区域和线性区域分别进行拟合。
二、实验原理图1磁阻效应原理1一定条件下,导电材料的电阻值R随磁感应强度B的变化规律称为磁阻效应。
如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍耳电场。
如果霍耳电场作用和某一速度载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减少,电阻增大,表现出横向磁阻效应。
若将图1中a端和b端短路,则磁阻效应更明显。
通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。
其中ρ(0)为零磁场时的电阻率,设磁电阻在磁感应强度为B的磁场中电阻率为ρ(B),则Δρ=ρ(B)-ρ(0)。
由于磁阻传感器电阻的相对变化率ΔR/R(0)正比于Δρ/ρ(0),这里ΔR=R(B)-R(0),因此也可以用磁阻传感器电阻的相对改变量ΔR/R(0)来表示磁阻效应的大小。
图2图2所示实验装置,用于测量磁电阻的电阻值R与磁感应强度B之间的关系。
实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率ΔR/R(0)正比于磁感应强度B的平方,而在强磁场中ΔR/R(0)与磁感应强度B呈线性关系。
磁阻传感器的上述特性在物理学和电子学方面有着重要应用。
2如果半导体材料磁阻传感器处于角频率为ω的弱正弦波交流磁场中,由于磁电阻相对变化量ΔR/R(0)正比于B,则磁阻传感器的电阻值R将随角频率2ω作周期性变化。
巨磁电阻效应及其应用实验报告

巨磁电阻效应及其应用实验报告引言巨磁电阻(GMR)效应是一种在特定材料中的电阻随着磁场强度的改变而发生改变的现象,这个现象在1988年被发现并且被认为是一种非常重要的物理现象。
GMR效应的发现因其在信息存储和传输方面的应用而获得广泛的关注。
本实验旨在通过对GMR效应的测量来研究其基本性质以及应用。
实验器材本实验的器材包括:恒流源、磁场控制器、数显万用表、集成电路(IC)芯片、电阻板和薄膜,其中集成电路芯片是一种悬挂在磁性薄膜上的表面贴装器件,薄膜是一种金属薄膜,可以产生磁场。
实验步骤1.将IC芯片放置在电阻板的中心位置。
2.将磁性薄膜放置在IC芯片顶部,注意不要碰到芯片。
3.将恒流源的电流调节到正确的数值,根据实验需求选择恒流源的最大或最小电流值。
4.打开磁场控制器,使用磁场控制器来控制磁场的强度,根据需要进行改变。
5.使用数显万用表来测量芯片中的电压。
6.根据实验的需要调整电阻板和薄膜之间的距离。
实验结果实验结果表明,在施加不同大小的磁场时,IC芯片的电阻会发生变化,这种变化非常灵敏,能够实现高精度的控制。
此外,IC芯片的电阻随着磁场的强度增加而减小,这表明芯片的电阻具有“负巨磁电阻”效应。
讨论与结论巨磁电阻效应是一种非常重要的物理现象,它在信息存储和传输方面具有非常广泛的应用。
本实验展示了GMR效应的基本特性,并探讨了其在实际应用中的潜在价值。
我们可以通过调整材料的性质来提高其敏感度和精度,从而扩展其现有应用。
总之,GMR效应在信息技术领域是一个革命性的技术,它为我们提供了一种新的方式来控制和处理信息。
通过进一步研究和优化,我们可以更好地利用这个效应,实现更高效的数据传输和处理。
巨值电阻实验报告

一、实验目的1. 了解巨磁电阻效应的基本原理和实验方法。
2. 通过实验测量巨磁电阻材料的电阻随磁场的变化规律。
3. 掌握测量电阻的基本方法和误差分析。
二、实验原理巨磁电阻效应(Giant Magneto-Resistance,GMR)是指在外加磁场的作用下,某些材料的电阻值发生显著变化的现象。
实验中,我们利用巨磁电阻材料的这种特性,通过测量电阻随磁场的变化,来研究其磁阻特性。
三、实验器材1. 巨磁电阻材料样品2. 磁场发生器3. 电阻测量仪4. 电流源5. 电压表6. 信号发生器7. 数据采集系统8. 电脑及实验软件四、实验步骤1. 将巨磁电阻材料样品放置在磁场发生器中,调整磁场方向。
2. 接通电流源,使电流通过巨磁电阻材料样品。
3. 利用电阻测量仪测量样品的电阻值。
4. 改变磁场强度,记录不同磁场下的电阻值。
5. 将实验数据输入电脑,利用实验软件进行分析和处理。
五、实验结果与分析1. 实验数据根据实验数据,绘制巨磁电阻材料电阻随磁场的变化曲线。
如下所示:图1 巨磁电阻材料电阻随磁场的变化曲线2. 结果分析(1)从实验结果可以看出,巨磁电阻材料的电阻值随着磁场强度的增加而减小,且变化趋势呈现出非线性。
在磁场强度较小时,电阻值下降较快;而在磁场强度较大时,电阻值下降速度逐渐变慢。
(2)根据实验结果,可以分析出巨磁电阻材料在磁场作用下的电阻变化机制。
当外加磁场较小时,材料内部的磁畴发生旋转,导致电阻值下降。
随着磁场强度的增加,磁畴逐渐趋于平行排列,电阻值下降速度逐渐变慢。
(3)实验过程中,对测量数据进行误差分析。
主要误差来源包括:电流源和电压表的精度、磁场发生器的稳定性、实验环境的温度和湿度等。
通过对实验数据进行多次测量,并计算平均值,可以减小误差的影响。
六、实验结论1. 巨磁电阻材料在磁场作用下的电阻值发生显著变化,符合巨磁电阻效应的基本原理。
2. 通过实验测量,获得了巨磁电阻材料电阻随磁场的变化规律,为相关应用研究提供了实验依据。
巨磁电阻实验报告

巨磁电阻实验报告【目的要求】1、 了解GMR 效应的原理2、 测量GMR 模拟传感器的磁电转换特性曲线3、 测量GMR 的磁阻特性曲线4、 用GMR 传感器测量电流5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理【原理简述】根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。
称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。
电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。
当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。
电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。
早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。
总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。
在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。
施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。
电流的方向在多数应用中是平行于膜面的。
无外磁场时顶层磁场方向无外磁场时底层磁场方向图 2 多层膜GMR 结构图图3是图2结构的某种GMR 材料的磁阻特性。
由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。
当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减图3 某种GMR 材料的磁阻特性磁场强度 / 高斯 电阻 \ 欧姆小,进入磁饱和区域。
巨磁阻实验报告

巨磁阻实验报告巨磁阻实验报告引言:巨磁阻效应是指在外加磁场下,磁电阻发生显著变化的现象。
巨磁阻效应的发现引起了科学界的广泛关注,其在磁性材料的应用领域具有重要意义。
本实验旨在通过实验验证巨磁阻效应的存在,并探究其相关特性。
实验原理:巨磁阻效应是由磁电阻效应引起的。
磁电阻效应是指在外加磁场下,材料的电阻发生变化。
当磁场方向与电流方向垂直时,电阻达到最大值,称为正磁电阻;当磁场方向与电流方向平行时,电阻达到最小值,称为负磁电阻。
巨磁阻效应是正磁电阻和负磁电阻的综合效应。
实验步骤:1. 实验器材准备:巨磁阻材料样品、电源、电流表、电压表、磁场强度调节装置。
2. 将巨磁阻材料样品固定在实验台上,保证其与电流表和电压表的连接良好。
3. 通过电源给巨磁阻材料样品通电,记录电流大小。
4. 通过磁场强度调节装置调节外加磁场的强度,记录磁场强度大小。
5. 分别在不同磁场强度下,测量巨磁阻材料样品的电压值,并记录下来。
实验结果:通过实验测量得到的数据,我们可以绘制出巨磁阻材料样品的电压-磁场强度曲线。
从曲线上可以观察到,在外加磁场作用下,巨磁阻材料样品的电压值发生了明显的变化。
当磁场强度增大时,电压值逐渐减小,表现出负磁电阻的特性;当磁场强度减小时,电压值逐渐增大,表现出正磁电阻的特性。
讨论与分析:巨磁阻效应的发现为磁性材料的应用提供了新的可能性。
巨磁阻材料可以应用于磁传感器、磁存储器、磁阻读头等领域。
在磁传感器中,巨磁阻材料可以实现对磁场的高灵敏度检测,提高传感器的精度和稳定性。
在磁存储器中,巨磁阻材料可以实现高密度的数据存储,提高存储器的容量和速度。
在磁阻读头中,巨磁阻材料可以实现对磁道上信息的高精度读取,提高读头的性能和可靠性。
然而,巨磁阻效应的应用还面临一些挑战。
首先,巨磁阻材料的制备工艺相对复杂,生产成本较高。
其次,巨磁阻效应的大小与磁场强度、温度等因素有关,需要进行精确的控制和调节。
此外,巨磁阻材料的稳定性和寿命也需要进一步研究和改进。
巨磁阻效应实验报告

巨磁阻效应实验报告一、实验目的。
本实验旨在通过实验验证巨磁阻效应的存在,并探究其在磁性材料中的应用。
二、实验原理。
巨磁阻效应是指在外加磁场作用下,磁性材料的电阻发生显著变化的现象。
通俗地讲,当磁场的强度发生变化时,磁性材料中的电阻也会随之变化。
这一现象被广泛应用于磁场传感器、磁存储器等领域。
三、实验器材。
1. 磁性材料样品。
2. 电源。
3. 万用表。
4. 磁场强度测量仪。
四、实验步骤。
1. 将磁性材料样品置于外加磁场中,通过电源调节磁场强度;2. 使用万用表测量磁性材料样品在不同磁场强度下的电阻值;3. 利用磁场强度测量仪记录磁场强度与电阻值的对应关系。
五、实验结果与分析。
经过实验测量与记录,我们得到了磁性材料在不同磁场强度下的电阻值。
通过数据分析,我们发现磁性材料的电阻值随着外加磁场的强度发生显著变化,呈现出巨磁阻效应。
这一现象与实验原理相符合,证实了巨磁阻效应的存在。
六、实验结论。
本实验验证了巨磁阻效应的存在,并探究了其在磁性材料中的应用。
巨磁阻效应的发现为磁场传感器、磁存储器等领域的技术发展提供了重要的理论基础。
通过本实验,我们对巨磁阻效应有了更深入的了解,为相关领域的研究与应用提供了重要的参考。
七、参考文献。
1. 《巨磁阻效应在传感器中的应用研究》,XXX,XXX出版社,2008年。
2. 《磁性材料的电学性质研究》,XXX,XXX出版社,2010年。
八、致谢。
在此,特别感谢实验指导老师对本实验的指导与帮助,以及实验室同学们的配合与支持。
以上为本次巨磁阻效应实验的报告内容,谢谢阅读。
巨磁电阻实验报告

巨磁电阻实验报告巨磁电阻实验报告引言:巨磁电阻(Giant Magnetoresistance,简称GMR)是一种在外加磁场下电阻发生巨大变化的现象。
它是由诺贝尔物理学奖得主阿尔伯特·菲尔斯和彼得·格鲁伯尔于1988年发现的。
GMR效应的发现不仅在科学界引起了轰动,而且也在技术领域引发了革命性的变革。
本实验旨在通过测量巨磁电阻效应,探索其原理和应用。
实验目的:1.了解巨磁电阻效应的基本原理;2.熟悉巨磁电阻材料的制备和测量方法;3.通过实验数据分析,探索巨磁电阻在信息存储和传感器领域的应用。
实验原理:巨磁电阻效应是指在外加磁场下,磁性材料中的电阻发生显著变化的现象。
这一现象的基础是磁性材料中的自旋极化和磁化方向之间的相互作用。
当自旋极化与磁化方向平行时,电阻较小,而当自旋极化与磁化方向反平行时,电阻较大。
巨磁电阻效应的大小与磁化方向的相对变化有关。
实验装置:本实验采用了一台巨磁电阻测量仪。
该测量仪包括一个磁场供应器和一个电阻测量器。
磁场供应器用于产生可调的磁场,而电阻测量器则用于测量样品的电阻值。
实验步骤:1.准备样品:将巨磁电阻材料切割成适当大小的样品,并确保其表面平整清洁。
2.安装样品:将样品固定在测量仪的夹持装置上,确保样品与磁场平行。
3.调整磁场:通过调节磁场供应器,使得磁场的大小和方向符合实验要求。
4.测量电阻:使用电阻测量器测量样品在不同磁场下的电阻值,并记录数据。
5.分析数据:根据测得的电阻数据,绘制电阻随磁场变化的曲线,并进行数据分析。
实验结果与讨论:通过实验测量,我们得到了样品在不同磁场下的电阻值。
根据这些数据,我们可以绘制出电阻随磁场变化的曲线。
根据曲线的形状和变化趋势,我们可以得出以下结论:1.在低磁场下,电阻值变化较小,巨磁电阻效应不显著。
2.随着磁场的增大,电阻值迅速增加,巨磁电阻效应开始显现。
3.在较高磁场下,电阻值趋于稳定,巨磁电阻效应达到饱和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巨磁阻效应实验报告篇一:磁阻效应实验报告近代物理实验报告专业2011级应用物理学班级(2) 指导教师彭云雄姓名同组人实验时间 2013 年 12 月23 日实验地点 K7-108 实验名称磁阻效应实验一、实验目的1、2、3、4、测量电磁铁的磁感应强度与励磁电流的关系和电磁铁磁场分布。
测量锑化铟传感器的电阻与磁感应强度的关系。
作出锑化铟传感器的电阻变化与磁感应强度的关系曲线。
对此关系曲线的非线性区域和线性区域分别进行拟合。
二、实验原理图1磁阻效应原理1一定条件下,导电材料的电阻值R随磁感应强度B的变化规律称为磁阻效应。
如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍耳电场。
如果霍耳电场作用和某一速度载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减少,电阻增大,表现出横向磁阻效应。
若将图1中a端和b端短路,则磁阻效应更明显。
通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。
其中ρ(0)为零磁场时的电阻率,设磁电阻在磁感应强度为B的磁场中电阻率为ρ(B),则Δρ=ρ(B)-ρ(0)。
由于磁阻传感器电阻的相对变化率ΔR/R(0)正比于Δρ/ρ(0),这里ΔR=R(B)-R(0),因此也可以用磁阻传感器电阻的相对改变量ΔR/R(0)来表示磁阻效应的大小。
图2图2所示实验装置,用于测量磁电阻的电阻值R与磁感应强度B之间的关系。
实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率ΔR/R(0)正比于磁感应强度B的平方,而在强磁场中ΔR/R(0)与磁感应强度B呈线性关系。
磁阻传感器的上述特性在物理学和电子学方面有着重要应用。
2如果半导体材料磁阻传感器处于角频率为ω的弱正弦波交流磁场中,由于磁电阻相对变化量ΔR/R(0)正比于B,则磁阻传感器的电阻值R将随角频率2ω作周期性变化。
即在弱正弦波交流磁场中,磁阻传感器具有交流电倍频性能。
若外界交流磁场的磁感应强度B为B=B0COSωt (1)(1)式中,B0为磁感应强度的振幅,ω为角频率,t为时间。
2设在弱磁场中ΔR/R(0)=KB(2)(2)式中,K为常量。
由(1)式和(2)式可得R(B)=R(0)+ΔR=R(0)+R(0)×[ΔR/R(0)]22=R(0)+R(0)KB0COSωt 21212R(0)KB0+R(0)KB0COS2ωt (3) 221122(3)式中,R(0)+R(0)KB0为不随时间变化的电阻值,而R(0)KB0cos2ωt为以角频22=R(0)+率2ω作余弦变化的电阻值。
因此,磁阻传感器的电阻值在弱正弦波交流磁场中,将产生倍频交流电阻阻值变化。
三、实验仪器HLD-MRE-II型磁阻效应实验仪:包括直流双路恒流电源、0-2V直流数字电压表、电磁铁、数字式毫特仪(GaAs作探测器)、锑化铟(InSb)磁阻传感器等组成。
四、实验内容和步骤3,( 测量电磁铁励磁电流IM与电磁铁气隙中磁感应强度B的关系(测量电磁铁磁化曲线)1) 对准航空插头座缺口方向,用双头航空插头线连接实验装置和实验仪传感器接口,传感器固定印板转出电磁铁气隙, (以减小电磁铁矽钢片残磁影响),预热10分钟后调零毫特仪,使其显示0.0mT。
2) 连接电磁铁电流输入线,置传感器印板于电磁铁气隙中,将电磁铁通入电流,调励磁电流变化依次为:0,100,200…800mA。
记录励磁电流和电磁感应强度在表1中,并绘制电磁铁磁化曲线,其中励磁电流IM=0时,B?0,表明电磁铁有剩磁存在。
请在这插入折线图2.测量磁感应强度和磁电阻大小的关系1)按图2所示将锑化铟(InSb)磁阻传感器与外接电阻(接线柱上已装电阻,也可外接电阻箱)串联,并与可调直流电源相接,数字电压表的一端连接磁阻传感器和电阻(或电阻箱)公共接点,作为测量参考点,单刀双向开关可分别与串接电阻、磁电阻InSb切换,用于测量它们的端电压。
2)由测量磁阻传感器的电流及其两端的电压,求磁阻传感器的电阻R;调节通过电磁铁的电流,改变电磁铁气隙中磁场,由毫特仪读出相应的4B,求出ΔR/R(0)与B的关系。
作ΔR/R(0)与B的关系曲线,并进行曲线拟合。
一般地,可保持锑化铟磁阻传感器电流或电压不变的条件下,测量锑化铟磁阻传感器的电阻与磁感应强度的关系。
(实验时注意GaAs和InSb传感器工作电流应<3m A)。
本实验采用保持实验样品电流恒定的条件下,通过测量其端电压来计算其电阻值。
取样电流I取的确定可按如下方法:例如取样电阻标称值为300Ω,而经测量接线柱上外接取样电阻实际值为R=298.9Ω,可调节电流,使电阻两端电压U=298.9mV;则电流I取 =U298.9==1.00mA;R298.93)实验步骤(a)如图2所示连接好导线。
单刀开关向上接通测量外接电阻电压,根据取样电阻的阻值确定取样电流,调节InSb电流调节旋钮,使电压测量值为U=300.0mV,则InSb磁电阻和外接电阻通入的电流为1.00mA, 单刀开关向下接通测量InSb磁电阻两端的电压时,因电流方向显示的电压为负值,记录数值时无须记录。
(b)实验样品固定印板置于电磁铁气隙中,电磁铁励磁电流调为0开始实验测量,此时的磁场很小,忽略不计,此时测得的电阻值为实验样品的R(0),实验中可经常观测外接电阻两端电压是否变化来表明InSb电流的稳定情况。
5实验记录表格如下:请在这插入折线图对ΔR/R与B关系曲线图的分析:1、在B<60mT时:令ΔR/R(0),kBn ,则ln(ΔR/R(0))=n lnB+lnk用双对数坐标纸经直线拟合后得:n,1.97,可知在B<0.06T时磁阻变化率ΔR/R(0)2与磁感应强度B近似成二次函数关系。
在B<60mT时,拟合得到ΔR/R(0)=29.2B2、B>120mT时:n1令ΔR/R(0),k1B,则ln(ΔR/R(0))=n1 lnB+lnk1用双对数坐标纸经直线拟合后得:n1=0.8,可知在B>0.12时磁阻变化率ΔR/R(0)与磁感应强度B近似成一次函数关系。
在B>0.12T时,拟合得到ΔR/R(0)=1.72B+0.14相关系数 r=0.9996五、注意事项锑化铟磁阻传感器作为半导体材料温度系数较大,即对温度变化很敏感,所以实验时下列因素会影响实验数据:1、实验室环境温度2、电磁铁的温升3、锑化锢的工作电流故经测量在不同的室温条件下其常态电阻差异性很大;为6了减少电磁铁的温升实验数据测量应快一些,不宜长时间通电实验,更不应使电磁铁长时间处在大电流工作状态;通过实验样品的电流要取小一些,可有效减小其温升,从而使电阻值相对稳定。
实验时可改变励磁电流的方向说明磁阻传感器的电阻变化与磁场强度的大小有关,而与磁场方向无关.可解释倍频效应的原因.六.实验小结:教师评语:1. 实验预习:( 认真、较认真、一般、较差、很差 );占30%2. 原始数据及实验结果:( 准确合理、较准确、不合理 );占30%3. 误差分析或作图:( 规范、中等、不规范 );占20%4. 卷面整洁度:( 很好、较好、中等、较差、很差 );占20%评定等级:() 教师签名:日期:篇二:巨磁阻效应实验报告数据数据处理7实验一线圈电流由零开始变化测得输出电压V和磁场B的关系如下图示由上图可以看出2mT以下部分传感器的输出电压和磁场变化情况接近线性变化,其灵敏度K=0.1325 相关系数为0.997由RB/R0=(V+-V输出)/( V++V输出) 计算出不同磁感应强度下的RB/R0值,绘制RB/R0-B关系图如下可以看出RB/R0的值随磁场B增大而逐渐减小,在2mT以后趋于饱和,RB/R0的饱和值约为0.9。
则该传感器的电阻相对变化率(RB-R0)/R0的最大值约为0.9-1=-0.1=-10%实验二测量时,巨磁阻传感器工作电压V+为5.00v,线圈电流为0.06A。
利用实验所得数据作V输出—COSθ关系图如下示:从图中可以看出在COSθ=0.6附近有一个瑕点外,具有较良好的线性关系V=0.1441COSθ,相关系数为0.9986,即传感器的输出电压与传感器敏感轴—磁场间夹角θ成余弦关系。
问题思考1.如何避免地磁场影响,并解释原因。
本次实验中亥姆霍兹线圈产生磁场来验证材料在有无磁场的情况下电阻的变化,必然会受到地磁场的影响,故我们8在实验过程中每次旋转角度后,应重新调零,减小每次旋转角度地磁场对实验误差的积累。
篇三:巨磁电阻效应及其应用研究性实验报告北京航空航天大学基础物理实验巨磁电阻效应及其应用研究性实验报告摘要本报告研究了巨磁电阻效应及其应用。
报告详细的阐述了该实验的实验背景、实验原理、实验仪器及实验内容。
数据处理部分,报告将原始数据绘制成表格,并将用Matlab绘制成图像,能够较清晰的表示出物理量之间的关系。
另外,本报告对巨磁电阻的应用进行了大量的探究,列举了一些巨磁电阻于当今时代的应用,阐述了巨磁电阻的应用前景。
关键字巨磁电阻、传感器、磁感应强度、电压、电流目录摘要...................................................................... ............................. (1)关键字.................................................................. .................................9 (1)一、实验背景.................................................................. .. (5)二、实验原理.................................................................. .. (5)三、实验仪器.................................................................. .. (7)1、实验仪主机.................................................................. . (7)2、基本特性组件模块.................................................................. . (8)3、电流测量组件.................................................................. (9)4、角位移测量组件.................................................................. .. (9)5、磁读写组件.................................................................. . (9)四、实验内容.................................................................. .................................10 (10)1、GMR模拟传感器的磁电转换特性测量 (10)2、GMR磁阻特性测量 ................................................................. (11)3、GMR开关(数字)传感器的磁电转换特性曲线测量 (12)4、用GMR模拟传感器测量电流 (13)5、GMR梯度传感器的特性及应用 (14)6、磁记录与读出.................................................................. . (15)五、数据处理.................................................................. ................................. (15)1、GMR模拟传感器的磁电转换特性测量 (15)2、GMR磁阻特性测量 ................................................................. (17)3、GMR开关(数字)传感器的磁电转换特性曲线测量 (18)114、用GMR模拟传感器测量电流 (19)5、GMR梯度传感器的特性及应用 (20)6、磁记录与读出.................................................................. . (21)六、实验思考.................................................................. ................................. (22)1、推导公式????????=????????????????? ....................................... (22)2、实验感想................................................................... (23)七、GMR传感器在有关领域的应用实例 (23)1、基于GMR传感器阵列的生物检测 (23)2、将GMR用于导航及高速公路的车辆监控系统 (24)3、GMR磁敏传感器在磁性介质的探测和磁性油墨鉴伪点钞机中的应用12.................................................................... . (25)八、实验总结.................................................................. (25)图 1 多层膜GMR结构图 ................................................................. .. (6)图 2 某种GMR材料的磁阻特性 ................................................................. .. (6)图 3 自旋阀SV-GMR结构图 ................................................................. .. (7)图 4巨磁阻实验仪操作面板.................................................................. . (8)图 5 基本特性组件.................................................................. . (8)图 6 电流测量组件.................................................................. . (9)图 7 角位移测量组件.................................................................. (9)图 8 磁读写组件.................................................................. .. (9)13图 9 GMR模拟传感器结构图 ................................................................. (10)图 10 GMR模拟传感器的磁电转换特性 (10)图 11模拟传感器磁电转换特性实验原理图 (11)图 12磁阻特性测量原理图.................................................................. . (11)图 13 GMR开关传感器 ................................................................. . (12)图 14 GMR开关传感器磁电转换特性 (12)图 15模拟传感器测量电流实验原理图 (13)图 16 GMR梯度传感器结构图 ................................................................. . (14)图 17 用GMR梯度传感器检测齿轮位移 (14)图 18 磁电转换特性曲线.................................................................. . (16)图 19 磁阻特性曲线.................................................................. (18)14图 20 GMR开关传感器磁电转换特性曲线 (19)图 21 输出电压与待测电流的关系曲线 (20)图 22 用GMR梯度传感器检测齿轮位移的电压和转角关系图 (21)图 23 电路连接图.................................................................. . (22)图 24 直接标记法.................................................................. . (23)图 25 两部标记法.................................................................. . (24)表格 1 电流随磁感应强度变化表.................................................................. .. 15表格 2 磁阻随磁感应强度变化表.................................................................. .. 17表格 3 电平随励磁电流变化表.................................................................. (18)表格 4 输出电压随待测电流变化关系表 (19)表格 5 电压和齿轮转角间的关系.................................................................. .. 2115表格 6 二进制数的写入与读出.................................................................. (22)16。